Vulnerability Scanning in an IPv6 World

Richard Newman – m.richard.newman@gmail.com Brett McKinney – mckinney.brett@gmail.com

Agenda

- IPv4... IPv5
- Intro to IPv6
- Threat Surface
- Network Scanning and Host Discovery
- Neighbor Discovery Demo using Metasploit
- Questions

What Happened to IPv4

- February 3, 2011?
- So what now...

IPv5... Huh?

- AKA "Internet Stream Protocol" or ST
- Developed in 1978 and defined by RFCs 1190 and 1890
- ST-II added "5" to the protocol field in the IP header deeming it "IPv5"
 - Drafted in 1987 in RFC 1700 which was published in 1990
- Connection oriented compliment to IPv4
 - At layer 3
 - Much like TCP at layer 4
- First used for VoIP traffic
- ATM and MPLS also have features from IPv5
- Did not address diminishing address space

Changes in IPv6

- New Header
 - New Address format
 - New Address Scope
 - New Address Range
- Management of Addresses
- Auto Configuration
- IPv₄ vs. IPv₆
- Security
- Control Mechanisms

New Header

- 320 bits vs. 160 bits in IPv4
- Next header field
- Unlimited extensions
 - Routing
 - Fragmentation
 - Security

Address Classes

- Unicast
 - Identifies a single interface on the network
- Anycast
 - Groups similar interfaces
 - Packets are typically delivered to the nearest member of the anycast group
- Multicast
 - Groups of similar interfaces
 - Any multicast packet is delivered to all members of a multicast group
- Broadcast addresses are NOT supported

Address Scope

- Unicast addresses have two address scopes
 - Loopback
 - Link-local addresses
 - Not routable beyond local link
- Global
 - Everything else
 - Anycast addresses are globally routable

Address Scope, cont.

- Multicast addresses have 6 defined scopes
 - Interface local
 - Local link
 - Admin local
 - Site local
 - Organization local
 - global

Address Range

- 128 bit
- 340282366920938463463374607431768211456hosts
 - 340 undecilion
 - Whole IPv4 per person on earth
 - IPv6 address per atom in the body
- IPv₄
 - 32 bit about 4 billion addresses

Management of Addresses

- Still handled by IANA and delegated to the local registrars
- Currently only 1/8 of the current possible addresses will be available for distribution
- Remaining are reserved for future use

Auto Configuration

- DHCP is no longer necessary but can be used to provide domain and DNS server information
- SLAAC (Stateless Address Auto Configuration)
 - Allows interface to obtain address in a configured routed network
 - Depends on ICMPv6 for neighbor and router discovery
 - Allows for seamless network renumbering

IPv4 vs. IPv6

IPV₄

- 32 bit address
- Multicast optional
- ICMP optional
- 65535 max packet size

IPV6

- 128 bit address
- Multicast required
- ICMPv6 required
- 4GB max packet size

Built in Security

- Native support for IPSec
 - Support for native payload encryption
 - Support for native packet encryption (tunneling)

Control Mechanisms

- ICMPv6
 - Max MTU path discovery
 - Router discovery
 - Neighbor discovery Duplicate IP check

Threat Surface

- New multicast addresses could allow attackers to gain important information
 - FF02::1 All nodes
 - FFo5::2 All routers
 - FFo5::5 All DHCP servers
- Rogue IPv6 devices
 - Fake IPv6 router can maliciously provide addressing and force traffic to route through it (MitM)
- Most dual stack firewalls only protect IPv4 by default, IPv6 traffic is passed transparently

Threat Surface, cont.

- IPv6 tunnels within IPv4 networks could allow IPv6 traffic to pass through firewalls undetected
 - Toredo
 - 6to4
 - Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)

Threat Surface, cont.

- Type o (zero) routing header
 - Akin to source routing
 - Allows the end device the ability to dictate the route through the network to the destination
- Built in ICMP and Multicast
 - Mandatory now for IPv6 to function
 - while some functions can be blocked at the edge, others have to be allowed in order to operate

Threat Surface, cont.

An attacker can:

- Claim to be another host's address using Neighbor Solicitation messages
- Claim to be the default router using Router Advertisement messages
- Claim all the addresses using Neighbor Solicitation messages
 - preventing hosts from obtaining an address
 - who needs DDoS…!!!
- Advertise false prefixes using Router Advertisement messages

Changes in Scanning

- Port Scanning
 - Nothing
 - Just using a new address
- Host Discovery
 - Everything
 - Networks are too large

Changes in Scanning, cont.

Workarounds

- ICMPv6 Neighbor Discovery Protocol
 - Good if in a flat network
 - Doesn't work across routers or firewalls
- Relying on sequential numbering or a common pattern for assigning addresses
- Scanning around a known address
- Reducing the search space by using Ethernet vendor prefix and "fffe" stuffing
- DNS zone transfers
- Log files may contain addresses
- Sniffing traffic from a known host

Network Mapping

- Default subnet for IPv6 is 64 bits
 - giving 64 bits for hosts
 - 18 x 10^18 hosts
 - If you could scan 1,000,000 hosts per second it would still take over 500,000 years to complete the scan
- New methods for obtaining target host list will need to be developed
- Not new, but DNS will provide the initial target list

Network Mapping, cont.

- Tools
 - Nmap
 - Supports IPv6 networks
 - Current version will ONLY accept a single IPv6 address
 - No range support as of this writing
 - CHScanner
- Currently few tools support host discovery for IPv6 (including vulnerability and penetration testing tools)

Vulnerability Scanning Tools

- Nessus
 - Version 3.2
 - Linux only
- Saint
- Qualys
- Rapid 7 Nexpose?
- nCirlce?

Penetration Testing Tools

- Metasploit framework (added support in 'o8)
- Saint
- Core Impact

Web Application Testing Tools

- ALL
 - Web app testing is not affected

- Using Metasploit to discovery neighbor nodes
- nmap an IPv6 address

```
🔞 🔡 🔗 se@Ubuntu10: ~
File Edit View Terminal Help
msf auxiliary(ipv6_neighbor) > show options
Module options (auxiliary/scanner/discovery/ipv6 neighbor):
  Name
             Current Setting
                               Required Description
                               -----
                                         The name of the interface
  INTERFACE eth0
  PCAPFILE
                                         The name of the PCAP capture file to
process
             192.168.102.1-254 yes
                                         The target address range or CIDR iden
  RHOSTS
  SH0ST
             192.168.102.168
                                         Source IP Address
             00:0c:29:c6:f4:c2 yes
                                         Source MAC Address
  SMAC
  THREADS
                                         The number of concurrent threads
                               yes
  TIMEOUT
                                         The number of seconds to wait for new
             500
msf auxiliary(ipv6_neighbor) >
```

- Metasploit auxiliary module for IPv6 neighbor discovery
 - Required options are: INTERFACE, RHOSTS, SHOST, and SMAC
 - SMAC and SHOST are from the local interface
 - RHOSTS is the local broadcast domain the attack machine is on

```
File Edit View Terminal Help
  RHOSTS
              192.168.102.1-254 yes
                                           The target address range or CIDR iden A
tifier
              192.168.102.168
                                           Source IP Address
  SHOST
  SMAC
              00:0c:29:c6:f4:c2 ves
                                           Source MAC Address
  THREADS
                                           The number of concurrent threads
                                 ves
  TIMEOUT
              500
                                 ves
                                           The number of seconds to wait for new
 data
msf auxiliary(ipv6_neighbor) > run
[*] Discovering IPv4 nodes via ARP...
         192.168.102.1 ALIVE
         192.168.102.2 ALIVE
      192.168.102.158 ALIVE
      192.168.102.173 ALIVE
      192.168.102.254 ALIVE
   Discovering IPv6 addresses for IPv4 nodes...
      192.168.102.158 maps to fe80::20c:29ff:fef8:4139
      192.168.102.173 maps to fe80::20c:29ff:fe56:d3f
   Scanned 254 of 254 hosts (100% complete)
   Auxiliary module execution completed
   auxiliary(ip)
```

```
File Edit View Terminal Help
se@Ubuntu10:~$ ifconfig eth0
eth0
          Link encap:Ethernet HWaddr 00:0c:29:c6:f4:c2
          inet addr:192.168.102.168 Bcast:192.168.102.255 Mask:255.255.25.0
          inet6 addr: fe80::20c:29ff:fec6:f4c2/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:9532 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8155 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:6736683 (6.7 MB) TX bytes:1025729 (1.0 MB)
          Interrupt:19 Base address:0x2000
se@Ubuntu10:~$ ping6 -I eth0 -c 3 fe80::20c:29ff:fe56:d3f
PING fe80::20c:29ff:fe56:d3f(fe80::20c:29ff:fe56:d3f) from fe80::20c:29ff:fec6:1
4c2 eth0: 56 data bytes
64 bytes from fe80::20c:29ff:fe56:d3f: icmp seq=1 ttl=64 time=0.406 ms
64 bytes from fe80::20c:29ff:fe56:d3f: icmp seq=2 ttl=64 time=0.368 ms
64 bytes from fe80::20c:29ff:fe56:d3f: icmp_seq=3 ttl=64 time=0.599 ms
--- fe80::20c:29ff:fe56:d3f ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.368/0.457/0.599/0.104 ms
se@Ubuntu10:~$
```

- Metasploit will return the link local IPv6 address for each IPv4 host discovered
- ping6 requires the interface to be specified for a link local address

IPv4 nmap

```
File Edit View Terminal Help
se@Ubuntu10:~$ nmap 192.168.102.173
Starting Nmap 5.00 ( http://nmap.org ) at 2011-03-21 12:39 EDT
Interesting ports on 192.168.102.173:
Not shown: 993 closed ports
PORT
        STATE SERVICE
22/tcp open ssh
80/tcp open
              http
139/tcp open
              netbios-ssn
445/tcp open microsoft-ds
5001/tcp open commplex-link
8080/tcp open http-proxy
Nmap done: 1 IP address (1 host up) scanned in 1.40 seconds
se@Ubuntu10:~$
```

IPv6 nmap

```
File Edit View Terminal Help

se@Ubuntul0:~$ nmap -6 fe80::20c:29ff:fe56:d3f%eth0

Starting Nmap 5.00 ( http://nmap.org ) at 2011-03-21 12:40 EDT

Interesting ports on fe80::20c:29ff:fe56:d3f:
Not shown: 994 closed ports

PORT STATE SERVICE

22/tcp open ssh

139/tcp open netbios-ssn

143/tcp open imap

445/tcp open microsoft-ds

5001/tcp open commplex-link

8080/tcp open http-proxy

Nmap done: 1 IP address (1 host up) scanned in 3.29 seconds

se@Ubuntul0:~$
```

- IPv4 nmap result standard nmap syntax
 - Note: the results list the ports open from the IPv4 stack
 IPv6 nmap result for a link local address the interface must be included in the address by appending %interface (%eth in our example)
 - Note: the results list the ports open from the IPv6 stack
- They may not match!

Questions

?

References

- http://playground.sun.com/pub/ipng/html/ipng-main.html
- http://www.6net.org/events/workshop-2005/mohacsi.pdf
- http://www.networkworld.com/news/2009/071309-ipv6network-threat.html
- http://en.wikipedia.org/wiki/IPv6_address
- http://www.ietf.org/rfc/rfc5157.txt
- http://blogs.cisco.com/security/icmp-and-security-in-ipv6/#more-21899
- http://en.wikipedia.org/wiki/Internet_Stream_Protocol
- http://en.wikipedia.org/wiki/ICMPv6