|
|
Line 1: |
Line 1: |
− | __NOTOC__ | + | __NOTOC__ |
| <div style="width:100%;height:160px;border:0,margin:0;overflow: hidden;">[[File:Cheatsheets-header.jpg|link=]]</div> | | <div style="width:100%;height:160px;border:0,margin:0;overflow: hidden;">[[File:Cheatsheets-header.jpg|link=]]</div> |
| | | |
− | {| style="padding: 0;margin:0;margin-top:10px;text-align:left;" |-
| + | The Cheat Sheet Series project has been moved to [https://github.com/OWASP/CheatSheetSeries GitHub]! |
− | | valign="top" style="border-right: 1px dotted gray;padding-right:25px;" |
| |
− | Last revision (mm/dd/yy): '''{{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}'''
| |
− | = Introduction =
| |
− | __TOC__{{TOC hidden}}
| |
| | | |
− | Many applications use '''JSON Web Tokens''' (JWT) to allow the client to indicate its identity for further exchange after authentication.
| + | Please visit [https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md JSON Web Token (JWT) Cheat Sheet for Java] to see the latest version of the cheat sheet. |
− | | |
− | From ''https://jwt.io/introduction'':
| |
− | | |
− | ''JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON object. This information can be verified and trusted because it is digitally signed. JWTs can be signed using a secret (with the HMAC algorithm) or a public/private key pair using RSA.''
| |
− | | |
− | JSON Web Token is used to carry information related to the identity and characteristics (claims) of a client. This "container" is signed by the server in order to avoid that a client tamper it in order to change, for example, the identity or any characteristics (example: change the role from simple user to admin or change the client login).
| |
− | | |
− | This token is created during authentication (is provided in case of successful authentication) and is verified by the server before any processing. It is used by an application to allow a client to present a token representing his "identity card" (container with all information about him) to server and allow the server to verify the validity and integrity of the token in a secure way, all of this in a stateless and portable approach (portable in the way that client and server technologies can be different including also the transport channel even if HTTP is the most often used).
| |
− | | |
− | = Token structure =
| |
− | | |
− | Token structure example taken from ''https://jwt.io/#debugger'':
| |
− | | |
− | '''[ Base64(HEADER) ] . [ Base64(PAYLOAD) ] . [ Base64(SIGNATURE) ]'''
| |
− | | |
− | <pre>
| |
− | eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ
| |
− | </pre>
| |
− | | |
− | Chunk 1: Header
| |
− | <pre>
| |
− | {
| |
− | "alg": "HS256",
| |
− | "typ": "JWT"
| |
− | }
| |
− | </pre>
| |
− | | |
− | Chunk 2: Payload
| |
− | <pre>
| |
− | {
| |
− | "sub": "1234567890",
| |
− | "name": "John Doe",
| |
− | "admin": true
| |
− | }
| |
− | </pre>
| |
− | | |
− | Chunk 3: Signature
| |
− | <pre>
| |
− | HMACSHA256( base64UrlEncode(header) + "." + base64UrlEncode(payload), KEY )
| |
− | </pre>
| |
− | | |
− | = Objective =
| |
− | This cheatsheet provides tips to prevent common security issues when using JSON Web Tokens (JWT) with Java.
| |
− | | |
− | The tips presented in this article are part of a Java project that was created to show the correct way to handle creation and validation of JSON Web Tokens. You can find the Java project [https://github.com/righettod/poc-jwt here], it uses the official [https://jwt.io/#libraries JWT library].
| |
− | | |
− | In the rest of the article, the term '''token''' refer to the '''JSON Web Tokens''' (JWT).
| |
− | | |
− | = Consideration about using JWT =
| |
− | | |
− | Even if a JWT token is "easy" to use and allow to expose services (mostly REST style) in a stateless way, it's not the solution that fits for all applications because it comes with some caveats, like for example the question of the storage of the token (tackled in this cheatsheet) and others...
| |
− | | |
− | If your application does not need to be fully stateless, you can consider using traditional session system provided by all web frameworks and follow the advice from the dedicated [[Session_Management_Cheat_Sheet|cheatsheet]]. However, for stateless applications, when well implemented, it's a good candidate.
| |
− | | |
− | = Issues =
| |
− | | |
− | == NONE hashing algorithm ==
| |
− | | |
− | === Symptom ===
| |
− | | |
− | This attack, described [https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/ here] occur when a attacker alter the token and change the hashing algorithm to indicate, through, the ''none'' keyword, that the integrity of the token has already been verified. As explained in the link above ''some libraries treated tokens signed with the none algorithm as a valid token with a verified signature'', so an attacker can alter the token claims and tkey will be trusted by the application.
| |
− | | |
− | === How to prevent ===
| |
− | | |
− | First, use a JWT library that is not exposed to this vulnerability.
| |
− | | |
− | Last, during token validation, explicitly request that the expected algorithm was used.
| |
− | | |
− | === Implementation example ===
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | // HMAC key - Block serialization and storage as String in JVM memory
| |
− | private transient byte[] keyHMAC = ...;
| |
− | | |
− | ...
| |
− | | |
− | //Create a verification context for the token requesting explicitly the use of the HMAC-256 hashing algorithm
| |
− | JWTVerifier verifier = JWT.require(Algorithm.HMAC256(keyHMAC)).build();
| |
− | | |
− | //Verify the token, if the verification fail then a exception is throwed
| |
− | DecodedJWT decodedToken = verifier.verify(token);
| |
− | </syntaxhighlight>
| |
− | | |
− | == Token sidejacking ==
| |
− | | |
− | === Symptom ===
| |
− | | |
− | This attack occur when a token has been intercepted/stolen by a attacker and this one use it to gain access to the system using targeted user identity.
| |
− | | |
− | === How to prevent ===
| |
− | | |
− | A way to protect is to add "user context" in the token. User context will be composed by the following information:
| |
− | | |
− | * A random string that will be generated during the authentication phase and will be included into the token and also send to the client as an hardened cookie (flags: HttpOnly + Secure + SameSite + cookie prefix).
| |
− | * A SHA256 hash of the random string will be stored in the token (instead of the raw value) in order to prevent that any XSS issue allow the attacker to read the random string value and set the expected cookie.
| |
− | | |
− | IP address will not be used because there some situation in which IP address can change during the same session like for example when a user access an application through his mobile and he change of mobile operator during the exchange then he change legitimately (often) is IP address. Moreover, using IP address can potentially cause issue at [http://www.eugdpr.org/ European GDPR] compliance level.
| |
− | | |
− | During token validation, if the received token do not contains the right context so, it is replayed and then it must be rejected.
| |
− | | |
− | === Implementation example ===
| |
− | | |
− | Code to create the token after success authentication.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | // HMAC key - Block serialization and storage as String in JVM memory
| |
− | private transient byte[] keyHMAC = ...;
| |
− | // Random data generator
| |
− | private SecureRandom secureRandom = new SecureRandom();
| |
− | | |
− | ...
| |
− | | |
− | //Generate a random string that will constitute the fingerprint for this user
| |
− | byte[] randomFgp = new byte[50];
| |
− | this.secureRandom.nextBytes(randomFgp);
| |
− | String userFingerprint = DatatypeConverter.printHexBinary(randomFgp);
| |
− | | |
− | //Add the fingerprint in a hardened cookie - Add cookie manually because SameSite attribute is not supported by javax.servlet.http.Cookie class
| |
− | String fingerprintCookie = "__Secure-Fgp=" + userFingerprint + "; SameSite=Strict; HttpOnly; Secure";
| |
− | response.addHeader("Set-Cookie", fingerprintCookie);
| |
− | | |
− | //Compute a SHA256 hash of the fingerprint in order to store the fingerprint hash (instead of the raw value) in the token
| |
− | //to prevent an XSS to be able to read the fingerprint and set the expected cookie itself
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] userFingerprintDigest = digest.digest(userFingerprint.getBytes("utf-8"));
| |
− | String userFingerprintHash = DatatypeConverter.printHexBinary(userFingerprintDigest);
| |
− | | |
− | //Create the token with a validity of 15 minutes and client context (fingerprint) information
| |
− | Calendar c = Calendar.getInstance();
| |
− | Date now = c.getTime();
| |
− | c.add(Calendar.MINUTE, 15);
| |
− | Date expirationDate = c.getTime();
| |
− | Map<String, Object> headerClaims = new HashMap<>();
| |
− | headerClaims.put("typ", "JWT");
| |
− | String token = JWT.create().withSubject(login)
| |
− | .withExpiresAt(expirationDate)
| |
− | .withIssuer(this.issuerID)
| |
− | .withIssuedAt(now)
| |
− | .withNotBefore(now)
| |
− | .withClaim("userFingerprint", userFingerprintHash)
| |
− | .withHeader(headerClaims)
| |
− | .sign(Algorithm.HMAC256(this.keyHMAC));
| |
− | </syntaxhighlight>
| |
− | | |
− | | |
− | Code to validate the token.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | // HMAC key - Block serialization and storage as String in JVM memory
| |
− | private transient byte[] keyHMAC = ...;
| |
− | | |
− | ...
| |
− | | |
− | //Retrieve the user fingerprint from the dedicated cookie
| |
− | String userFingerprint = null;
| |
− | if (request.getCookies() != null && request.getCookies().length > 0) {
| |
− | List<Cookie> cookies = Arrays.stream(request.getCookies()).collect(Collectors.toList());
| |
− | Optional<Cookie> cookie = cookies.stream().filter(c -> "__Secure-Fgp".equals(c.getName())).findFirst();
| |
− | if (cookie.isPresent()) {
| |
− | userFingerprint = cookie.get().getValue();
| |
− | }
| |
− | }
| |
− | | |
− | //Compute a SHA256 hash of the received fingerprint in cookie in order to compare it to the fingerprint hash stored in the token
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] userFingerprintDigest = digest.digest(userFingerprint.getBytes("utf-8"));
| |
− | String userFingerprintHash = DatatypeConverter.printHexBinary(userFingerprintDigest);
| |
− | | |
− | //Create a verification context for the token
| |
− | JWTVerifier verifier = JWT.require(Algorithm.HMAC256(keyHMAC))
| |
− | .withIssuer(issuerID)
| |
− | .withClaim("userFingerprint", userFingerprintHash)
| |
− | .build();
| |
− | | |
− | //Verify the token, if the verification fail then a exception is throwed
| |
− | DecodedJWT decodedToken = verifier.verify(token);
| |
− | </syntaxhighlight>
| |
− | | |
− | == Token explicit revocation by the user ==
| |
− | | |
− | === Symptom ===
| |
− | | |
− | This problem is inerrant to JWT token because a token become only invalid when it expires. The user has no built-in feature to explicitly revoke the validity of an token.
| |
− | So, in case of steal, a user cannot revoke the token itself and then block the attacker.
| |
− | | |
− | === How to prevent ===
| |
− | | |
− | A way to protect is to implement a token blacklist that will be used to mimic the "logout" feature that exists with traditional session system.
| |
− | | |
− | The blacklist will keep a digest (SHA-256 encoded in HEX) of the token with a revokation date, this, for a duration that must be superior to the duration validity of a issued token.
| |
− | | |
− | When the user want to "logout" then it call a dedicated service that will add the provided user token to the blacklist resulting in a immediate invalidation of the token for further usage in the application.
| |
− | | |
− | === Implementation example ===
| |
− | | |
− | ==== Blacklist storage ====
| |
− | | |
− | A database table with the following structure will used as central blacklist storage.
| |
− | | |
− | <syntaxhighlight lang="sql">
| |
− | create table if not exists revoked_token(jwt_token_digest varchar(255) primary key, revokation_date timestamp default now());
| |
− | </syntaxhighlight>
| |
− | | |
− | ==== Token revocation management ====
| |
− | | |
− | Code in charge of adding a token to the blacklist and check if a token is revoked.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | /**
| |
− | * Handle the revokation of the token (logout).
| |
− | * Use a DB in order to allow multiple instances to check for revoked token and allow cleanup at centralized DB level.
| |
− | */
| |
− | public class TokenRevoker {
| |
− | | |
− | /** DB Connection */
| |
− | @Resource("jdbc/storeDS")
| |
− | private DataSource storeDS;
| |
− | | |
− | /**
| |
− | * Verify if a digest encoded in HEX of the ciphered token is present in the revokation table
| |
− | *
| |
− | * @param jwtInHex Token encoded in HEX
| |
− | * @return Presence flag
| |
− | * @throws Exception If any issue occur during communication with DB
| |
− | */
| |
− | public boolean isTokenRevoked(String jwtInHex) throws Exception {
| |
− | boolean tokenIsPresent = false;
| |
− | if (jwtInHex != null && !jwtInHex.trim().isEmpty()) {
| |
− | //Decode the ciphered token
| |
− | byte[] cipheredToken = DatatypeConverter.parseHexBinary(jwtInHex);
| |
− | | |
− | //Compute a SHA256 of the ciphered token
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] cipheredTokenDigest = digest.digest(cipheredToken);
| |
− | String jwtTokenDigestInHex = DatatypeConverter.printHexBinary(cipheredTokenDigest);
| |
− | | |
− | //Search token digest in HEX in DB
| |
− | try (Connection con = this.storeDS.getConnection()) {
| |
− | String query = "select jwt_token_digest from revoked_token where jwt_token_digest = ?";
| |
− | try (PreparedStatement pStatement = con.prepareStatement(query)) {
| |
− | pStatement.setString(1, jwtTokenDigestInHex);
| |
− | try (ResultSet rSet = pStatement.executeQuery()) {
| |
− | tokenIsPresent = rSet.next();
| |
− | }
| |
− | }
| |
− | }
| |
− | }
| |
− | | |
− | return tokenIsPresent;
| |
− | }
| |
− | | |
− | | |
− | /**
| |
− | * Add a digest encoded in HEX of the ciphered token to the revokation token table
| |
− | *
| |
− | * @param jwtInHex Token encoded in HEX
| |
− | * @throws Exception If any issue occur during communication with DB
| |
− | */
| |
− | public void revokeToken(String jwtInHex) throws Exception {
| |
− | if (jwtInHex != null && !jwtInHex.trim().isEmpty()) {
| |
− | //Decode the ciphered token
| |
− | byte[] cipheredToken = DatatypeConverter.parseHexBinary(jwtInHex);
| |
− | | |
− | //Compute a SHA256 of the ciphered token
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] cipheredTokenDigest = digest.digest(cipheredToken);
| |
− | String jwtTokenDigestInHex = DatatypeConverter.printHexBinary(cipheredTokenDigest);
| |
− | | |
− | //Check if the token digest in HEX is already in the DB and add it if it is absent
| |
− | if (!this.isTokenRevoked(jwtInHex)) {
| |
− | try (Connection con = this.storeDS.getConnection()) {
| |
− | String query = "insert into revoked_token(jwt_token_digest) values(?)";
| |
− | int insertedRecordCount;
| |
− | try (PreparedStatement pStatement = con.prepareStatement(query)) {
| |
− | pStatement.setString(1, jwtTokenDigestInHex);
| |
− | insertedRecordCount = pStatement.executeUpdate();
| |
− | }
| |
− | if (insertedRecordCount != 1) {
| |
− | throw new IllegalStateException("Number of inserted record is invalid, 1 expected but is " + insertedRecordCount);
| |
− | }
| |
− | }
| |
− | }
| |
− | | |
− | }
| |
− | }
| |
− | </syntaxhighlight>
| |
− | | |
− | | |
− | == Token information disclosure ==
| |
− | | |
− | === Symptom ===
| |
− | | |
− | This attack occur when a attacker access to a token (or a set of tokens) and extract information stored into it (JWT token information are base64 encoded at the basis) in order to obtains information about the system. Information can be for example the security roles, login format...
| |
− | | |
− | === How to prevent ===
| |
− | | |
− | A way to protect, is to cipher the token using for example a symetric algorithm.
| |
− | | |
− | It's also important to protect the ciphered data against attack like [[Testing_for_Padding_Oracle_(OTG-CRYPST-002)|Padding Oracle]] or any other attack using cryptanalysis.
| |
− | | |
− | In order to achieve all these goals, the algorithm ''AES-GCM'' can be used in conjunction with ''Additional Authentication Data (AAD)'' feature.
| |
− | | |
− | A database can be used to store the ''NONCE'' and the ''AAD'' associated to a token.
| |
− | | |
− | '''Note:'''
| |
− | | |
− | Here ciphering is added mainly to hide internal information but it's very important to remember that the first protection against tampering of the JWT token is the signature so, the token signature and is verification must be always in place.
| |
− | | |
− | === Implementation example ===
| |
− | | |
− | ==== Token ciphering ====
| |
− | | |
− | Database structure.
| |
− | | |
− | <syntaxhighlight lang="sql">
| |
− | create table if not exists nonce(jwt_token_digest varchar(255) primary key, gcm_nonce varchar(255) not null unique, gcm_aad varchar(255) not null unique);
| |
− | create index if not exists idx_nonce on nonce(gcm_nonce);
| |
− | </syntaxhighlight>
| |
− | | |
− | | |
− | Code in charge of managing the ciphering.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | /**
| |
− | * Handle ciphering and deciphering of the token using AES-GCM.
| |
− | * Use a DB in order to link a GCM NONCE to a ciphered message and ensure that a NONCE is never reused
| |
− | * and also allow use of several application nodes in load balancing.
| |
− | */
| |
− | public class TokenCipher {
| |
− | | |
− | /** AES-GCM parameters */
| |
− | private static final int GCM_NONCE_LENGTH = 12; // in bytes
| |
− | | |
− | /** AES-GCM parameters */
| |
− | private static final int GCM_TAG_LENGTH = 16; // in bytes
| |
− | | |
− | /**Secure random generator */
| |
− | private final SecureRandom secRandom = new SecureRandom();
| |
− | | |
− | /** DB Connection */
| |
− | @Resource("jdbc/storeDS")
| |
− | private DataSource storeDS;
| |
− | | |
− | /**
| |
− | * Cipher a JWT
| |
− | * @param jwt Token to cipher
| |
− | * @param key Ciphering key
| |
− | * @return The ciphered version of the token encoded in HEX
| |
− | * @throws Exception If any issue occur during token ciphering operation
| |
− | */
| |
− | public String cipherToken(String jwt, byte[] key) throws Exception {
| |
− | //Verify parameters
| |
− | if(jwt == null || jwt.isEmpty() || key == null || key.length == 0){
| |
− | throw new IllegalArgumentException("Both parameters must be specified !");
| |
− | }
| |
− | | |
− | //Generate a NONCE
| |
− | //NOTE: As in the DB, the column to store the NONCE is flagged UNIQUE then the insert will fail
| |
− | //if the NONCE already exists, normally as we use the Java Secure Random implementation
| |
− | //it will never happen.
| |
− | final byte[] nonce = new byte[GCM_NONCE_LENGTH];
| |
− | secRandom.nextBytes(nonce);
| |
− | | |
− | //Prepare ciphering key from bytes provided
| |
− | SecretKey aesKey = new SecretKeySpec(key, 0, key.length, "AES");
| |
− | | |
− | //Setup Cipher
| |
− | Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", "SunJCE");
| |
− | GCMParameterSpec spec = new GCMParameterSpec(GCM_TAG_LENGTH * 8, nonce);
| |
− | cipher.init(Cipher.ENCRYPT_MODE, aesKey, spec);
| |
− | | |
− | //Add "Additional Authentication Data" (AAD) in order to operate in AEAD mode - Generate it
| |
− | byte[] aad = new byte[32];
| |
− | secRandom.nextBytes(aad);
| |
− | cipher.updateAAD(aad);
| |
− | | |
− | //Cipher the token
| |
− | byte[] cipheredToken = cipher.doFinal(jwt.getBytes("utf-8"));
| |
− | | |
− | //Compute a SHA256 of the ciphered token
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] cipheredTokenDigest = digest.digest(cipheredToken);
| |
− | | |
− | //Store GCM NONCE and GCM AAD
| |
− | this.storeNonceAndAAD(DatatypeConverter.printHexBinary(nonce), DatatypeConverter.printHexBinary(aad),
| |
− | DatatypeConverter.printHexBinary(cipheredTokenDigest));
| |
− | | |
− | return DatatypeConverter.printHexBinary(cipheredToken);
| |
− | }
| |
− | | |
− | /**
| |
− | * Decipher a JWT
| |
− | * @param jwtInHex Token to decipher encoded in HEX
| |
− | * @param key Ciphering key
| |
− | * @return The token in clear text
| |
− | * @throws Exception If any issue occur during token deciphering operation
| |
− | */
| |
− | public String decipherToken(String jwtInHex, byte[] key) throws Exception{
| |
− | //Verify parameters
| |
− | if(jwtInHex == null || jwtInHex.isEmpty() || key == null || key.length == 0){
| |
− | throw new IllegalArgumentException("Both parameters must be specified !");
| |
− | }
| |
− | | |
− | //Decode the ciphered token
| |
− | byte[] cipheredToken = DatatypeConverter.parseHexBinary(jwtInHex);
| |
− | | |
− | //Compute a SHA256 of the ciphered token
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] cipheredTokenDigest = digest.digest(cipheredToken);
| |
− | | |
− | //Read the GCM NONCE and GCM AAD associated from the DB
| |
− | Map<String,String> gcmInfos = this.readNonceAndAAD(DatatypeConverter.printHexBinary(cipheredTokenDigest));
| |
− | if(gcmInfos == null){
| |
− | throw new Exception("Cannot found a NONCE and AAD associated to the token provided !");
| |
− | }
| |
− | byte[] nonce = DatatypeConverter.parseHexBinary(gcmInfos.get("NONCE"));
| |
− | byte[] aad = DatatypeConverter.parseHexBinary(gcmInfos.get("AAD"));
| |
− | | |
− | //Prepare ciphering key from bytes provided
| |
− | SecretKey aesKey = new SecretKeySpec(key, 0, key.length, "AES");
| |
− | | |
− | //Setup Cipher
| |
− | Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", "SunJCE");
| |
− | GCMParameterSpec spec = new GCMParameterSpec(GCM_TAG_LENGTH * 8, nonce);
| |
− | cipher.init(Cipher.DECRYPT_MODE, aesKey, spec);
| |
− | | |
− | //Add "Additional Authentication Data" (AAD) in order to operate in AEAD mode
| |
− | cipher.updateAAD(aad);
| |
− | | |
− | //Decipher the token
| |
− | byte[] decipheredToken = cipher.doFinal(cipheredToken);
| |
− | | |
− | return new String(decipheredToken);
| |
− | }
| |
− | | |
− | | |
− | /**
| |
− | * Store GCM NONCE and GCM AAD in the DB
| |
− | * @param nonceInHex Nonce encoded in HEX
| |
− | * @param aadInHex AAD encoded in HEX
| |
− | * @param jwtTokenDigestInHex SHA256 of the JWT ciphered token encoded in HEX
| |
− | * @throws Exception If any issue occur during communication with DB
| |
− | */
| |
− | private void storeNonceAndAAD(String nonceInHex, String aadInHex, String jwtTokenDigestInHex) throws Exception {
| |
− | try (Connection con = this.storeDS.getConnection()) {
| |
− | String query = "insert into nonce(jwt_token_digest, gcm_nonce, gcm_aad) values(?, ?, ?)";
| |
− | int insertedRecordCount;
| |
− | try (PreparedStatement pStatement = con.prepareStatement(query)) {
| |
− | pStatement.setString(1, jwtTokenDigestInHex);
| |
− | pStatement.setString(2, nonceInHex);
| |
− | pStatement.setString(3, aadInHex);
| |
− | insertedRecordCount = pStatement.executeUpdate();
| |
− | }
| |
− | if (insertedRecordCount != 1) {
| |
− | throw new IllegalStateException("Number of inserted record is invalid, 1 expected but is " + insertedRecordCount);
| |
− | }
| |
− | }
| |
− | }
| |
− | | |
− | /**
| |
− | * Read GCM NONCE and GCM AAD from the DB
| |
− | * @param jwtTokenDigestInHex SHA256 of the JWT ciphered token encoded in HEX for which we must read the NONCE and AAD
| |
− | * @return A dict containing the NONCE and AAD if they exists for the specified token
| |
− | * @throws Exception If any issue occur during communication with DB
| |
− | */
| |
− | private Map<String,String> readNonceAndAAD(String jwtTokenDigestInHex) throws Exception{
| |
− | Map<String,String> gcmInfos = null;
| |
− | try (Connection con = this.storeDS.getConnection()) {
| |
− | String query = "select gcm_nonce, gcm_aad from nonce where jwt_token_digest = ?";
| |
− | try (PreparedStatement pStatement = con.prepareStatement(query)) {
| |
− | pStatement.setString(1, jwtTokenDigestInHex);
| |
− | try (ResultSet rSet = pStatement.executeQuery()) {
| |
− | while (rSet.next()) {
| |
− | gcmInfos = new HashMap<>(2);
| |
− | gcmInfos.put("NONCE", rSet.getString(1));
| |
− | gcmInfos.put("AAD", rSet.getString(2));
| |
− | }
| |
− | }
| |
− | }
| |
− | }
| |
− | | |
− | return gcmInfos;
| |
− | }
| |
− | | |
− | }
| |
− | </syntaxhighlight>
| |
− | | |
− | ==== Creation / Validation of the token ====
| |
− | | |
− | Use of the token ciphering during the creation and the validation of the token.
| |
− | | |
− | Load keys and setup cipher.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | //Load keys from configuration text files in order to avoid to store keys as String in JVM memory
| |
− | private transient byte[] keyHMAC = Files.readAllBytes(Paths.get("key-hmac.txt"));
| |
− | private transient byte[] keyCiphering = Files.readAllBytes(Paths.get("key-ciphering.txt"));
| |
− | | |
− | //Load issuer ID from configuration text file
| |
− | private transient String issuerID = Files.readAllLines(Paths.get("issuer-id.txt")).get(0);
| |
− | | |
− | //Init token ciphering handler
| |
− | TokenCipher tokenCipher = new TokenCipher();
| |
− | </syntaxhighlight>
| |
− | | |
− | Token creation.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | //Generate a random string that will constitute the fingerprint for this user
| |
− | byte[] randomFgp = new byte[50];
| |
− | this.secureRandom.nextBytes(randomFgp);
| |
− | String userFingerprint = DatatypeConverter.printHexBinary(randomFgp);
| |
− | | |
− | //Add the fingerprint in a hardened cookie - Add cookie manually because SameSite attribute is not supported by javax.servlet.http.Cookie class
| |
− | String fingerprintCookie = "__Secure-Fgp=" + userFingerprint + "; SameSite=Strict; HttpOnly; Secure";
| |
− | response.addHeader("Set-Cookie", fingerprintCookie);
| |
− | | |
− | //Compute a SHA256 hash of the fingerprint in order to store the fingerprint hash (instead of the raw value) in the token
| |
− | //to prevent an XSS to be able to read the fingerprint and set the expected cookie itself
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] userFingerprintDigest = digest.digest(userFingerprint.getBytes("utf-8"));
| |
− | String userFingerprintHash = DatatypeConverter.printHexBinary(userFingerprintDigest);
| |
− | | |
− | //Create the token with a validity of 15 minutes and client context (fingerprint) information
| |
− | Calendar c = Calendar.getInstance();
| |
− | Date now = c.getTime();
| |
− | c.add(Calendar.MINUTE, 15);
| |
− | Date expirationDate = c.getTime();
| |
− | Map<String, Object> headerClaims = new HashMap<>();
| |
− | headerClaims.put("typ", "JWT");
| |
− | String token = JWT.create().withSubject(login)
| |
− | .withExpiresAt(expirationDate)
| |
− | .withIssuer(this.issuerID)
| |
− | .withIssuedAt(now)
| |
− | .withNotBefore(now)
| |
− | .withClaim("userFingerprint", userFingerprintHash)
| |
− | .withHeader(headerClaims)
| |
− | .sign(Algorithm.HMAC256(this.keyHMAC));
| |
− | //Cipher the token
| |
− | String cipheredToken = tokenCipher.cipherToken(token, keyCiphering);
| |
− | </syntaxhighlight>
| |
− | | |
− | Token validation.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | //Decipher the token
| |
− | String token = tokenCipher.decipherToken(cipheredToken, keyCiphering);
| |
− | | |
− | //Retrieve the user fingerprint from the dedicated cookie
| |
− | String userFingerprint = null;
| |
− | if (request.getCookies() != null && request.getCookies().length > 0) {
| |
− | List<Cookie> cookies = Arrays.stream(request.getCookies()).collect(Collectors.toList());
| |
− | Optional<Cookie> cookie = cookies.stream().filter(c -> "__Secure-Fgp".equals(c.getName())).findFirst();
| |
− | if (cookie.isPresent()) {
| |
− | userFingerprint = cookie.get().getValue();
| |
− | }
| |
− | }
| |
− | | |
− | //Compute a SHA256 hash of the received fingerprint in cookie in order to compare it to the fingerprint hash stored in the token
| |
− | MessageDigest digest = MessageDigest.getInstance("SHA-256");
| |
− | byte[] userFingerprintDigest = digest.digest(userFingerprint.getBytes("utf-8"));
| |
− | String userFingerprintHash = DatatypeConverter.printHexBinary(userFingerprintDigest);
| |
− | | |
− | //Decipher the token
| |
− | String token = this.tokenCipher.decipherToken(cipheredToken, this.keyCiphering);
| |
− | //Create a verification context for the token
| |
− | JWTVerifier verifier = JWT.require(Algorithm.HMAC256(this.keyHMAC))
| |
− | .withIssuer(this.issuerID)
| |
− | .withClaim("userFingerprint", userFingerprintHash)
| |
− | .build();
| |
− | | |
− | //Verify the token, if the verification fail then a exception is throwed
| |
− | DecodedJWT decodedToken = verifier.verify(token);
| |
− | </syntaxhighlight>
| |
− | | |
− | == Token storage on client side ==
| |
− | | |
− | === Symptom ===
| |
− | | |
− | It's occur when a application store the token in a way allowing this one to be:
| |
− | | |
− | * Automatically sent by the browser (''Cookie'' storage).
| |
− | * Retrieved even if the browser is restarted (Use of browser ''localStorage'' container).
| |
− | * Retrieved in case of [[XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet|XSS]] issue (Cookie accessible to JavaScript code or Token stored in browser local/session storage).
| |
− | | |
− | === How to prevent ===
| |
− | | |
− | # Store the token using the browser ''sessionStorage'' container.
| |
− | # Add it as a ''Bearer'' with JavaScript when calling services.
| |
− | # Add [[#Token sidejacking|fingerprint]] information to the token.
| |
− | | |
− | By storing the token in browser ''sessionStorage'' container it expose the token to be steal in case of XSS issue. However, fingerprint added to the token prevent reuse of the stolen token by the attacker on his machine. To close a maximum of exploitation surfaces for an attacker, add a browser [[OWASP_Secure_Headers_Project#csp|Content Security Policy]] to harden the execution context.
| |
− | | |
− | ''Note:''
| |
− | | |
− | * The remaining case is when a attacker use the user browsing context as a proxy to use the target application through the legitimate user but the Content Security Policy can prevent communication with non expected domains.
| |
− | * It's also possible to implements the authentication service in a way that the token is issued within a hardened cookie, but in this case, a protection against [[Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet|Cross-Site Request Forgery]] attack must be implemented.
| |
− | | |
− | === Implementation example ===
| |
− | | |
− | | |
− | JavaScript code to store the token after authentication.
| |
− | | |
− | <syntaxhighlight lang="javascript">
| |
− | /* Handle request for JWT token and local storage*/
| |
− | function getToken(){
| |
− | var login = $("#login").val();
| |
− | var postData = "login=" + encodeURIComponent(login) + "&password=test";
| |
− | | |
− | $.post("/services/authenticate", postData,function (data){
| |
− | if(data.status == "Authentication successful !"){
| |
− | ...
| |
− | sessionStorage.setItem("token", data.token);
| |
− | }else{
| |
− | ...
| |
− | sessionStorage.removeItem("token");
| |
− | }
| |
− | })
| |
− | .fail(function(jqXHR, textStatus, error){
| |
− | ...
| |
− | sessionStorage.removeItem("token");
| |
− | });
| |
− | }
| |
− | </syntaxhighlight>
| |
− | | |
− | JavaScript code to add the token as ''Bearer'' when calling a service, for example a service to validate token here.
| |
− | | |
− | <syntaxhighlight lang="javascript">
| |
− | /* Handle request for JWT token validation */
| |
− | function validateToken(){
| |
− | var token = sessionStorage.getItem("token");
| |
− | | |
− | if(token == undefined || token == ""){
| |
− | $("#infoZone").removeClass();
| |
− | $("#infoZone").addClass("alert alert-warning");
| |
− | $("#infoZone").text("Obtain a JWT token first :)");
| |
− | return;
| |
− | }
| |
− | | |
− | $.ajax({
| |
− | url: "/services/validate",
| |
− | type: "POST",
| |
− | beforeSend: function(xhr) {
| |
− | xhr.setRequestHeader("Authorization", "bearer " + token);
| |
− | },
| |
− | success: function(data) {
| |
− | ...
| |
− | },
| |
− | error: function(jqXHR, textStatus, error) {
| |
− | ...
| |
− | },
| |
− | });
| |
− | }
| |
− | </syntaxhighlight>
| |
− | | |
− | | |
− | == Token weak secret ==
| |
− | | |
− | === Symptom ===
| |
− | | |
− | It's occur when the secret used in case of HMAC SHA256 algorithm used for the token signature is weak and can be bruteforced.
| |
− | | |
− | The result is the capacity for an attacker to forge arbitrary valid token from a signature point of view.
| |
− | | |
− | See [https://www.notsosecure.com/crafting-way-json-web-tokens/ here] for an example.
| |
− | | |
− | === How to prevent ===
| |
− | | |
− | Use a very strong secret: Alphanumeric (mixed case) + special characters.
| |
− | | |
− | As it's a computer processing only, the size of the secret can be superior to 50 positions.
| |
− | | |
− | Secret example:
| |
− | | |
− | <pre>A&'/}Z57M(2hNg=;LE?~]YtRMS5(yZ<vcZTA3N-($>2j:ZeX-BGftaVk`)jKP~q?,jk)EMbgt*kW'(</pre>
| |
− | | |
− | To evaluate the strength of the secret used for your token signature, you can apply a password dictionary attack on the token combined with the JWT API to facilitate the implementation of a breaker.
| |
− | | |
− | Password dictionaries can be found for example [https://wiki.skullsecurity.org/Passwords here].
| |
− | | |
− | === Implementation example ===
| |
− | | |
− | Code in charge of testing a secret against a JWT token test base.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | /**
| |
− | * Test if a secret match the secret used to sign the token
| |
− | *
| |
− | * @param token Source JWT token (test base)
| |
− | * @param secret Secret to test
| |
− | * @return The token decoded if the secret matche otherwise return null
| |
− | */
| |
− | private DecodedJWT checkSecret(String token, String secret) {
| |
− | DecodedJWT t = null;
| |
− | try {
| |
− | Algorithm algorithm = Algorithm.HMAC256(secret);
| |
− | JWTVerifier verifier = JWT.require(algorithm).build();
| |
− | t = verifier.verify(token);
| |
− | } catch (JWTVerificationException | UnsupportedEncodingException e) {
| |
− | //ignore...
| |
− | }
| |
− | return t;
| |
− | }
| |
− | </syntaxhighlight>
| |
− | | |
− | Code snippet to evaluate the token test base on the secret dictionary.
| |
− | | |
− | <syntaxhighlight lang="java">
| |
− | final String tokenTestBase = ...;
| |
− | final String[] secret = new String[1];
| |
− | final DecodedJWT[] decodedToken = new DecodedJWT[1];
| |
− | List<String> secrets = Files.readAllLines(Paths.get("secrets-dictionary.txt"));
| |
− | secrets.parallelStream().forEach(s -> {
| |
− | DecodedJWT tentative = checkSecret(tokenTestBase, s);
| |
− | if (tentative != null) {
| |
− | secret[0] = s;
| |
− | decodedToken[0] = tentative;
| |
− | }
| |
− | });
| |
− | </syntaxhighlight>
| |
− | | |
− | === Use dedicated tools ===
| |
− | | |
− | You can also used [https://github.com/hashcat/hashcat/issues/1057#issuecomment-279651700 JohnTheRipper] to perform the password dictionary attack.
| |
− | | |
− | | |
− | Support for [https://github.com/hashcat/hashcat/issues/1057 Hashcat] is pending.
| |
− | | |
− | | |
− | = Authors and Primary Editors =
| |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | | |
− | = Other Cheatsheets =
| |
− | | |
− | {{Cheatsheet_Navigation_Body}}
| |
− | | |
− | |}
| |
− | | |
− | [[Category:Cheatsheets]]
| |