
DESIGN SECURE WEB APPLICATIONS

 ASHISH RAO
 &
SIDDHARTH ANBALAHAN

About Ashish

– 4 years of IT Security Experience

– Security Consultant and Researcher –
Application and Code Security Practice

– Expertise in performing Security Design
reviews and Security Code Reviews

– Developed Code Review Checklists and
Automation scripts for many platforms

– Conducted Trainings on Secure
Development of Web and Mobile
applications for different platforms

 http://artechtalks.blogspot.in/

http://artechtalks.blogspot.in/

• Application Design Understanding

• Need for Design Reviews

• Vulnerable Areas in the design

– Business Logic Invocation

– Backdoor parameters

– Placement of checks

– Inter-Application Communication

• Checklist for secure design

Index

What is a design?

Before

Design –
A plan or a diagram that translates ideas into models.

After

What is an application design?

Application Design:

– A structure that determines execution flow

– Determines how different components interact with
each other

• There are many design frameworks present today

• Most of such designs are based on “MVC”

What is MVC?

John is a developer of an application and he wants
to add a new feature that can let the admin user
create new users in the system.

How should he code it?

Well, the very first question to ask is, how should he DESIGN it?

What is MVC?

Write the entire code in one file….

It’s a bad idea.
 Design it well

What is MVC?

• Things to develop:

– Form to add user

– A class to understand and process add user
request

– A class to hold user data

View

Controller

Model

What is MVC?

CONTROLLER

MODEL VIEW

Web Request

Updates Data
Update View

Get Data

VIEW

Importance of a design

• Segregation of code in logical components

• Makes code maintainable

• Easy to incorporate change

• Easy to build security controls

Should we review design?

• Can something go wrong in a design?

 Why NOT?

• Design reviews are very important

• A flaw in the design can break the entire
model

Should we review design?

• Insecure designs are big threat to the
application

• Design flaws are:

– Lesser known

– Invisible

– Hardly caught by scanners

– Can lead to many security flaws in the applications

Vulnerable Areas in Design

Things can wrong in:

– Data Flow/Business Logic Invocation

– Handling Inputs

– Placement of Checks

– Inter Application communication

INSECURE BUSINESS LOGIC
INVOCATION

Business Logic Invocation

CONTROLLER

MODEL VIEW

Updates
Data

Update
View

Get Data

Central
Controller

Web
Request

Handles all web requests

Components specific to requested feature

How does it know
which MVC

components to
select?

Business Logic Invocation

CONTROLLER

MODEL VIEW

Updates
Data

Update
View

Get Data

Central
Controller

Web
Request

Handles all web requests

Components specific to requested feature

Identifies the business logic class/MVC components based on
the request – URL/Parameters

Business Logic Invocations

• Lets understand the design:

– The design uses user input to determine:

• Business logic component

– Fully qualified class names

–Method name

–View component

17

Insecure Business Logic
Invocation

18 Sample Design

Business Logic Invocation

 DEMO -
 Code Walk through

19

 Insecure Business Logic
Invocation

• What can go wrong in this design:

– Unexposed Files may be accessible to the user

20

 Insecure Business Logic
Invocation

21

C

o

n

t

r

o

l

l

e

r

S

e

r

v

l

e

t

Parameter Name =
Business Logic Class

BUSINESS LOGIC
CLASS

3. Return ACTION mapping

4. Instantiate Business Logic class
and invoke its methods

5. Return Data and View Name

Configuration File

1. Request

7. Response

2. Query Config File

VIEW FILE

Action =
AccountView

AccountView =
AccountAction.java

AccountAction.java

AccountSummary.jsp
Account
Details

USER

Normal
Functioning

 Insecure Business Logic
Invocation

22

C

o

n

t

r

o

l

l

e

r

S

e

r

v

l

e

t

Parameter Name =
Business Logic Class

BUSINESS LOGIC
CLASS

3. Return ACTION mapping

4. Instantiate Business Logic class
and invoke its methods

5. Return Data and View Name

Configuration File

1. Request

7. Response

2. Query Config File

VIEW FILE

USER

Exploit

Action =
TestAction

TestAction =
UnexposedAction.java

UnexposedAction
.java

UnexposedView.jsp Unexposed
Details

 Insecure Business Logic
Invocation

 DEMO -

23

Unauthorized Access to Hidden Business Logic Class

Insecure Business Logic
Invocation

 Another important scenario –

 Request parameters used to identify method
names of the business logic class

24

Consider this design

25

Sample Design

Insecure Business Logic
Invocation

• What can go wrong in this design:

– Users can try to perform actions not authorized to
them

26

 Insecure Business Logic
Invocation

 DEMO –
 Unauthorized Access to unexposed Business Logic Method

27

 Insecure Business Logic
Invocation

• Security Measures:

– Remove ALL redundant/test/unexposed business
logic configurations from the file

– Apply Authorization check before processing
business logic

– Apply a mapping on method/class/view names
with the privilege level of the users

28

Backdoor Parameters
– Insecure Data Binding

Insecure Data Binding

• Lets understand the design:

– The design uses a data binding logic to bind user
inputs to business/form object variables

What is Data Binding?

31

C

o

n

t

r

o

l

l

e

r

S

e

r

v

l

e

t

Parameter Name =
Business Logic Class

BUSINESS LOGIC
CLASS

3. Return ACTION mapping

4. Instantiate Business Logic class
and invoke its methods

5. Return Data and View Name

Configuration File

1. Request

7. Response

2. Query Config File

VIEW FILE

Business

Object

4.A - Bind instance
variables to request
parameters

Insecure Data Binding

• What can go wrong in the design:

– A user may be able to assign values to unexposed
variables of business objects

32

Insecure Data Binding

33

C

o

n

t

r

o

l

l

e

r

S

e

r

v

l

e

t

Parameter Name =
Business Logic Class

BUSINESS LOGIC
CLASS

3. Return ACTION mapping

4. Instantiate Business Logic class
and invoke its methods

5. Return Data and View Name

Configuration File

1. Request

7. Response

2. Query Config File

VIEW FILE

Business Object

<price = 1000>

4.A - Bind instance
variables to request
parameters

Item=book
Quantity=1

Business Object
<price = 1000>

Item=book
Quantity=1

Business Object
<price = 1>

Item=book
Quantity=1

Item=book
Quantity=1

Price=1

Hacked

Insecure Data Binding

 DEMO –
 Unauthorized access by exploiting data binding flaw

34

 Insecure Data Binding

• Security Measures:

– Do not place key variables related to business
rules, which are not dependent on user inputs in
objects that get bound to request variables

– Initialize key variables after the request to variable
binding logic

– Use “disallow” binding logic for certain variables,
if provided by the framework

35

BACKDOOR PARAMETERS
– Insecure Decision Logic

Incorrect Decision Logic

• Lets understand the design
– The application takes business logic decisions based on

presence or absence of a parameter.

• For instance – isAdmin, isSuccess

– Menus/input controls are hidden from certain users,
generally observed in ASP.NET applications.

37

Incorrect Decision Logic

• What can go wrong in the design:

– The design believes in the concept of – “what is
hidden is secure”

– Server side behavior can be influenced with
request parameters

– Users can perform unauthorized operations in the
application.

Consider a scenario

• Consider a password reset feature of the
applications:

– Scenario:

• Admin users can reset passwords of other users

• Normal users can reset ONLY their passwords

Lets look at the flaw

40

Binding with request parameters

Incorrect Logic

Lets understand the flaw

Flaw:

• Here, absence of username in the request is
considered as a request from normal user.

Assumption:

 As an option to add username is not given to non-
admin users, the username field will always be
absent in their request.

Consider a scenario

What if a non-admin user sends additional
username parameter in the request?

• The server will be fooled to believe that the
request coming from the admin user.

• The user will be able to change password of
other users

 DEMO
 Unauthorized access to change password of other users

Incorrect Decision Logic

• Security Measures:

– Don’t believe in – “If it is hidden it is secure”

– Apply authorization checks wherever necessary

– Do not use unvalidated inputs for taking business
logic decisions – Use session variables/database
values

44

INCORRECT PLACEMENT OF CHECKS

Incorrect Placement of Checks

• Lets understand the design:
• The design uses multiple components like MVC.

• The authentication check is implemented on all the views
of the application

– if we try to access any view – For instance, “Adduser.jsp” without
authentication, it will be disallowed

46

Incorrect Placement of Checks

• What can go wrong in the design:

– Placement of checks can be incorrect

– Business logic components could be placed before
the authentication check

– Users will be able to bypass the authentication or
any such security check

Incorrect Placement of Checks

48

Auth
Check

View Logic

INCORRECT
PLACEMENT

Business
Logic

Central
Controller

Unauthorized

Request
ERROR

PAGE

But request gets
processed here!!!

CORRECT
PLACEMENT

 Incorrect Placement of Checks

 DEMO –
 Unauthorized access due to incorrect placement of checks

49

Incorrect Placement of Checks

• Security Measures:

– Place all validation checks before request
processing logic

50

INTER APPLICATION COMMUNICATION

Security Areas in Inter-App
Communication

• Verifying the authenticity of the user

• Secure Data transmission

• Tamper proof communication

• Prevention of Replay Attacks

Inter App Communication

• Verify authenticity of the user

– Consider a case of web to app server
communication

Web server App server

Request

Attacker

Inter App Communication

• Verify authenticity of the user

– In the app server, verify the identity of the
requesting user using:

• Declarative access control (container managed)

• Programmatic access control logic

Inter App Communication

• Secure Data transmission

– Consider a server to server communication

Web server Web server

Establish an encrypted channel

Inter App Communication

• Secure Data transmission

– Implement an encrypted channel like SSL or IPSec,
wherever possible

– If the channel cannot be encrypted, encrypt
sensitive data like account ID, etc. using a pre-
shared key

Inter App Communication

• Tamper proof communication

• Prevent Replay Attacks

– Consider a scenario like SSO or payment gateway
transaction

SSO Implementation

Authenticating
Party

Server

Send the random key encrypted using pre-shared one

Pre-shared key

Generate a random key

Acknowledge by sending the hash of random key
+ a random token

Send SSO token encrypted by random key ONLY if
correct HASH is received + hash of the random
token

Verify the Hash and process the
SSO token only if the Hash is
valid

Inter App Communication

• Verify the authenticity of the user

• Send data over an encrypted channel

• Implement HMAC of the request parameter
wherever needed

• Use 2 way handshake in cases like SSO

– Use different pair of pre-shared keys in scenarios
where deployment is multiple customer sites

Insecure Design - Recap

• Insecure Business Logic Invocations

– Files

– Methods

• Backdoor Parameters
 Insecure Data Binding

 Incorrect Decision Logic

• Incorrect Placement of Checks

• Inter Application Communication

60

CHECKLIST FOR SECURE DESIGN

Checklist For Design.xlsx

Questions

62

Thank You
&

Share your feedback
with us.

rao.ashish20@gmail.com
AND

sidhanbu@gmail.com

mailto:rao.ashish20@gmail.com
mailto:sidhanbu@gmail.com

