™ BOTHAM

DIGITAL+SCIENCE

Securing Development
with PMD

Teaching an Old Dog New Tricks

Well, this trick has been around for five years now

so we might be able to learn it...

31/08/2012

Integrating Security with Developer Tooling

DON'T SHOOT THE MESSENGER

Key Objectives
Learn about PMD

Understand how to extend PMD

Think about enhancements to similar tools

What Is PMD?

Open source static analysis tool

Scans Java source code for potential problems
Possible bugs _\
Dead code

SUbOptlmaI_ code _ = \lery little related to security!!
Overcomplicated expressions

Duplicate code

Bug Finders vs Security Static Analysis

Bug Finders (i.e. PMD)

Target buggy patterns
Minimize false positives even if high false negatives

Security Static Analysis
Target insecure patterns
Minimize false negatives even if some false positives
Context of violation must be investigated

™ BOTHAM

DIGITAL+SCIENCE

Why Extend Security to PMD?

Used extensively by Java developers already
Highly extensible with Rule and Report API

Strong documentation and support network

Integrates with many IDEs and build tools

PMD internals operate similar to commercial tools

™ BOTHAM

DIGITAL+SCIENCE

How does PMD work?

Run against source file, directory, or archive
Builds tree-like structure of source code (AST)
Performs semantic, basic control & data analysis
Traverses AST looking for patterns (Rules)

Generates a report of Rule Violations

G AM

DIGITAL+SCIENCE

What Does AST Look Like?

class Example {
void bar() {
while (baz)
buz.doSomething():

Source Code

CompilationUnit
TypeDeclaration
ClassDeclaration: (package private)
UnmodifiedClassDeclaration (Example)
ClassBody
ClassBodyDeclaration
MethodDeclaration: (package private)
ResultType
MethodDeclarator (bar)
FormalParameters
Block
BlockStatement
Statement
WhileStatement
Expression
PrimaryvExpression
PrimaryPrefix
Name:baz
Statement
StatementExpression:null
PrimaryExpression
PrimaryPrefix
Name:buz.doSomething
PrimarySuffix

AST Arguments

T e0IHAM

DIGITAL+SCIENCE

Extending PMD with Custom Rules

Implement as Xpath expression or Java class

Wire up rules for use by PMD in ruleset file

Modify behavior by configuring rule properties

Group rules into rulesets for enforcement

e Writing Demo

Resources to Help Writing Rules

PMD Website

http://pmd.sourceforge.net/xpathruletutorial.html
http://pmd.sourceforge.net/howtowritearule.html (Java)

PMD source code
net.sourceforge.pmd.rules.”
net.sourceforge.pmd.dfa.DaaRule

PMD Applied (Centennial Books Nov 2005)

PMD test cases & framework (wraps JUnit)
test.net.sourceforge.pmd.testframework

test.net.sourceforge.pmd.”
™ GOTHAM

DIGITAL+SCIENCE

v1.0 Goals For Custom PMD Security Rules

Add security without modifying PMD itself
Write rules that identify “low hanging fruit”

Perform analysis beyond lexing and pattern match

Selecting Rules for Implementation

SQL Injection 2.1 — Commands should not be Constructed Data Flow, A1: Injection
through String Concatenation Structural

Cross-Site 1.1 — All Input Crossing a Trust Boundary Data Flow A2: Cross-Site
Scripting (XSS) Must be Validated Scripting (XSS)
1.2 — Data from External Sources must be
Properly Encoded or Escaped

Arbitrary File 1.1 — All Input Crossing a Trust Boundary Data Flow A4: Insecure Direct
Retrieval Must be Validated Object References
3.2 — Callable Code Must Enforce

Authorization Requirements

Use of 4.1 — Use of Sound Encryption Algorithms Structural A7: Insecure
Cryptographically 4.2 — Use of Sound Hashing Algorithms Cryptographic
Insecure Storage
Algorithms

Arbitrary URL 1.1 — All Input Crossing a Trust Boundary Data Flow A10: Un-validated
Redirection Must be Validated Redirects and
Forwards

™ B0THAM

DIGITALCYS IENCE

31/08/2012

Challenges to Writing PMD Security Rules

» Analysis limited to single file at a time

» Data Flow Analyzer (DFA) limited to
single method (intraprocedural)

= DFA tracks local variable declarations and
references, but does not evaluate
expressions

= Symbols limited to source file, resulting in
names and types not fully resolved

» Only analyzes JSP files that are XHTML-
compliant (i.e. JSP Documents / XML
syntax)

31/08/2012

» Data often passes through multiple files/
classes and tiers

» Security bugs often result of mixing data
and code in wrong context

» Custom code often wraps well-known
APls (Java or Framework)

» Standard JSP syntax more common

» Often severe web application security
bugs in presentation layer

™ B0THAM

|GITAL+SC NCE

Rule Writing Challenges - JSP Files

#1 — Overcome XHTML limitation

Solution: Leverage JSP compiler

Result: Java implementation of JSP logic in
_jspService method

Benefit:
|ldentify security bugs in any JSP
Scope of PMD'’s analysis increased

Example of JSP to Java Translation

<

String al request.getParameter ("y1");
String bl al;

JSP Scriptlet Code

public vold JspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException {
..snip..
PageContext pageContext = null;
..Snip..
out = pageContext.getOut ()
..SNnip..
String al = request.getParameter ("y1");
String bl = al;

out.print (bl) ; Translated Java code equivalent

Rule Writing Challenges - Reporting

#2 — Report JSP security violations meaningful to developer

Solution:
Wrote custom Source Map Format (SMAP) translator (JSR-045)
Implemented net.sourceforge.pmd.IRuleViolation

Result: Report findings in terms of JSP line numbers

Benefit:

JSP developers remediate bugs in JSP
Security violations understood by PMD built-in renders

™ BOTHAM

DIGITAL+SCIENCE

SMAP Example

SMAP Header (SMAP, generated
index7_jsp.java filename, default stratum)
JSP

*S JSP Stratum Section
+FO index7.jsp File Section (c_:ontains translated
: _ filenames and path

index7.jsp

*L

2,10:53,0

12,3:55 Line Section (associates line numbers

14:58,0 in input source with output source)

15:60

16,3:61,0

*E

En Sectlon

***** BUTHAM

DIGITAL+SCIENCE

Rule Writing Challenges - DFA w/PMD

#3 — Despite PMD limitations, perform data flow analysis

Solution: Use PMD DFA and Symbol Table

Result:

Determine if variable assignments assigned source
Track those tainted variables down each data flow
Report security violations if tainted variable passed to sink

Benefit: Automated, accurate tracing from source to sink

™ BOTHAM

DIGITAL+SCIENCE

PMD Data Flow Analysis

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

{ variable definition

..Snip.. / Name=a1, Type=String

Etring al % Eequest.getParameter("yl")}

DataFlowNodes

String bl = al;
out.print (bl);

variable references o
Name=request.getParameter (1|11} T AM
Arguments=y1 (Literal) DIGTTAL*SCIENCE

PMD Data Flow Analysis

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

.sSnip. .
String al = request.getParameter ("yl1"); variable references
Name=out.print
String bl = al; /Arguments=b1 (Name)
Eaut .prin%bm] DataFlowNode

™ Be0THAM

I TAL+SC

PMD Data Flow Analysis

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

{ variable definition
.snip. . Name=a1, Type=String

Etring al ﬂ Eequest.getParameter("yl")a
\

. variable reference
String bl = alj Name=request.getParameter
out.print (bl); Arguments=y1 (Literal)

™ Be0THAM

I TAL+SC

PMD Data Flow Analysis Extended (XSS)

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException
variable definition
.Snip. . Name=a1, Type=String
(tainted variable)

Etring al ﬂ Eequest.getParameter("yl")a
\

variable reference
Name=request.getParameter

out.print (bl); (method, tainted source)

Arguments=y1 (Literal)

Type Jjavax.serviet.http. HttpServietRequest

a0l HAM

I TAL+SC

String bl = al;

PMD Data Flow Analysis Extended (XSS)

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

{ variable definition
.snip. . Name=b1, Type=String
(tainted variable)
String al est.getParameter ("y1");

o Y e
out.print (bl); variable reference
Name=a1 (tainted variable)

T Be0THAM

DIGITAL+SCIENCE

PMD Data Flow Analysis Extended (XSS)

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

.sSnip. .

String al = request.getParameter ("y1");

variable references
Name=out.print

Eut ,prin%bl) ; Arguments=b1 (Name)
(tainted variable)

™ Be0THAM

|GITAL+SC

QA+ +r1na Nl
-J

A

PMD Data Flow Analysis Extended (XSS)

public void jspService (HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

.sSnip. .

String al = request.getParameter ("y1");

variable references
Name=out.print

(method, XSS sink)
Type=javax.servlet.jsp.JspWriter
Arguments=b1 (Name)

9 XSS Vulnerability (tainted variable)

™ B0THAM

I TAL+SC NCE

-~

31/08/2012

DFA Security Rule Usage Notes

Violations need to be manually investigated for proper
escaping/validation

Configurable sources and sinks via properties

URL Redirection
o javax.servlet.http.HttpServietResponse.sendRedirect

SQL Injection
o Java.sql.execute

Effective source/sink same method / “reflected” variants

™ BOTHAM

DIGITAL+SCIENCE

PMD Structural Rule Example - SQLI

DFA susceptible to false negatives
Data traverse multiple files between source and sink

Supplement with structural rule
Investigates AST AdditiveExpression nodes
Performs following analysis

o Is string a SQL command?
o |s concatenated data of type String?
o |s concatenated data a method argument?

™ BOTHAM

DIGITAL+SCIENCE

Security Rules

Basic Usage Steps

Configure CLASSPATH
Add pmd-gds-1.0.jar
Add jars/classes used when building (for type resolution)

Configure PMD to use /rulesets/GDS/
SecureCodingRuleset.xml

Run PMD and audit results

PMD ANT Task Example - CLASSPATH

<path id="pmd.classpath">
<fileset dir="${pmd.dir.home}\1ib">
<include name="pmd-${pmd.version}.jar" />
..Snip..
</fileset>
<pathelement location="1lib\${gds.jar}" />
<pathelement location="${appl.src}\build\classes\"/>
<fileset dir="C:\tomcat\apache-tomcat-6.0.29\1ib">
<include name="servlet-api.jar" />
</fileset>
</path>

<target name="pmd" description="Runs PMD">

<taskdef name="pmd" classname="net.sourceforge.pmd.ant.PMDTask"
classpathref="pmd.classpath" />

<pmd rulesetfiles="rulesets/GDS/SecureCodingRuleset.xml" shortFilenames="false"
<formatter type="text" toConsole="true" />
<fileset dir="${appl.src}"><include name="**/*_ java" /></fileset>

</pmd>
AT,y
L D AM

</target>
DIGITAL+SCIENCE

PMD ANT Task Example - Rules Config

<path id="pmd.classpath">
<fileset dir="${pmd.dir.home}\1ib">
<include name="pmd-${pmd.version}.jar" />
..Snip..
</fileset>
<pathelement location="1lib\${gds.jar}" />
<pathelement location="${appl.src}\build\classes\"/>
<fileset dir="C:\tomcat\apache-tomcat-6.0.29\1ib">
<include name="servlet-api.jar" />
</fileset>
</path>

<target name="pmd" description="Runs PMD">

<taskdef name="pmd" classname="net.sourceforge.pmd.ant.PMDTask"
classpathref="pmd.classpath" />

<pmd rulesetfiles="rulesets/GDS/SecureCodingRuleset.xml" shortFilenames="false"
<formatter type="text" toConsole="true" />
<fileset dir="${appl.src}"><include name="**/*_ java" /></fileset>

</pmd>
AT,y
L D AM

</target>
DIGITAL+SCIENCE

Configuring JSP to Java Translation

Add JSP compiler task to build tool (build.xml)

Configure smapSuppressedto false and
smapDump t0 true

<jasper2 validateXml="false" uriroot="C:\Code\web.war"
webXmlFragment="${jspBuildDir}/WEB-INF/
generated web.xml" outputDir="${jspBuildDir}/WEB-INF/
src" smapSuppressed="false" smapDumped="true"/>

Add extra clean task to remove .smap files before

production deployment
sa—
mEUOITIHAM

DIGITAL+SCIENCE

Custom Rules with PMD Eclipse Plug-in

Plug-in only supports xpath rules out of box

Put custom rules on plug-in CLASSPATH
Requires modification of PMD Eclipse plugin jars
Add rules to PMD Eclipse plugin source and compile
Wrap PMD Eclipse plugin with custom plugin

Current and Future Development

Publish version 1.0 of Secure Coding Ruleset @ https://
github.com/GDSSecurity

Integrate NIST Juliet Test cases

Contribute to PMD project (need to pass tests first!)

Extend rules beyond Java with PMD 5

Write PMD 5.0 Rules

Enhance PMD feature set

Conclusion

Learned about PMD and extensibility
Discussed approach for rule writing & deployment

Use, add and improve SecureCodingRuleset on
GitHub

Look for other developer tools where it would be
practical to add security

™ BOTHAM

DIGITAL+SCIENCE

References

http://www.nysforum.org/committees/security/
051409 pdfs/A%20CISO%27S%20Guide%20to

%20Application%20Security.pdf

http://samate.nist.gov/index.php/
Source Code_Security Analyzers.html

https://www.owasp.org/
pmd.sourceforge.net
http://tomcopeland.blogs.com/

PMD Applied (Centennial Books Nov 2005)

Secure Programming with Static Analysis
(Addison-Wesley Professional July 2007)

™ BOTHAM

DIGITAL+SCIENCE

