77) o
o :
7 .
5 ",
% o ;
l’-d o
. oy /A
7/
5
< /
. g
. .
. 4
i b -
e
<

ESIGN SECURE WEB APPLICATIONS |

ASHISH RAO
&
The Open Web Application Security Project SIDDHARTH ANBALAHAN

- About Ashish
OWASP :

The Open Web Application Security Project

— 4 years of IT Security Experience

— Security Consultant and Researcher —
Application and Code Security Practice

— Expertise in performing Security Design
reviews and Security Code Reviews

— Developed Code Review Checklists and
Automation scripts for many platforms

— Conducted Trainings on Secure
Development of Web and Mobile
applications for different platforms

http://artechtalks.blogspot.in/

http://artechtalks.blogspot.in/

OWASP

The Open Web Application Security Project

* Application Design Understanding
* Need for Desigh Reviews
* Vulnerable Areas in the design

— Business Logic Invocation

— Backdoor parameters

— Placement of checks

— Inter-Application Communication

e Checklist for secure design

What is a design?

Design —
A plan or a diagram that translates ideas into models.

What'is an application design?
OWASP "

The Open Web Application Security Project

Application Design:
— A structure that determines execution flow

— Determines how different components interact with
each other

 There are many design frameworks present today
* Most of such designs are based on “MVC”

/——\
OWASP

The Open Web Application Security Project

John is a developer of an application and he wants
to add a new feature that can let the admin user
create new users in the system.

How should he code it?

Well, the very first question to ask is, how should he DESIGN it?

/——\
OWASP

The Open Web Application Security Project

~ Write the entire code in one file....

: ‘
4
5

It’s a bad idea.
Design it well

/—\
7% OWASP

The Open Web Application Security Project

* Things to develop:

— Form to add user @

— A class to understand and process add user

request @
— A class to hold user data @

/_\
OWASP

¥ The Open Web Application Security Project

VIEW

Web Request

CONTROLLER
Updates Data _
Update View

 —]

MODEL VIEW

Get Data

Importance of a design
OWASP |

The Open Web Application Security Project

* Segregation of code in logical components
* Makes code maintainable

e Easy to incorporate change

e FEasy to build security controls

Should w‘e review design?
OWASP |

The Open Web Application Security Project

 Can something go wrong in a design? Q

® 0

Why NOT?
* Design reviews are very important @

e A flaw in the design can break the entire
model

should we review design?
OWASP |

The Open Web Application Security Project

* |nsecure designs are big threat to the
application

* Design flaws are:
— Lesser known
— Invisible

— Hardly caught by scanners
— Can lead to many security flaws in the applications

Vulnerable Areas in Desigh
OWASP ‘

The Open Web Application Security Project

Things can wrong in:
— Data Flow/Business Logic Invocation
— Handling Inputs
— Placement of Checks
— Inter Application communication

/——\
OWASP

The Open Web Application Security Project

INSECURE BUSINESS LOGIC
INVOCATION

= Busihess Logic Invocation
OWASP

¥ The Open Web Application Security Project

How does it know
which MVC
components to

CONTROLLER

select?
Web Central

< Update
e Controller \ ViF;w
Get Data

Handles all web requests |
MODEL —— VIEW |
S— — e — J

Components specific to requested feature

Updates
Data

\ 4

/\ Business Logic Invocation
7*“1‘%‘ OWASP

The Open Web Application Security Project

E— — 1
I
| CONTROLLER
Web Central . :I Updates Update
Request Controller Data View
Handles all web requests Get Data
VODEL e :
—_—— — e — J
Components specific to requested feature

Identifies the business logic class/MVC components based on
the request — URL/Parameters

/—\ Business Logic Invocations
Vid OWASP |

The Open Web Application Security Project

* Lets understand the design:

— The design uses user input to determine:
* Business logic component
— Fully qualified class names
— Method name
—View component

17

Insecure Business Logic

Invocation

2. Read Config File

e

URL =

1. Request 3. Return ACTION mapping Action

- Config.xml

o Case 1 - Execute method in

n Action Class

t

- 4. Instantiate Action class and

call execute methaod ACTION

= CLASS

| 5. return Execute{}

|

=]

r 6. Invoke View/Error page

7-Response Sample Design

Business Logic Invocation
OWASP

The Open Web Application Security Project

DEMO -
Code Walk through

19

S InSecure Business Logit
7% OWASP ~ Invocation

The Open Web Application Security Project

 What can go wrong in this design:

— Unexposed Files may be accessible to the user

20

Insecure Business Logic

Invocation

The Open Web Application Security Project

2. Query Config File Parameter Name =
» | Business Logic Class

. . . . A View =
3. Return ACTION mapping Configuration File

4. Instantiate Business Logic class
and invoke its methods

@@% Request
A~
Action =
AccountView

g BUSINESS LOGIC

C
(o)
n
t
r
0
I
I

e <
5. Return Data and View Name —
Functioning 6
'{'6’ L
/914/
7. Response
<

VIEW FILE
AccountSummary.jsp
Account
Details

21

Insecure Business Logic

Invocation

The Open Web Application Security Project

UnexposedAction

.java
2. Query Config File Parameter Name = S —
» | Business Logic Class

@@% Request
T
Action =
TestAction

3. Return ACTION mapping Configuration File

4. Instantiate Business Logic class
and invoke its methods

g BUSINESS LOGIC

C
(o)
n
t
r
0
I
I

< CLASS
e . TestAction =
. 5. Return Data and View Name
Exploit :
6
I/O'{'@ L
/91'1/
7. Response
< VIEW FILE

Unexposed UnexposedView.jsp
Details

22

S Insecure Business Logit
OWASP Invocation

The Open Web Application Security Project

DEMO -

Unauthorized Access to Hidden Business Logic Class

23

Insecure Business Logie
~ Invocation
OWASP

The Open Web Application Security Project

Another important scenario —

Request parameters used to identify method
names of the business logic class

24

Consider this design

2. Read Config File

URL= Case 2 - Dynamic method name
Action creation in Execute method
1.Request "3.Return ACTION mapping : e |
— —_— Config.xmi |)
i Action class forms a
4 Instantiate Action class and call execute method method name froma |
> | ACTION CLASS input parameter called |
- ' OnEvent< S0 "event" and invokes thati
) 5.return I method. .
i Foreg - if event = view, |
. method name = |
6. Render | onEventView -
View/Error page | I _!
Sample Design
—

"

7.Response

25

Insecure Business Logic
Invocation
OWASP

The Open Web Application Security Project

* What can go wrong in this design:

— Users can try to perform actions not authorized to
them

26

Insecure Business Logic
Invocation
OWASP

The Open Web Application Security Project

G

DEMO -

Unauthorized Access to unexposed Business Logic Method

27

Insecure Business Logic
_Invocation
OWASP

The Open Web Application Security Project

* Security Measures:

— Remove ALL redundant/test/unexposed business
logic configurations from the file

— Apply Authorization check before processing
business logic

— Apply a mapping on method/class/view names
with the privilege level of the users

28

/——\
OWASP

The Open Web Application Security Project

Backdoor Parameters

— Insecure Data Binding

Insecure Data Binding
) OWASP *

The Open Web Application Security Project

* Lets understand the design:

— The design uses a data binding logic to bind user
inputs to business/form object variables

What is Data Binding?
, OWASP

The Open Web Application Security Project

2. Query Config File

1. Request > Parameter Name =
> Business Logic Class
3. Return ACTION mapping
Configuration File
4. Instantiate Business Logic class
and invoke its methods §q BUSINESS LOGIC
CLASS
5. Return Data and View Name
> 4.A - Bind instance
Gy L variables to request
0y, (parameters
7. Response
< VIEW FILE

31

- Insecure Data Binding
Vad OWASP |

The Open Web Application Security Project

* What can go wrong in the design:

— A user may be able to assign values to unexposed
variables of business objects

32

Insecure Data Binding

The Open Web Application Security Project

2. Query Config File

Parameter Name =
Business Logic Class

>
1. Request

: Configuration File 4.A - Bind instance
3. Return ACTION mapping variables to request
Item=book - - . parameters
Quantity=1 4. Instantiate Business Logic class

Price=1 and invoke its methods > BUSINESS LOGIC

5. Return Data and View Name

2

Business Object
<price = 1>
Item=book
Quantity=1

. Ce/
71,.
V/@W(
Op,
Sie

7. Response
< VIEW FILE

33

Insecure Data Binding
OWASP

The Open Web Application Security Project

DEMO -

Unauthorized access by exploiting data binding flaw

34

OWASP

The Open Web Application Security Project

Insecure Data Binding

* Security Measures:

— Do not place key variables related to business
rules, which are not dependent on user inputs in
objects that get bound to request variables

— Initialize key variables after the request to variable
binding logic

— Use “disallow” binding logic for certain variables,
if provided by the framework

35

/——\
OWASP

The Open Web Application Security Project

BACKDOOR PARAMETERS

— Insecure Decision Logic

- Incorkéct Decision Logic
OWASP |

The Open Web Application Security Project

* Lets understand the design

— The application takes business logic decisions based on
presence or absence of a parameter.

* For instance — isAdmin, isSuccess

— Menus/input controls are hidden from certain users,
generally observed in ASP.NET applications.

37

Incorrect Decision Logie
OWASP |

The Open Web Application Security Project

 What can go wrong in the design:

— The design believes in the concept of — “what is
hidden is secure”

— Server side behavior can be influenced with
request parameters

— Users can perform unauthorized operations in the
application.

ConSider a scenario
OWASP

The Open Web Application Security Project

* Consider a password reset feature of the
applications:
— Scenario:

* Admin users can reset passwords of other users
* Normal users can reset ONLY their passwords

Lets look at the flaw

The Open Web Application Security Project

| web.xml (X] Config.xml ‘!1 ChangePasswordAction EF [J] ChangePwdForm.java MySessionE

= ACverride

poblic boolean execute (Enwviromment et) throws MyExceptiom {

T T

2D Dmto—generated method =stub

ChangePwdForm form = new ChangePwdForm() ;

form.bindForm(et) : > Binding with request parameters
String newPa=s=s = form.getMewFPFas=ss() !

String renterPass = form.getReenterpass|() :

Etring username = form.getUsername () :

if ('mewPass.eseqguals (renterPass)) | Incorrect LogiC

throw new MyvException ("MNew and EReer

if (username = nnll) éz/////

username = (String) et.reg.getdSesszsion() .getihAttribute ("u=s=exr") ;
try {

Conmection con = DataStorelccess.getlonnectioni(l) :

String guery = uneryStore.updatePassvord;

40

Lets understand the flaw
OWASP

The Open Web Application Security Project

Flaw:

* Here, absence of username in the request is
considered as a request from normal user.

Assumption:

As an option to add username is not given to non-
admin users, the username field will always be
absent in their request.

S Consider a scenario
Vid OWASP |

The Open Web Application Security Project

What if a non-admin user sends additional
username parameter in the request?

* The server will be fooled to believe that the
request coming from the admin user.

 The user will be able to change password of
other users

/_—\
OWASP

The Open Web Application Security Project

DEMO

Unauthorized access to change password of other users

T Incorrect Decision Logic
OWASP |

The Open Web Application Security Project

* Security Measures:
— Don’t believe in — “If it is hidden it is secure”
— Apply authorization checks wherever necessary

— Do not use unvalidated inputs for taking business

logic decisions — Use session variables/database
values

44

/——\
OWASP

The Open Web Application Security Project

INCORRECT PLACEMENT OF CHECKS

Incorrect Placement of Checks
OWASP |

The Open Web Application Security Project

* Lets understand the design:
 The design uses multiple components like MVC.

 The authentication check is implemented on all the views
of the application

— if we try to access any view — For instance, “Adduser.jsp” without
authentication, it will be disallowed

46

Incorrect Placement of Checks
OWASP |

The Open Web Application Security Project

 What can go wrong in the design:
— Placement of checks can be incorrect

— Business logic components could be placed before
the authentication check

— Users will be able to bypass the authentication or
any such security check

Incorrect Placement of Checks

The Open Web Application Security Project

CORRECT
PLACEMENT

Unauthorized
Request

Central Business
Controller Logic

INCORRECT
PLACEMENT

But request gets
processed here!l!

48

Incorrect Placement of Checks
OWASP

The Open Web Application Security Project

G

DEMO -

Unauthorized access due to incorrect placement of checks

49

Incorrect Placement of Checks
7%“ OWASP

The Open Web Application Security Project

* Security Measures:

— Place all validation checks before request
processing logic

50

/——\
OWASP

The Open Web Application Security Project

INTER APPLICATION COMMUNICATION

Security Areas in Inter-App
Communication
OWASP

The Open Web Application Security Project

* Verifying the authenticity of the user
* Secure Data transmission

 Tamper proof communication

* Prevention of Replay Attacks

Inter App Communication
OWASP

The Open Web Application Security Project

e Verify authenticity of the user

— Consider a case of web to app server
communication

1w

Request — | |-

Inter App Communication
OWASP |

The Open Web Application Security Project

e Verify authenticity of the user

— In the app server, verify the identity of the
requesting user using:
e Declarative access control (container managed)
* Programmatic access control logic

Inter App Communication
OWASP

The Open Web Application Security Project

e Secure Data transmission

— Consider a server to server communhnication

Establish an encrypted channel :

pd
~

A

Web server Web server

Inter App Communication
OWASP "

The Open Web Application Security Project

e Secure Data transmission

— Implement an encrypted channel like SSL or IPSec,
wherever possible

— If the channel cannot be encrypted, encrypt
sensitive data like account ID, etc. using a pre-
shared key

Inter App Communication
OWASP |

The Open Web Application Security Project

e Tamper proof communication
* Prevent Replay Attacks

— Consider a scenario like SSO or payment gateway
transaction

SSO Implementation
OWASP

¥ The Open Web Application Security Project

Pre-shared key

Send the random key encrypted using pre-shared one

Acknowledge by sending the hash of random key
+ a random token

Send SSO token encrypted by random key ONLY if
correct HASH is received + hash of the random
token

Authenticating

Party

Generate a random key Verify the Hash and process the
SSO token only if the Hash is
valid

Inter App Communication
€) OWASP :

The Open Web Application Security Project

e Verify the authenticity of the user
* Send data over an encrypted channel

* Implement HMAC of the request parameter
wherever needed
e Use 2 way handshake in cases like SSO

— Use different pair of pre-shared keys in scenarios
where deployment is multiple customer sites

/_\ Insecure Design - Recap
OWASP "

The Open Web Application Security Project

* |nsecure Business Logic Invocations
— Files
— Methods

e Backdoor Parameters

" [nsecure Data Binding
" Incorrect Decision Logic

* Incorrect Placement of Checks
* Inter Application Communication

60

/——\
OWASP

The Open Web Application Security Project

CHECKLIST FOR SECURE DESIGN

Checklist For Design.xlsx

/—\
OWASP

The Open Web Application Security Project

Questions

'

62

/\
OWASP

¥ The Open Web Application Security Project

Thank You
&

Share your feedback
with us.

raon.ashish20@gmail.com
AND
sidhanbu@gmail.com

mailto:rao.ashish20@gmail.com
mailto:sidhanbu@gmail.com

