
Docker Security

Mika Vatanen

13.6.2017

About me

• Mika Vatanen, Solution Architect @ Digia

• 18 years at the industry, 6 months at Digia

• Established ii2 – a Finnish MySpace, top-5 most used web service in Finland between 2006-
2008

• Wide interest in different new technologies. Always very keenly interested on IT security

Today’s speak

• How does Docker change security landscape?

• What attack vectors are there on Docker. How does Docker handle security?

• How to increase Docker security

Why is Docker security important?

• Docker is currently experiencing very high
adoption rate

• Many people are deploying on Docker
without considering the security
landscape

• Main reason why companies are hesitating
on switching to Docker (Forrester, 2015)

But…

• no automated security updates

• shift of security from ops to software
developers

• higher risk if multiple applications are run
in shared servers

More secure, less secure?

• “Gartner asserts that applications
deployed in containers are more secure
than applications deployed on the bare OS
[…] as long as a kernel privilege escalation
vulnerability does not exist on the host OS”

(Joerg Fritsch, Research Director, Gartner,
2016)

Docker Structure

Writable container

Add Node.JS express application

Add Node.JS

Alpine Base Image

Kernel

Docker hub image vulnerabilities

• Docker Hub images contain ~180 vulnerabilities
on average. Many images have not been
updated for hundreds of days

• A security vulnerability introduced at lower
layers is propagated into all dependent layers

• Source: A Study of Security Vulnerabilities on
Docker Hub, Shu et al. 2017

Inter-image dependency analysis example

Number of Vulnerabilities per image

Docker architecture

Container
App 1

Bins/Libs

App 2

Bins/Libs

App 3

Bins/Libs

Docker Daemon

Host

Possible attack vectors

App 1

Bins/Libs

App 2

Bins/Libs

App 3

Bins/Libs

Docker Daemon

Host

Getting into a container
• Software from unreliable

sources
• Old versions of software
• A vulnerability in the

application

Hyökkäyksen laajentaminen
• Konttien verkkotaso
• Docker Daemon
• Host

Hyökkäyksen laajentaminen
• Konttien verkkotaso
• Docker Daemon
• Host

Extending an attack
• To other hosts (network)
• To other containers
• To Docker daemon
• To host

Negatively affecting
other services
• Slowing down the

server / eating
resources

• Crashing the server

Removing traces of an attack
• Removal of local logs

Docker security

• Apparmor, seccomp

• Ulimits (in container startup, or global per-
container config)

• User namespaces (map uids inside
containers to an uid-namespace outside
containers)

How does Docker handle security?

• Kernel namespaces

• Control Groups

• Kernel capabilities

• Isolated file system (base image +
[writable] container)

Kernel namespaces

• Linux kernel feature for isolating and virtualizing system resources

• When a container is started, Docker creates a set of namespaces for that container.
Processes inside a container see only these namespaces (and no system artifacts)

• Examples: pid (process isolation), net (network isolation), ipc (interprocess
communication), mnt (mount points), uts (unix timesharing system)

• Namespace support in Linux kernel since 2008, tested and mature code

Control groups (cgroups)

• Linux kernel feature. In kernel mainline since 2008

• Possibility to limit, account and isolate resource usage

• Applied when starting a container (docker run flags, or in docker-compose file)

• CPU, memory, max pids count, (network, disk I/O)

• Docker grants by default: SETPCAP,
MKNOD, AUDIT_WRITE, CHOWN,
NET_RAW, DAC_OVERRIDE, FOWNER,
FSETID, KILL, SETGID, SETUID,
NET_BIND_SERVICE, SYS_CHROOT,
SETFCAP

• Not granted, for example: SYS_TIME,
SYS_RAWIO, NET_ADMIN, SYS_PTRACE

• http://man7.org/linux/man-
pages/man7/capabilities.7.html

Kernel capabilities

• Traditional UNIX systems have privileged
processes (uid 0, root) and unprivileged
processes (uid != 0, non-root). Root
processes bypass all kernel permission
checks

• From kernel 2.2. onwards, root
permissions can be split into more gradual
list of capabilities

• In practice, if one gets into a container,
limited capability possibilities make it
harder to extend an attack

A shared Kernel

• Host and Docker containers share the same kernel

• Risk factor: if the kernel contains a vulnerability, and code in a container can access it, easy
to extend an attack

• Important to keep the kernel updated

Increasing Docker security

Different layers of security

• Docker image building (e.g. Dockerfile and processes)

• Docker runtime (docker run, docker-compose or similar)

• Docker Engine

• Docker host

Docker image hardening

What do we want to achieve?

• Limit the possibility of getting into a
container

• Limit tools and possibility of using external
tools for extending the attack

• Have a standardized way for creating and
maintaining images

• Build always on a fresh base image (e.g.
docker pull [image] before build)

• Use minimal base image (for example
alpine)

• When downloading software, check for
checksums

Docker image / tech recommendations

• Do not run software as root. Create an
user instead (or use user namespaces)

• Prepare software so that root is mounted
as read-only (and use tmpfs with limits for
run files)

• Do not trust community images (even with
public Dockerfile) on Docker hub. Build
your images on official base images

• Add a HEALTHCHECK command for
orchestration

• Do not install unnecessary software (e.g.
for debugging or testing purposes)

Docker image / tech recommendations cont.

• Use specific versions (e.g. “FROM
node:7.7.2-alpine instead of node:latest)

• Do not store secrets to Dockerfiles. Use
docker secrets instead (ENV –variables are
a bad practice, may leak information)

• Use a CI pipeline to build Docker images

• Install a system to scan for vulnerabilities
at Docker images (ecosystem still partially
forming, multiple tools)

Docker image / policy recommendations

• Create hardened docker-compose.yml &
Dockerfile templates to be distributed for
software projects

• Review changes to Dockerfiles by a
security/ops-knowledgeable person

• Make sure that when image is built later
on, it’ll be exactly the same as before

Docker runtime

• Use docker-compose instead of manual
docker run commands

• Multiple benefits; e.g. container linking,
private network generation

• Add default flags: drop unnecessary
capabilities, limit new privileges (no-new-
privileges), set memory limit, limit cpu
usage when needed, set read-only flag

version: '2.1'
services:

mongo-test:
image: mongo:3.4.4
security_opt: ["no-new-privileges"]
cap_drop: ["all"]
cap_add: ["SETUID", "SETGID", "CHOWN"]
mem_limit: 256m
cpu_shares: 1024
read_only: true
tmpfs:
- "/run:rw,noexec,nosuid,size=128k"
- "/tmp:rw,noexec,nosuid,size=10M"
volumes: ["/srv/mongo-data-test:/data"]

Docker host & engine recommendations

• Keep host kernel updated!

• Use centralized logging with Docker log
drivers (remote syslog, splunk, gelf, etc)

• Deny internal container communications
(icc=false)

• Keep Docker updated

• Note that users who control docker
daemon (belong to docker group)
effectively have a root on host

Apparmor
• App-specific profiles that restrict program

capabilities such as file permissions and
network access

• Initial release 1998 by SUSE, supported by
Canonical since 2009. Not enabled by default
in RedHat based distros

Seccomp
• seccomp = SECure COMPuting with filters
• Allows filtering of kernel syscalls that an

application can make
• By Andrea Arcangeli, 2005. Available by

default in most Linux systems

Apparmor & seccomp

• Linux Kernel security features, good for
enhanced security. Supported by Docker
since 2014 (apparmor) and 2016
(seccomp)

• Benefits: alleviate the risk of getting into a
container, reduce the risk of extending an
attack

• Still a bit of hassle to set up. Seccomp not
available in Swarm mode (see
moby#25209) or in Kubernetes
(kubernetes feature #135). Kubernetes has
beta-level apparmor support

Seccomp

• Mitigates the risk of shared kernel
between host and containers

• Limit the available syscalls only to the ones
needed by a container

• If a process in a container accesses denied
syscall, it’ll get SIGKILL

• Profile is in JSON format. Use strace to get
list of all syscalls

System call interface

Kernel

I/O Network Memory IPC

GNU C Library

Application

Seccomp

• Preferably in docker >=1.13, might need to
add docker-specific syscalls in lower
versions

• See moby/moby repo issues #22252,
#24661

Seccomp (cont.)

• Docker has a default seccomp profile that
limits some available syscalls

• $ docker run –security-opt no-new-
privileges –security-opt
seccomp=profile.json hello-world

Apparmor

• Mostly in Debian based OS’es

• Used mainly for per-file permission limits

• r = read, w = write, a = append, x =
execute, m = memory map executable, k =
lock, l = link

• Prepend a line with “owner” keyword to
only allow UID of the process

profile docker-nginx
flags=(attach_disconnected,mediate_deleted) {

/etc/ld.so.cache r,
/etc/nginx/conf.d r,

/run/nginx.pid rw,
/var/cache/nginx/** rw,

… etc
}

App 1

Bins/Libs

App 2

Bins/Libs

App 3

Bins/Libs

Docker Daemon

Host

80 443 8080

22

www.digia.com

Thank you!

