This site is the archived OWASP Foundation Wiki and is no longer accepting Account Requests.
To view the new OWASP Foundation website, please visit https://owasp.org

Defense in depth (code modification prevention)

From OWASP
Jump to: navigation, search

This is a principle or a set of principles. To view all principles, please see the Principle Category page.


Context

Mobile app developers must take into account a whole host of new risks that relate to hosting code in an uncontrolled environment. If you are hosting code in an untrustworthy environment, you are susceptible to the risk that an adversary will reverse engineer and modify your code via binary attacks [1] [2] [3] [4].

MainProjectIcon.png This content is part of a much bigger set of principles defined within the Architectural Principles That Prevent Code Modification or Reverse Engineering project.

Description

Integrity controls within applications must be applied using a defense-in-depth strategy within the application binary. A network of integrity controls should protect each other as well as the underlying application. This integrity control layering strategy makes integrity vulnerabilities extraordinarily difficult to exploit and thus unlikely to occur.

Examples

Checksum controls should protect other checksum controls that verify the integrity of the application. This makes it a tedious and difficult task for an attacker to tamper with the integrity verification mechanism.

External References

[1] Arxan Research: State of Security in the App Economy, Volume 2, November 2013:

“Adversaries have hacked 78 percent of the top 100 paid Android and iOS apps in 2013.”

[2] HP Research: HP Research Reveals Nine out of 10 Mobile Applications Vulnerable to Attack, 18 November 2013:

"86 percent of applications tested lacked binary hardening, leaving applications vulnerable to information disclosure, buffer overflows and poor performance. To ensure security throughout the life cycle of the application, it is essential to build in the best security practices from conception."

[3] North Carolina State University: Dissecting Android Malware: Characterization and Evolution, 7 September 2011:

“Our results show that 86.0% of them (Android Malware) repackage legitimate apps to include malicious payloads; 36.7% contain platform-level exploits to escalate privilege; 93.0% exhibit the bot-like capability.”

[4] InfoSecurity Magazine: Two Thirds of Personal Banking Apps Found Full of Vulnerabilities, January 3 2014:

“But one of his more worrying findings came from disassembling the apps themselves ... what he found was hardcoded development credentials within the code. An attacker could gain access to the development infrastructure of the bank and infest the application with malware causing a massive infection for all of the application’s users.”