Orizon: Architecture and internals

V0.1

Introduction

Orizon is an Owasp project born in the October 2006. That time I was wondering about various code review tools and how they were implemented. I argued that every tool has got its own test library and tests were redounded among tools without any sort of knowledge gathering.

So the idea was born. 

Why not building an open source code review engine providing a full set of security tests to be applied to source code?

Why not build a code review framework to be used by other security tools?

So I started Orizon project to provide such common knowledge base to security tools claiming to assess source code.

What is Orizon

A framework provide a set of API to do code review

A code review engine

What is not Orizon

A security tool

A code review software

Architecture

Orizon engine will check source code for security issues using both static and dynamic approach. 

Static code review is checking source code for well-known insecure patterns and coding style.

Dynamic code review is checking source code behaviour applying “ad hoc” input data to software modules testing their responses. Dynamic tests will avoid memory corruption problems, improper error handling, exceptions not caught and all things related to software execution.

Information gathering

Before applying such code review styles, information has to be gathered from source code.

First of all, let’s define what the whole code review process input is. Process starts analyzing a single source file. Complex software will be analyzed using a “divide et impera” approach, reducing the system to its simple components.

Starting from the source, Orizon have to identify the source itself. 

Identifying source code is important in order to select the appropriate test case list. Source code will be checked for some magic patterns (e.g. a main function typical for a C source or a file containing a class definition with a name equal than the file name itself for a Java source, …) telling the programming language used to write the source.

Ident class from org.owasp.orizon.ident package will identify source code. Such class will expose a single public method identify() taking the source filename as argument and a Boolean argument telling if identify process has to be paranoid or lightweight.

A paranoid identify scan will use parser (introduced later in this document) to validate source code using various programming language grammars.

Not related to programming language used, statistics are gathered from source file after identification completed. Statistics collected came from software engineering and they are used in static analysis to make choices about which methods need more testing. 

Stats class is from org.owasp.orizon.ident package is the code deputed to gather statistics about source code. Interface offered to outside is a single public method collect() that returns an object containing the collected results. Such object will be stored in an object used as interface between Orizon core and security tools, theLounge.

theLounge will be

the collector in which all objects created during a code review by engine will be stored

the access point for external tools to ask for these objects

a sort of interface between engine and external tools

Tied with theLounge, another general all-purpose object will exist: orizonFactory. This class will handle framework configuration (checks to be enabled or disabled, report file format…) and will provide external tools a simple way to drive Orizon to fit tool’s goals.

Statistics are by now gathered so the code review process may start. 

Static code review

Static code review is about how code is written so checks will be done over source code structure and over the style used to code.

Over the parsed source code a pattern-matching search will be done using well know insecure code patterns (eg. A string taken from http request and printed out to output page, or usage of insecure routines such as strcpy, strncpy in the case of a C source and so on).

After the pattern-matching test using well-known patterns, a further examination will be done about the style used to code. The stylish checker will verify:

· if classes implement sensitive methods they didn’t use (eg. clone() for java classes;

· attributes and methods scope;

· how comments are distributed in the source;

· how code can be re-arranged in order to make it simpler.

After the style will be check static code result will be over. In output a slightly different version of the checked code will be proposed.

XML file schema

Pattern-matching static code review check

<check name=”test name” id=”test id” desc=”description” family=”REGEXP” />


<work>



<regexp severity=”level”>regular expression 1</regexp>



<regexp severity=”level”>regular expression 1</regexp>

…



<regexp severity=”level”>regular expression n</regexp>


</work>

</check>

Style static code review check

<check name=”test name” id=”test id” desc=”description” family=”STYLISH” />


<work>



<element type=”method, attribute, class, comment, …” present=”t/f” />



…



<element type=”method, attribute, class, comment, …” present=”t/f” />


</work>

</check>

Hacking Orizon: some guidelines

