\VVANTAGEPOINT

Fixing Mobile AppSec

The OWASP Mobile Security Testing
Project

N /usr/oin/whoari

Hi everyone my name is Sven.

*Principal Security Consultant at Vantage Point Security
*Based in Singapore, originally from Germany

*Unix nerd since 1999

*Professional Penetration tester since 2010

*Security Architect for Web and Mobile Apps during SDLC

*One of the project leaders for the OWASP Mobile Security Testing Guide (MSTG)
and Mobile AppSec Verification Standard (MASVS)

\V Why Mobile Application Security?

Network

* It all started with Network & —
Physical Security
* Protecting the perimeter
* Ensuring endpoints are

secure _

* Network Security still plays
an important part

* But, different skills are
required to support Mobile
Application Security

Attack

Physical

Application

) 4 cormmon siwation

Key Pain Points Impact
-Lack of security capabilities in -High number of security defects
development teams -Significant amount of re-work

-Constant delays and increased cost

-Security addressed at the end o -Team friction and stress
the development life cycle -Missed deadlines
-Delayed releases

-Insufficient supporting -Security bottlenecks are created
technologies -Low-level of visibility of security posture
-Increased manual effort

OWASP Mobile Security Project — Our “Products”

@)owAsP | standard

VWYl Mobile AppSec
Verification Verification Standard
Mobile Security

PDF Download Testing Guide

https://github.com/OWASP/
owasp-masvs/releases

Target 700+ pages
o "75% done

GUIDE Free Ebook & Real,
Printed Book!

https://leanpub.com/mobile-
security-testing-guide

Mobile AppSec
Checklist

Excel ®

https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases

\v OWASP Mobile Application Security Verification Standard (MASVS)

e Started as a fork of the ASVS

(https://www.owasp.org/index.php/Category:OWASP @ownsP | standard .
Application Security Verification Standard Project)
* Formalizes best practices Mobile AppSec
* Mobile-specific, high-level, OS-agnostic Verification

T oesptn u

"1 System credential storage facilities are used appropriately to store
sensitive data, such as user credentials or cryptographic keys.

No sensitive data is written to application logs.

The keyboard cache is disabled on text inputs that process sensitive data.
The clipboard is deactivated on text fields that may contain sensitive data.

v

N

No sensitive data is shared with third parties unless it is a necessary part
of the architecture.

AN

v
v

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

\v OWASP Mobile Application Security Verification Standard (MASVS)

Opinions, opinons, opinions...

Sample Question: Do we recommend using E2E encryption?

Request

J Raw T Params T Headers T Hex]

POST /middleware/Servlet HTTP/1.1

Content-Type: application/x-www-form-urlencoded;
charset=utf-8

Content-Length: 565

Host: uat.enterprise.com

Connection: close

Cookie: JSESSIONID=0000NSKFxjwj8hGmYQDpvsm0q05:18d379bnl
User-Agent: okhttp/3.4.1

platform=android&deviceld=KVJ)Jyjk2aQ1luObOtkA1gLLuO4VvF1INYo
CT6IDCPMKW6i4bzUNy23sAcXXa3Y7Wew&&userld=%2BL8%2B%2BS
ZO4uCSTPHrmtY8sPYSjDbC%2BYwW0XZ46tEXjBz4%3D&randomNumb
er=&serviceName=P2PLOGIN&unencyptedPINlength=6&channel=rc
&servicelD=login&encryptedPIN=398082b5048e1ea3826ee78b627
5d1945019dceeaa36df5b40e2bb3b16abc25482d258ca9fd13acf314
34flaa51cc308d758ed2alf244bcdbcc81a8e2a2ae60711b7fcf124a4
71f0446723d80baa814f8e76d67c1d461a59f9725a4a8a3¢c17891de
70ab0d2c3056e231a943dc5539632ed634c3d242771c9668c4b49¢9
8f2fc7&ipAddress=192.168.1.138&appver=2.6.4

\v OWASP Mobile Application Security Verification Standard (MASVS)

Opinions, opinons, opinions...

Sample Question: Do we recommend using E2E encryption?

Pros

e Additional security layer

* Protects data in case TLS tunnel
is compromised

* Protects data from exposure to
intermediate systems

Cons

Introduces additional complexity
Implementation prone to errors
Adds security by obscurity

* Makes testing difficult

* False sense of security
Doesn’t add much security beyond what
TLS already provides

\v OWASP Mobile Application Security Verification Standard (MASVS)

Our Philosophy

43 Security Requirements
19 Defense-in-Depth Measures
13 Anti-Reversing Controls

Covered in In 8 domains

'S RAZOR

Sure there are simpler ways to catch that bird,
but the complicated ones kick ass.

\V OWASP Mobile Application Security Verification Standard (MASVS)

Keeping Things Flexible: Requirement “Levels”

R — Resiliency Against Reverse

Engineering and Tampering

L2 — Defense-in-Depth

_
L1 — Standard Security
/.

\v OWASP Mobile Application Security Verification Standard (MASVS)

Keeping Things Flexible: Requirement “Levels”

MASVS-Level 1 (L1): Security best practices applicable to all mobile apps.

Example:
Security Verification Requirements

The vast majority of data disclosure issues can be prevented by following simple rules. Most of the controls listed in
this chapter are mandatory for all verification levels.

Description L1 L2

21 System credential storage facilities are used appropriately to store sensitive data, such as » y

user credentials or cryptographic keys.

2.2 No sensitive data is written to application logs. v v

2.3 No sensitive data is shared with third parties unless it is a necessary part of the architecture. v v

\v OWASP Mobile Application Security Verification Standard (MASVS)

Keeping Things Flexible: Requirement “Levels”

MASVS-Level 2 (L2): Defense-in-depth controls for sensitive apps (e.g. financial transactions)

Example:

Security Verification Requirements

Description L1 | L2

= 1 Data is encrypted on the network using TLS. The secure channel is used consistently y .
] throughout the app.

The TLS settings are in line with current best practices, or as close as possible if the mobile

5.2
operating system does not support the recommended standards.

The app verifies the X.509 certificate of the remote endpoint when the secure channel is

5.3 v v
established. Only certificates signed by a trusted CA are accepted.

The app either uses its own certificate store, or pins the endpoint certificate or public key, and
5.4 subsequently does not establish connections with endpoints that offer a different certificate or v
key, even if signed by a trusted CA.

\v OWASP Mobile Application Security Verification Standard (MASVS)

Keeping Things Flexible: Requirement “Levels”

MASVS- Resiliency Against Reverse Engineering and Tampering (R):
(Optional) Tamper-proofing to counter specific client-side threats.

Impede Dynamic Analysis and Tampering

Description

8.1 The app detects, and responds to, the presence of a rooted or jailbroken device either by alerting
| the user or terminating the app.

8.2 The app prevents debugging and/or detects, and responds to, a debugger being attached. All

available debugging protocols must be covered.

\V OWASP Mobile Application Security Verification Standard (MASVS)

Level 1 vs. Level 2

IR E— —

Data is encrypted on the network using TLS. The secure channel is used
= consistently throughout the app.

The TLS settings are in line with current best practices, or as close as
possible if the mobile operating system does not support the
=", recommended standards.

The app verifies the X.509 certificate of the remote endpoint when the
secure channel is established. Only certificates signed by a valid CA are
< = accepted.

The app either uses its own certificate store, or pins the endpoint
certificate or public key, and subsequently does not establish connections
with endpoints that offer a different certificate or key, even if signed by a
trusted CA.

v

Might be overkill
for some apps!

\v OWASP Mobile Application Security Verification Standard (MASVS)

Ok, so why are security
requirements so important?

To avoid this:
Pentesters after
turning a report in...

DON'T WORRY CITIZENS, |
HAVE SAVED YOUR CITY
ONCE AGAIN

EHH YEAH THANKS, ANY CHANCE
YOU WANT TO HELP US CLEAN uP
THIS TIME?

NAH I'M NOT GOING
TO DO THAT

PICTURES IN BOXES

\v OWASP Mobile Application Security Verification Standard (MASVS)

Ok, so why are security requirements so important?

* They enable you to build security into the app from the beginning
* They should be identified and defined already in the early stages of the SDLC

» Security requirements should be mapped to the user stories / journeys to address
real problems

\v OWASP Mobile Application Security Verification Standard (MASVS)

Ok, so why are security Ssanty

Threat
Modelling

Requirements

requirements so important? Sl

Sprint
Planning

Goal:
Build security in from the beginning!

Sprint 0

Release

Penetration
Test

\v OWASP Mobile Application Security Verification Standard (MASVS)

How To Use the MASVS (as Developer)

Preparation during project kick-off (or Sprint 0):
 What MASVS level (L1, L2, R) and requirements are appropriate for the app?
 Use the MASVS as starting point and extend it with custom requirements as needed
* Allinvolved parties need to agree on the decisions made
* This is the basis for all design decisions and security activities

Track the security requirements during development and implement them:
e Ideally in your issue tracking (e.g. Jira)

* Excel Checklist is available as an alternative
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

\v OWASP Mobile Application Security Verification Standard (MASVS)

How To Use the MASVS (as Security Tester)

Share the status of your security requirements with the Penetration Tester
beforehand:

This will allow him to focus on specifically these security controls

* Makes testing more efficient, as things like SSL Pinning might be out of scope
according to your decision and then it won’t be raised as vulnerability

Makes testing consistent and tester and developers are on the same page

\v OWASP Mobile Security Testing Guide Standard (MSTG)

What is the Mobile Application Security Testing Guide?

*Manual for testing security maturity of mobile Apps
*Maps directly to the MASVS requirements
*Focusing on iOS and Android native applications

*Goal is to ensure completeness of mobile app security testing through a consistent
testing methodology

*For security checks of the endpoint the OWASP Web Application Testing Guide
should be used

\v OWASP Mobile Security Testing Guide Standard (MSTG)

Structure

e Platform Overview
*General Testing Guide

+ Security Testing Bas
*Android Testing Guide ecurity 1esting basics

MOBILE

SECURITY

. . . e Test Cases
*iOS Testing Guide

* Reverse Engineering

Gitbook: https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
PDF Download: https://leanpub.com/mobile-security-testing-guide

https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://www.gitbook.com/book/b-mueller/the-owasp-mobile-security-testing-guide/details
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide

\v OWASP Mobile Security Testing Guide Standard (MSTG)

Example of some Key Topics

Testing Local Storage for sensitive information
e Clarify how data can be stored on iOS and Android
* Check the usage of cryptographic functions

Testing Platform Interaction

* App permissions
» \Verify usage of Interprocess communication (IPC)

 Check the implementation of WebViews D-u
* Biometric Authentication (Touch ID) t

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04-General-Testing-Guide.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04-General-Testing-Guide.md

\v OWASP Mobile Security Testing Guide Standard (MSTG)

Checklist

©

Test Cases @ @ Requirements

OWASP Mobile Security OWASP Mobile Application Security
Testing Guide (MSTG) Verification Standard (MASVS)

\V MSTG — Reverse Engineering

Security Testers have no good
way of dealing with software
protection schemes

\V MSTG — Reverse Engineering

Developers and Pentesters are confused

Report lists "lack of obfuscation" as a critical security issue.
What are the developers supposed to do?

*MinifyEnabled = true?

*Maybe encrypt strings?

*Apply complex control flow obfuscation?
*Maybe use some whitebox crypto?

We want to develop a proper assessment methodology.

\V MSTG — Reverse Engineering

Skills needed for assessing ant-reversing schemes

1.Determine whether using software protections are used appropriately

*Every software protection scheme can be defeated.

*Never to be used as replacement for security controls

*\Viable uses: IP protection, Prevent modding / cheating in online games, hardening
against code injection and instrumentation

2. Hands-on Reversing & Cracking

*Traditional the domain of malware reversers

\v MSTG — Reverse Engineering

* Building a reverse engineering requirements for free

e Static and dynamic analysis

You should now find the decompiled sources in the directory uncrackable-Leveli/src . TO
view the sources, a simple text editor (preferably with syntax highlighting) is fine, but loading
the code into a Java IDE makes navigation easier. Let's import the code into IntelliJ, which
also gets us on-device debugging functionality as a bonus.

Open IntelliJ and select "Android” as the project type in the left tab of the "New Project”
dialog. Enter "Uncrackable1” as the application name and "vantagepoint.sg” as the company
name. This results in the package name "sg.vantagepoint.uncrackable1”, which matches the
original package name. Using a matching package name is important if you want to attach
the debugger to the running app later on, as Intellij uses the package name to identify the
correct process.

New Project

\H. Androld Studio

Configure your new project

Application name. UnCrackablel
Company Domain: vantagepoint.sg

Package name: sg.vantagepoint.uncrackablel £dn

In the next dialog, pick any APl number - we don't want to actually compile the project, so it
really doesn't matter. Click "next" and choose "Add no Activity", then click "finish".

Once the project is created, expand the "1: Project” view on the left and navigate to the
folder app/src/main/java . Right-click and delete the default package
"sg.vantagepoint.uncrackable1” created by IntelliJ.

["4 Uncrackablel) |5 git
@7 Project v
v [Uncrackablel
[.idea
v Ciapp
Cilibs
v Osrc
[andrg
v CImain
N

Ciire)

@& Captures

@' 1:Project

«] 7: Structure

Now, open the uncracy
into the now empty Ja
folder instead of movin

v CiUnCrackablel emp

» [.gradle
» Didea

» [DandroidTest
£ main
» Cires
& AndroidMan)
» Ditest
[gitignore
2 build.gradle Cop|
[proguard-ry
» [Dgradie New|
i .gitignore
2 build.gradle
[gradie.propertif
[gradiew

Tod

[) gradiew.bat

When this function returns, RO contains a pointer to the newly constructed UTF string. This
is the final return value, so RO is left unchanged and the function ends.

Debugging and Tracing

So far, we've been using static analysis techniques without ever running our target apps. In
the real world - especially when reversing more complex apps or malware - you'll find that
pure static analysis is very difficult. Observing and manipulating an app during runtime
makes it much, much easier to decipher its behaviour. Next, we'll have a look at dynamic
analysis methods that help you do just that.

Android apps support two different types of debugging: Java-runtime-level debugging using
Java Debug Wire Protocol (JDWP) and Linux/Unix-style ptrace-based debugging on the
native layer, both of which are valuable for reverse engineers.

Activating Developer Options

Since Android 4.2, the "Developer options" submenu is hidden by default in the Settings
app. To activate it, you need to tap the "Build number" section of the "About phone" view 7
times. Note that the location of the build number field can vary slightly on different devices -
for example, on LG Phones, it is found under "About phone > Software information” instead.

Once you have done this, "Developer options" will be shown at bottom of the Settings menu.
hlad with tha "1 ISR Aok i d

Nnrao doualanar #i ara antivatad daohiianina can hao

MSTG — Reverse Engineering

 Tampering, patching and runtime instrumentation

Iampernng ana meverse cngineering ANaroia

Frida injects a complete JavaScript runtime into the process, along with a powerful API that
provides a wealth of useful functionality, including calling and hooking of native functions and
injecting structured data into memory. It also supports interaction with the Android Java
runtime, such as interacting with objects inside the VM.

..

Your tool Target app
:’;) your-script s
O Conaumes G JamScret AP

A
frida-agent
Shared vary iryected by it core
1 ; l Vaa s C
JasaScrot & Coe ' [
: : gumjs
i : p2p DBus across - Cos (VB)
i platiorm-specific transport |
1 : ¥
(AP, y linked) <‘1"::>_ frida-gum

..

B-Grectonal eacharge of SSON messages
£ yoursorpt s cals senc124), which iranemity:
{"type" “senc”, ‘payload”. 1234)
Unhandied sscection yaramis.

(o™ “emer”,)

FRIDA Architecture, source: http://www.frida.re/docs/hacking/

Here are some more APIs FRIDA offers on Android:

Your Android device doesn't need to be rooted to get Frida running, but it's the easiest setup
and we assume a rooted device here unless noted otherwise. Download the frida-server
binary from the Frida releases page. Make sure that the server version (at least the major
version number) matches the version of your local Frida installation. Usually, Pypi will install
the latest version of Frida, but if you are not sure, you can check with the Frida command
line tool:

$ frida --version

9.1.10

$ wget https://github.com/frida/frida/releases/download/9.1.10/frida-server-9.1.10-and
roid-arm.xz

Copy frida-server to the device and run it:

$ adb push frida-server /data/local/tmp/
$ adb shell "chmod 755 /data/local/tmp/frida-server"
$ adb shell "su -c /data/local/tmp/frida-server &"

With frida-server running, you should now be able to get a list of running processes with the
following command:

$ frida-ps -U
PID Name
276 adbd
956 android.process.media
198 bridgemgrd

49019 ~~am andrasd n€s

\v MSTG — Reverse Engineering

* Advanced topics: Program analysis, writing kernel modules, customizing Android...

Installing Angr

Angr is writben in Python 2 and available from PyPl. It is easy o install on *nix operating
systems and Mac 05 using pip:

§ pip install angr

It is recommended 1o create a dedicated virlual environment with Virtualenv as some of its
dependencies contain forked versions Z3 and PyWEX that overwrite the original versions
{you may skip this step if you don't use these libraries for anything else - on the other hand,
using Vidualenv is generally a good idea).

Quite comprehensive documentation for angr is available on Gitbooks, including an
ingtallation guide, tutonials and usage examples [3]. A complete AP| reference is also
availabhe [6].

Using the Disassembler Backends

Symbolic Execution

Symbolic execution allows you to determine the conditions necessary to reach a specific
targel. it does this by translating the program’s semantics into a logical formula, whereby
some variables are represeniad as symbols with specific constraints. By resolving the
constraints, you can find out the conditions necessary so that some branch of the program
gets executed.

Amongst ather things, this is useful in cases where we need to find the nght inputs for
reaching a cartain block of coda. In the following example, we'll use Angr to solve a simple
Android crackme in an aulomated fashion. The crackme lakes the form of a native ELF
binary thal can be downloaded hee:

hitps:figithub. comfangrangr-gociresgmasierexamplesiandrod_arm_license _vahdation

P T R Y N T Y TR T S R T T W T I S T T TR Y

T
|
}
4
i
i
8
1
F
g
1
&
}
g

i
]
i

—

i} - it

———1 o —

et ——} -

= — — g

e R

gt ———} =

et L — o

el IR -y =

o - ==

H-mﬂl" - = . . el WY _—
S = zET =
2:% ol

::“

e R Ly

e BonDe I

ot} I

R it e ad BR . =

e F I - ——

e B b e

] - - e

S E mE—

e = &5 =

ettt [- R —

= 2 S50 ETeee

b= I p—— -

Thie main function ks localed at address (x 1874 in the disassembly (note that this is a PIE-
enabled binary, and IDA Pro chooses Ox a5 the image base address). Function names

hawve been stripped, but luckily we can see some references o debugging sirings: It appears
that the input string is base32-decoded (call to sub_1340). Al the baginning of main, thera's
also a length check at loc_1838 that verifies that the length of the input string is exactly 16.
So we'ne looking for a 16 character base32-encoded siring! The decoded input is then
passad o the funclion sub_1TED, which verifies the validity of the kcansa kery.

The 16-characier base32 input siring decodes to 10 bytes, 50 we know that the validation
function expects a 10 byte binary siring. Next, we have a look at the core validation function
at Ol TEO:

\V MSTG — Reverse Engineering

Testing Anti-Reversing Defenses

*Root Detection
* File and Memory Integrity Checks
*Anti-Debugging
* Device Binding
*Detecting Reverse Engineering Tools
* Obfuscation
*Emulator Detection / Anti-Emulation

\V MSTG — Reverse Engineering

Some Original Research

*Android ART: Anti-JDWP debugging by manipulating JDWP-related vtables
(JdwpSocketState / JdwpAdbState)
*Frida Detection
* Frida server detection by local portscan
 Memory scan to detect Frida agent/gadget artefacts
*Some variations of ptrace-based native anti-debugging

See chapter “Testing Anti-Reversing Defenses”

Also, see blog posts from Bernhard Mueller: http://goo.gl/hsU6bS

http://goo.gl/hsU6bS

\V MSTG — Reverse Engineering

Practical Challenges!

Check out the « UnCrackable Mobile Apps »

https://github.com/OWASP/owasp-mstg/tree/master/Crackmes

https://github.com/OWASP/owasp-mstg/tree/master/Crackmes
https://github.com/OWASP/owasp-mstg/tree/master/Crackmes
https://github.com/OWASP/owasp-mstg/tree/master/Crackmes

\V MSTG — Reverse Engineering

Ongoing Work

*Obfuscation Metrics

https://github.com/b-mueller/obfuscation-metrics

*Assessment Methodology

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-
Reverse-Engineering-Schemes.md

Help is always needed!

https://github.com/b-mueller/obfuscation-metrics
https://github.com/b-mueller/obfuscation-metrics
https://github.com/b-mueller/obfuscation-metrics
https://github.com/b-mueller/obfuscation-metrics
https://github.com/b-mueller/obfuscation-metrics
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x07d-Assessing-Anti-Reverse-Engineering-Schemes.md

\V MSTG - Contribution

65 Contributors according to GitHub

https://github.com/OWASP/owasp-mstg/graphs/contributors

Big Thanks to everybody that was already supporting the project!

https://github.com/OWASP/owasp-mstg/graphs/contributors
https://github.com/OWASP/owasp-mstg/graphs/contributors
https://github.com/OWASP/owasp-mstg/graphs/contributors

\V MSTG - Contribution

We are still looking for people to support the project. So how to get started contributing

RTFM: https://github.com/OWASP/owasp-mstg/blob/master/README.md

Slack: https://owasp.slack.com/messages/project-mobile omtg/details/

Issues: https://github.com/OWASP/owasp-mstg/issues

https://github.com/OWASP/owasp-mstg/blob/master/README.md
https://github.com/OWASP/owasp-mstg/blob/master/README.md
https://github.com/OWASP/owasp-mstg/blob/master/README.md
https://github.com/OWASP/owasp-mstg/blob/master/README.md
https://owasp.slack.com/messages/project-mobile_omtg/details/
https://owasp.slack.com/messages/project-mobile_omtg/details/
https://owasp.slack.com/messages/project-mobile_omtg/details/
https://github.com/OWASP/owasp-mstg/issues
https://github.com/OWASP/owasp-mstg/issues
https://github.com/OWASP/owasp-mstg/issues

V

/I\/IASVS on GitHub Do | surios
http://github.com/OWASP/owasp-masvs Mobile AppSec

Verification

MASVS releases
https://github.com/OWASP/owasp-masvs/releases

(¥

mSTG on Github
https://github.com/OWASP/owasp-mstg/

MSTG as GitBook
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/

MSTG for download (early access version)
@psz//leanpub.com/mobile—securitv-testing-guide

http://github.com/OWASP/owasp-masvs
http://github.com/OWASP/owasp-masvs
http://github.com/OWASP/owasp-masvs
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-mstg/
https://github.com/OWASP/owasp-mstg/
https://github.com/OWASP/owasp-mstg/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://b-mueller.gitbooks.io/the-owasp-mobile-security-testing-guide/content/
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide
https://leanpub.com/mobile-security-testing-guide

\VVANTAGEPOINT

Thank you. Any questions?

sven@vantagepoint.sg / sven.schleier@owasp.org

YW @bsd_daemon

