aurd

INFORMATION SECURITY

File Upload Considerations

White Paper

Prepared by: Kirk Jackson
Security Consultant
Aura Information Security

kirk@aurainfosec.com

Version: 0.1 - DRAFT

Date: 7 July 2011

H SPECIALISTS IN INFORMATION AND INTERNET SECURITY

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

Table of Contents

3 R 14 Y o T [V Tt 4 Lo Y TSP 3
1.1 Reason for this PAPENccciiiiiiiiiiiiiiiiiiie it teeessasssssssssssessasssssssssssssssssssssssssssssssnnnsses 3
I BT 4 V1 Y o TP 3
T T 1 ot V] N 3

2 File Upload Problems........ccciiiiiiieiiiiiiiiiinniiiiiiiienniiiiieesmiieessesiiessssimsssssssssesssssses 4

3 CoMMON File TYPES...iiiiireuiiiiiiiiiiiiiiiiiiitiiiitiieessissiterssssssssssieenssssssstressssssssssssssssssssssssennnsssss 5
T o 1 T = 1 1= TTTR 5
0 0 1 o {1 =Y RUTRN 5
3.3 Microsoft OFffice filescciieeuuiiiiiiiiiiiiiiiiiiiiiire e sssssssssssssssssssnsssssssssssssssnnnnsses 6
3.4 HTML and plain-teXt fileS....cccceiiiiiiiiiiiiiiiiiiiiiiieiiiiinninieeesseiesnstrsesssssssssssssssssssssssssssssssssssnnssses 7
3.5 Active Web Content filesc.uiiiiiiiiiiiimiiiiiiiiiiiiciiiniininesssesinssnrsssssssssssssssssssssssssssssssssssssnsssses 7
T - 11T 1 N 1 =T3P 8
3.7 Web server I08IiC files......cuuuiiiiiiiiiiiiiiiiiiiiinieciinn e sssssassssssssssssssnnssssssssssssssnnnnnses 8
R 0 1 U= o 1 =PRI 9

4 Uploading Files t0 the SErVerccciiiieeiiiiiiiiiiiiiiiiiieniiiininresssssininesssssssninssssssssssissssssssnns 10
4.1 File selection and POSTcciiiiiiiiiiiemiiiiiiiiiienmmeesiiniiiisssssssssiisiiissssssssssssssstssssssssssssssssssssssssssssss 10
4.2 Server receiVing the file ... rrsssssesss s s s s s s s sses s ssssssnssannnnsssnns 11
4.3 Code receiVing the fileccccciiiiiiiiimiiiiiiiiiii s e s s ssessssssssesssssnnssssnns 12
4.4 Parse & Scan the file CONtENTSccvveueiiiiiiiiiiiiiiirre s s s e s ssssssssssssssesssnsssssnns 13

5 Providing Files for DOWNIOQAdccccciiiiiimuuiiiiiiiinnniiiiiiiieniemsiessmmssesmses 15
5.1 Download method and dOMaAincceeeuiiiiiiiiiiiiiiiiiiiiicrsr e s s ssessssssssssssssssssnsssssnns 15
L |V T3 0T 4/« = 16
5.3 Content-Disposition hEAder........cciiiiiruiiiiiiiiiiiiiiiiiiiniieeriiiessrsesnssssssssssssssssssssssssssssssssssssnas 16
5.4 URL authorisation and formatc.eiiiiiiiiiiiiiiiiiiiiiiiisesissssssisssssssssssssssssssssssssss 17

6 CONCIUSION ...t rrie e rene e s ena s e s enasessenassssensssssenassssensssssenassssensssssennssssenasasnennnn 19

COMMERCIAL IN CONFIDENCE Page 2 of 19

© Copyright Aura Software Security Ltd 2011

aurd

INFORMATION SECURITY

DRAFT - File Upload Considerations - DRAFT

1 INTRODUCTION

1.1 Reason for this paper

Many modern websites allow users to upload files for storage and later display — HR
sites allow CVs to be uploaded, photo sites allow images to be shared.

In our work as security consultants, the team at Aura Information Security finds
ourselves giving similar advice to each customer on how to protect their sites and
users from malicious intent. This report attempts to provide a first draft at
generalising that advice so that other customers and companies may benefit.

1.2 Limitations

We can provide no warranty or guarantee that the information we provide will
protect your site, or even that it will make it harder to break into. In our experience,
each web application is built with different technologies, by different teams of
people and are hosted in different environments — necessarily our advice to
customers requesting our consulting services will be deliberate and based on an
evaluation of their own circumstances.

If you would like validation that you have followed this advice correctly, and that
your site is protected against the attacks detailed, we would welcome the
opportunity to work with you on a consulting or penetration testing engagement.

1.3 Structure

The first section talks about the problems you might encounter when building a site
with file upload ability, and the attacks that may arise.

The second section discusses common file types that are supported by web
applications, and the issues that may be involved with accepting those types.

The third section will cover “uploading” — putting files up onto the server via a file
upload control.

The fourth section will cover “downloading” — allowing files to be retrieved from
the server by a user.

COMMERCIAL IN CONFIDENCE Page 3 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

2 FILE UPLOAD PROBLEMS

It’s fair to say that the World Wide Web was built in simpler times, before a lot of
the security issues surrounding publishing and viewing other user’s content had
been discovered.

Allowing file uploads to your website exposes your application, server and users to
attack if not secured correctly. In some cases there’s no known protection against
anissue, so allowing a file upload may mean accepting a business risk.

File uploads can contribute to many of the issues in the OWASP Top 10', in
particular Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF).
Uploaded files may allow javascript to run in the context of the website, stealing
user’s credentials, or POSTing data to the server with malicious intent.

Uploaded files may also affect the server — exhausting resources, or executing with
server privileges; or when downloaded to a client machine, they may affect the
user’s computer itself.

As motivation, consider a few attacks that we have witnessed or developed as
proof-of concept in our time as security consultants:

* The HR page on a public website allows a CV to be uploaded in Microsoft
Word format. When viewed on the corporate network, a macro has access
to the LAN.

* lllegal /immoral content is embedded in valid files, and stored on a
company’s website for download by other conspirators.

¢ Uploading a malformed image file causes a server process to crash with an
out of memory exception.

COMMERCIAL IN CONFIDENCE Page 4 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

3 COMMON FILE TYPES

The most common file types that web applications accept for upload are Image files
(jpeg, GIF etc), PDF files (Adobe Acrobat) and Microsoft Office document formats
(Word, Excel, PowerPoint).

Some file formats “by design” allow for active content such as Javascript to run
within them, and other file formats are ‘containers’ that allow other types of
content to be embedded inside them.

3.1 Image files
Image files have been shared on the internet ever since, well, the beginning.

There is a rich history of image parsing exploits, where the code within web
browsers or applications such as Word will run an attackers code when a
maliciously crafted image file is opened by the application. Most platforms now
have fairly robust image handling libraries that have been hardened over time using
code inspection, fuzzing and other secure development techniques.

Considerations:

* Processing images can be CPU and memory-intensive on your web server,
especially if your image library converts a compressed image file into a
height x width bitmap in memory.

* Images can contain additional metadata in extra fields, such as the EXIF
fields in a jpeg file. Extra data may be stored inside a legitimate file.

* Some image file formats are read from the beginning of the file, while
others read from the end — which means it may be possible to have a valid
image file that is also a valid file in another format (see the GIFAR attack”
for an example).

Image-specific advice:
As well as other advice in this document:
* Consider how to move image processing logic out of the Request /
Response lifecycle, e.g. by queuing and processing on a back-end server.
* Consider loading images into a server object, and then saving out only the

resolution and meta-data that you control, rather than allowing the original
file to be downloaded.

3.2 PDFfiles

COMMERCIAL IN CONFIDENCE Page 5 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

Adobe Acrobat introduced the PDF format in 1993, and subsequently the format
has been extended and standardised — the documentation for the format is now in
excess of 750 pages."

Love it or hate it, the PDF format is the de-facto format for sharing print-ready
documents on the internet, and is used in preference to the other contenders
(Word, Postscript and XPS?).

PDF files are not just static text, they may contain media files (images, movies),
Javascript, 3D artwork (e.g. CAD diagrams), audio and data entry fields. Each of
these brings along their own rendering logic, some of which may not have had a
solid testing!

The Javascript functionality in PDF files is the most obviously ‘active’. If a PDF is
loaded within the browser window, it may be possible to invoke actions back on the
source web server.

See this example of the “World’s smallest PDF” that contains javascript:"

$PDF-1.

trailer <</Root<<

/Pages <<>>

/OpenAction <<

/S /JavaScript

/JS (app.alert({cMsg: 'Javascript!'});)>>>>>>

(Note that it’s possible to make a smaller one ©)
Considerations:

¢ All PDF files may contain active content.
* Many users browse the internet with old versions of Adobe Reader
installed, and there are easily obtained exploits for these.

PDF-specific advice:
Receiving untrusted PDF content is a hard problem to tackle.

* Consider virus / malware scanning all uploaded PDFs to make sure that
known vulnerabilities are not let through.

* Consider repeating the scan each time the PDFs are downloaded, or when
new AV databases are released.

* Ensure your corporate users are running up-to-date and patched browsers
and Adobe Acrobat versions.

¢ Consider browser sniffing to check users have an up-to-data version of their
PDF software before serving files to them.

3.3 Microsoft Office files

The latest versions of Microsoft Office store their files as zipped containers of XML
and other content (e.g. .docx, .xslx and .pptx).

COMMERCIAL IN CONFIDENCE Page 6 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

As Office applications support active content through the use of Macros,
traditionally embedded macros within documents have given the most issues,
although in the newer versions of Office files must be saved with a different
extension to allow macros to run (.docm, .xIsm, .pptm).

Office documents allow other forms of content that may cause issues, such as
embedded media files (potential parser issues) and urls to external location
(potential phishing, XSRF attacks etc).

Being a zip file, it is also possible for an attacker to stash other content inside a
document file without it being noticed. For example, we were able to round-trip a
Microsoft Word document that contained a fully functional Silverlight application
through Google Docs."

Considerations:

* Newer versions of Microsoft Office and the newer file formats give greater
protection against malicious macro execution.

* Malicious or secret content may be stored inside documents that you host
on your site, without you being aware.

* Microsoft Office Isolated Conversion Environment may help remove
malicious content from legacy Office documents."”

Microsoft Office-specific advice:

* Ensure your employees run the latest version and patches for Microsoft
Office products, and are updated as soon as possible.

¢ Only use the recent Office file formats.

3.4 HTML and plain-text files

Allowing HTML files to be uploaded and stored in your web application carries
obvious and inherent risk — HTML files may contain Javascript or other active
content, and if opened in a web browser will execute as if it was code you placed on
the server yourself.

Plain-text files also carry the same risk for site users running certain Internet
Explorer versions — due to a feature of the browser called “MIME sniffing” (see
Section 5.2), and must be handled in a special way to try and protect those users
from Cross-Site scripting attacks.

HTML-specific advice:

¢ Seriously consider not allowing upload of HTML files.

3.5 Active Web Content files

COMMERCIAL IN CONFIDENCE Page 7 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

Various plugins exist that will execute within the web browser window. For
example Adobe Flash, Microsoft Silverlight and Java Applets allow a full application
to run within the confines of a browser.

Applet-style plugins typically allow their applications to be referenced by any HTML
on the same site, or by pages on other sites as long as the MIME type is correct. The
applet may have privileges to perform actions against your server by virtue of the
same-origin-policy defined by each plugin.

Therefore allowing upload of Flash (.swf), Silverlight (.xap), Java applet (.jar) or
other plugin file formats without the correct precautions being taken may allow a
malicious third-party site to reference a malicious applet uploaded on your site and
perform cross-site scripting or cross-domain request forgery style attacks.

Active Web Content-specific advice:

* Ensure your application does not allow applets to be uploaded and served
back to users.

3.6 Binaryfiles

With the exception of Office macros, the above file formats have mainly considered
web content executing in the context of a web browser.

Allowing upload of application code, such as executables, dmgs, zip files containing
applications or any other kinds of binary content that will execute when run on the
user’s computer is inherently high risk. The user’s computer may be infected with a
virus, malware may be installed, or any other nasty thing could happen.

Binary file-specific advice:

* Prevent applications or executables from being uploaded to your web
server.

* Ensure any binary content on your web site is regularly virus scanned, and
that any tampering will be noticed.

3.7 \Web server logic files

Most web servers are configured to execute code when requests match the name
of a file on the server’s hard drive. For example, if /index.php is requested, then
PHP code within that file will be executed.

If an attacker is able to upload server-side code into a location where it can
execute, then they will be able to perform any action that the web server can —
such as database or file system access, or perhaps escalating to root /
Administrator.

COMMERCIAL IN CONFIDENCE Page 8 of 19
© Copyright Aura Software Security Ltd 2011

aurd

INFORMATION SECURITY

DRAFT - File Upload Considerations - DRAFT

An example of where this might occur is an /uploads directory where image files
are uploaded — if the server allows .php files to be uploaded into that directory, the
web server may allow them to execute when the url is entered.

Considerations:
* Most web servers make execute permission based on the file extension of
the files on disk (e.g. .php or .aspx), or on the location (e.g. /cgi-bin).
* Some web servers (particularly older versions) are configured to allow
execution of file types that you may not realise. E.g. your server may allow
.shtml files to run without you realising.

Web server logic-specific advice:

¢ Don’t allow user content to be uploaded into the web root.

* Put specific directives in place to prohibit execution of any user-supplied
content.

* Check your configuration to ensure only intended file formats will execute.

3.8 Other files

No list of file formats would be complete without a disclaimer: There are lots of file
formats supported by your server and user’s browsers. Allowing upload of any file
format without understanding the consequences is a risky endeavour and should be
treated with care ©

COMMERCIAL IN CONFIDENCE Page 9 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

4 UPLOADING FILES TO THE SERVER

This section covers the duration in time between when a user selects a file on their
computer to upload, and the web application stores the file for later display.

For now, we will only consider uploads using the standard HTML file input field,
uploaded as a MIME multipart form.

It should be noted that there are other ways for files to be uploaded to web
applications, such as via Flash or Java applets, or even via non-HTTP mechanisms —
some of these recommendations may apply to those forms of upload, and there
may be other considerations to be aware of that aren’t covered here.

4.1 File selection and POST

To allow a file to be uploaded a web page must have a file input tag inside a form
that is multipart/formdata encoding type and that will POST to the server:

<form
method="post"
enctype="multipart/form-data"
>

<input type="file" name="myfile" .. />
</form>

The input control gets displayed in the browser similarly to this:

_Choose File) No file chosen

(Your browser may vary)

After the user selects a file and submits the form, the file contents are encoded and
sent to the server:

POST http://site.com/ HTTP/1.1
Content-Type: multipart/form-data; boundary=----1680728247
Content-Length: 19369

—————— 1680728247

Content-Disposition: form-data; name="myfile";
filename="file.txt"

Content-Type: image/png

<file data goes here>

______ 1680728247--

The browser separates each input value with a boundary field (normally longer than
this example).

COMMERCIAL IN CONFIDENCE Page 10 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

The name="myfile” data posted to the server refers to the original field name on
the page. The filename field refers to the file on the user’s disk, and is browser-
dependant (some may post the full path to the file). The content-type is the
browser’s guess at the MIME type for the file.

All of the data posted to the web server should be treated as suspicious!
(This is a standard web security principle)

You cannot trust the file contents, the file name, the mime type or even the
content-length header. Everything posted to the server is suspicious.

Considerations:

¢ If you wish to use the filename provided by the browser, validate it using a
white-list of safe characters (e.g. A-z,0-9), and be sure to remove 0OS-
specific characters, trailing whitespace and double-extensions.

¢ Don'’t trust the mime type sent in the content-type header — different
browsers and operating systems will submit different values anyway.

* Don't trust that the file content matches that you’d expect from the
filename or content-type, you will need to do your own file content
checking.

Advice:

¢ Trust no-one ©

4.2 Server receiving the file

Your web server will typically handle receiving the uploaded files, and will probably
add uploaded files into an in-memory structure such as ASP.NET’s Request.Files
collection.

Before the file arrives at your code, there are a few things to consider:
Considerations:

¢ Llarge file uploads may swamp server resources — most web servers allow
you to restrict the maximum amount of data that can be sent to the server
in one request.

* Uploaded files may be stored temporarily on disk, and if large files are
uploaded, they may exhaust disk space.

* Canyour web server perform some content filtering for you (e.g. XSS
detection)?

* A malicious user may upload the file very slowly, tying up server resources
for the duration of the upload. This is a form of application-level denial of
service attack.

Advice:

COMMERCIAL IN CONFIDENCE Page 11 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

¢ Configure your web server to allow a sensible maximum file upload size.

¢ Configure temporary storage so that it is isolated from the system drive
(e.g. on a secondary spindle / user-level quotas)

¢ Consider how to protect against slow uploads, perhaps by configuring a
request timeout (e.g. Apache mod_reqtimeout).

4.3 Code receiving the file

Once the server has passed the file on to your code, then your processing can
begin. Most applications attempt to write the file to the destination storage as
quickly as possible, or process asynchronously using a queue, to avoid tying up
server resources.

The following are some considerations if you are using the file system to store your
uploaded files:

File System Considerations:

* Files may be web-accessible via the website when they shouldn’t be.
* Provided filenames may trigger behaviour on your server — e.g. files named
.php may be executed if placed within your website.

Advice:

¢ Store files outside of the web root, and separate fully-processed files from
those that are still being processed.

* Restrict filenames to safe characters only (see Section 4.1).

* Be aware of file traversal issues, where a malicious user may be able to
escape out of the intended directory.

If you are using a database to store your files, such as a relational SQL database,
then the following considerations may apply:

Database Considerations:

¢ Different ‘column types’ in a given database may give differing performance
or security characteristics. For example, in a relational database, some
column types may truncate inserted data and could turn a valid file into an
invalid one.

¢ Database growth may accelerate rapidly once binary data is stored in it. If
an attacker is able to upload as many files as they want, they may fill up an
important database volume.

¢ Traditional “INSERT INTO” syntax for database access may not perform well
with your database engine. There may be alternate ways to insert or
update binary data.

¢ Databases are often physically separate from web servers. Sending large
files across a network boundary may require many in memory copies and
may fill the network capacity.

COMMERCIAL IN CONFIDENCE Page 12 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

Advice:

* Use an appropriate storage type for the binary data you are storing.

¢ Consider database engine mechanisms for restricting the impact of
database growth on other functions. You might consider separating
uploaded files from other database tables and logging information by
writing them to a different spindle.

* Explore how to insert binary data to your database in the most efficient
manner.

4.4 Parse & Scan the file contents

A malicious user can upload any content that they wish to your web application, so
safely parsing it for well-formedness and scanning it for malware and viruses is
important before you store it in your environment, and allow it to be downloaded.

Some file formats have established specifications, and you may be able to find a
library or function that can test the uploaded file matches the structure expected.
Other file formats are not so simple, and you may need to resort to magic number
checking using file signatures."" If the magic number algorithm returns a MIME type,
store that alongside the file, and don’t rely on the file extension.

As discussed in Section 3, some file formats allow malicious content by design. If it
is absolutely essential to allow these formats, you may need to build a parser that
only allows the safe subset of the content.

Anti-virus software and malware scanners may provide some protection against
files that exploit known vulnerabilities. Keeping the database up to date so that
issues can be caught as soon as they are publicised is import, as is the ability to be
able to re-scan collected content some time after it is uploaded, in case it was
uploaded before the AV vendor released their detection.

If you must build your own parser, take care — especially if using regular
expressions, which can perform very poorly under certain input. Building a parser is
a project upon itself, and you’ll want to make sure you “fuzz” your parser to make it
robust under all input.

Considerations:

* Parsing and virus scanning may be CPU or memory intensive, and such
software may not be built with a web environment in mind.

* Files may contain other content, perhaps in meta-data or appended to the
start or end of the file (see Section 3).

¢ Building your own parser should be a last resort.

Advice:

* Implement a parser to ensure files are well-formed.

COMMERCIAL IN CONFIDENCE Page 13 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

Implement virus and malware scanning of all uploaded files.
Consider implement a background queue to process and scan files to
restrict the chance of CPU / memory spikes.

Do not support file formats that you cannot guarantee are safe.
Take care when using regular expressions to parse input.

COMMERCIAL IN CONFIDENCE Page 14 of 19
© Copyright Aura Software Security Ltd 2011

aurd

INFORMATION SECURITY

DRAFT - File Upload Considerations - DRAFT

5 PROVIDING FILES FOR DOWNLOAD

This section assumes that you now have an uploaded file on your web server, and
you wish to provide it to users to view / download.

The following information should be known about the file by this point:

¢ The MIME type

* The size of the file

¢ Asafe filename to show the user

e That it is well-formed, contains no viruses or malware

The way that a web application serves files to the user can make it more secure for
them to receive them. The aim is to protect the web application (e.g. from XSS), the
user, and the user’s browser and computer from malicious activity.

5.1 Download method and domain

To initiate a file download, the user’s browser makes either a GET or a POST
request to the server. Apart from the method of the request, the server response in
both cases is the same.

Example:

The user requests to download the http://example.com/Foo.pdf from the web
server:

GET /Foo.pdf HTTP/1l.1
Host: example.com
Cookie: Adventure=XYZZY

The server responds with the file size, type and contents:

HTTP/1.1 200 OK
Content-Length: 140857
Content-Type: application/pdf

<file binary content comes here>
(Irrelevant headers have been removed)

If the file is hosted on a domain that uses cookies for authentication, then the
cookies may be exposed to malicious content if it executes on the server or in the
user’s browser.

Also, consider the level of trust in the user’s browser that the site has. Intranet sites
typically have a higher level of trust and can perform more malicious actions if
there is a security issue. By hosting user-uploaded files in the “Internet Zone”, the

COMMERCIAL IN CONFIDENCE Page 15 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

browser will have the maximum level of protection offered by the browsers
segregation features.

Advice:
¢ Consider hosting user-generated content on a different domain name, so
that cookies can never leak to malicious code, and cross-domain

restrictions apply.
* Do not host user-generated files in the Intranet or other trusted zones.

5.2 Mime types

Allowing a file to be downloaded with the ‘incorrect’” MIME type can cause issues,
such as allowing it to run in an HTML context and execute javascript, or allowing a
file to run as a Java applet.

In Section 4.4 we discussed scanning the file and ensuring it matches the expected
MIME type. It must be downloaded with the type that was discovered in that step.

Microsoft Internet Explorer browsers have a ‘backward compatibility’ feature that
attempts to sniff the MIME type of a file and display it differently if it thinks the
server issued the file with the wrong MIME type. This non-intuitive behaviour
means that if you serve a file as text/plain, the web browser may ‘sniff’ the MIME
type as text/html based on the presence of HTML tags, and allow it to run as HTML
within the browser.

Starting with IE8, it is now possible to disable this sniffing behaviour, protecting
users from having ‘safe’ content run as HTML. This can be done by setting the
following header in the response:

X-Content-Type-Options: nosniff

This header does not affect the behaviour of non-IE browsers, so we recommend
setting it in all cases when files are downloaded.

MIME-sniffing affects files served with text/plain, application/octet-stream, empty
or null Content-Types." If you intend to host files of these types, you should
consider the possible impact of users using older versions of IE accessing them.

Advice:

* Ensure files are served with the correct Content-Type.
* Always serve files with the X-Content-Type-Options: nosniff header.
¢ Consider how to protect users running old versions of Internet Explorer.

5.3 Content-Disposition header

COMMERCIAL IN CONFIDENCE Page 16 of 19
© Copyright Aura Software Security Ltd 2011

aurd

INFORMATION SECURITY

DRAFT - File Upload Considerations - DRAFT

The Content-Disposition header can be sent by the server to force downloaded files
to pop up the familiar Open / Save dialog:

HTTP/1.1 200 OK

Content-Length: 140857

Content-Disposition: attachment; filename=Foo.pdf
Content-Type: application/pdf

.00 Opening jigsaw_lite.exe

You have chosen to open
| jigsaw_lite.exe

which is a: vcs File|
from: http://software-files-l.cnet.com

What should Firefox do with this file?

\
|
® Open with (Choose...
() Save File

[) Do this automatically for files like this from now on.

(Cancel) oK)

If the file is ‘saved’ to the user’s desktop, then it will not open in the browser
window with the context of the current user’s login to that site — so XSS issues are
moot. However, once the file is on the user’s computer, it could still contain other
malicious content that executes with their local privileges, so it’s not a complete
panacea.

If the user chooses to ‘Open’ the file, some browsers may still allow it to run within
the context of the website, allowing the regular attacks to proceed. To protect
against this, recent browsers now support an X-Download-Options header to
disable the “Open” option in the dialog:

X-Download-Options: noopen

The Content-Disposition header also allows a filename to be set. It should be set to
the safe filename generated earlier.

Advice:

¢ Serve files with the Content-Disposition: attachment header.
¢ Add the X-Download-Options: noopen header to responses.
* Ensure a safe filename is set by the server.

5.4 URL authorisation and format

The url to download files may be tampered by a malicious user, so application
developers should ensure that permissions are checked before the user can

COMMERCIAL IN CONFIDENCE Page 17 of 19
© Copyright Aura Software Security Ltd 2011

aurd

INFORMATION SECURITY

DRAFT - File Upload Considerations - DRAFT

download a file — in case they are able to successfully guess the url for another
user’s file.

An attacker may also want to determine if a file is present or not by trying different
urls and seeing if the ‘unauthorised’ response is different to the ‘file not found’
response. This information could be used by an attacker to mount a later attack.

If files are stored in a file system directory, care must be taken to isolate the code
serving the files from file system traversal logic — in case an attacker can manipulate
the url to download other files on the server.

Advice:

* Ensure correct authorisation checks are performed before serving files.

* Ensure that user’s cannot guess other user’s file urls.

* Ensure that directory listings are disabled and directory traversal not
possible.

COMMERCIAL IN CONFIDENCE Page 18 of 19
© Copyright Aura Software Security Ltd 2011

aurd

DRAFT - File Upload Considerations - DRAFT ORI SEEOT

6 CONCLUSION

Our hope is that this document provided you with some items for consideration
when building your own web application.

Security is a moving target, following any recommendations blindly without
understanding them is risky, and new attacks are invented every week. We
recommend a regular process of security review be implemented in your
application lifecycle — preferably as early in the process as possible.

Hope this helps!
Kirk Jackson
Security Consultant

Aura Information Security

For corrections, suggestions or criticism, please email me at kirk@aurainfosec.com

"OWASP Top 10 project: https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

i Billy Rios — SUN Fixes GIFARs: http://xs-sniper.com/blog/2008/12/17/sun-fixes-gifars/

i Billy Rios — SUN Fixes GIFARs: http://xs-sniper.com/blog/2008/12/17/sun-fixes-gifars/

" PDF Reference and Adobe Extensions to the PDF Specification:
http://www.adobe.com/devnet/pdf/pdf_reference.html

Vv Julia Wolf — That PDF thing: http://blog.fireeye.com/research/2010/06/that-pdf-thing.html

¥ Kirk Jackson — There’s something shiny in that Word doc! http://2010.kiwicon.org/the-con/talks/#e39
" Microsoft Office Isolated Conversion Environment: http://support.microsoft.com/kb/935865

Y Wikipedia — Magic number (programming): http://en.wikipedia.org/wiki/Magic_number_(programming)
I MIME Type Detection in Internet Explorer:
http://msdn.microsoft.com/en-us/library/ms775147(v=vs.85).aspx#MIME_sniff feature_control

COMMERCIAL IN CONFIDENCE Page 19 of 19
© Copyright Aura Software Security Ltd 2011

