Docker Security

Mika Vatanen
13.6.2017

About me

* Mika Vatanen, Solution Architect @ Digia
e 18 years at the industry, 6 months at Digia

e Established ii2 —a Finnish MySpace, top-5 most used web service in Finland between 2006-
2008

 Wide interest in different new technologies. Always very keenly interested on IT security

Today’s speak

 How does Docker change security landscape?
* What attack vectors are there on Docker. How does Docker handle security?

* How to increase Docker security

Why is Docker security important?

Docker is currently experiencing very high = (LG e U
adoption rate

@ Docker
Hakutermi

+ Vertaa

Many people are deploying on Docker Kokomasima + 2004-ryighetki ~ Kaikiluoket ~ Verkkohaku =
without considering the security
landscape

Hakumé&arét ajan mittaan @

Main reason why companies are hesitating
on switching to Docker (Forrester, 2015)

More secure, less secure?

“Gartner asserts that applications
deployed in containers are more secure
than applications deployed on the bare OS
[...] as long as a kernel privilege escalation
vulnerability does not exist on the host 0OS”

(Joerg Fritsch, Research Director, Gartner,
2016)

But...

no automated security updates

shift of security from ops to software
developers

higher risk if multiple applications are run
in shared servers

Docker Structure

Writable container)

D,
D,
g

Docker hub image vulnerabilities

* Docker Hub images contain ~180 vulnerabilities
on average. Many images have not been
updated for hundreds of days

* Asecurity vulnerability introduced at lower
layers is propagated into all dependent layers

* Source: A Study of Security Vulnerabilities on
Docker Hub, Shu et al. 2017

Image Type Total Number of Vulnerabilities

5 Images | Mean Median Max Min Std. Dev.
Community 352,416 199 158 1,779 0 139
Community :latest 75,533 196 153 1,779 0 141
Official 3,802 185 127 791 0 145
Official :latest 93 76 76 392 0 59

> Baselayer of an image
Q Middle layer of an image

¢ Toplayer of an image

1 Dependency relationship

glassfish:latest i

Lr

B

java:latest

corbel/rem-acl:latest

'd g pypy:latest

T
S=
ey

debian:latest

Base layer

(a) Tmage dependency graph example

buildpack-deps:latest

(+) New vulnerahilities
(=) Unpatched vulnerabilities
() Patched vulnerabilities

© (%) CVE-2015-8874
© (%) CVE-2016-3739
. (=) CVE-2015-5276
| (7) CVE-2015-4844
. (-) CVE-2016-3105
© (-) CVE-2008-4108

i deps:latest

© () CVE-2015-4844
. (<) CVE-2015-5276
. () CVE-2016-3105
© () CVE-2014-9761

© CVE-2014-9761
. CVE-2015-5276
CVE-2015-8842

(b) Vulnerability propagation results

Container <

Docker architecture

App 1

Bins/Libs

App 2

App 3

Bins/Libs

Docker Daemon

Host

Possible attack vectors

Getting into a container
Software from unreliable
sources Removing traces of an attack
Old versions of software * Removal of local logs
A vulnerability in the
application

App 3
Negatively affecting
other services
Bins/Libs * Slowing down the
Extending an attack server / eating

* To other hosts (network) resources

* To other containers Crashing the server
* To Docker daemon Docker Daemon

* To host

Docker secu

NET
CUBE

How does Docker handle security?

* Kernel namespaces

e Control Groups

e Kernel capabilities

* Isolated file system (base image +
[writable] container)

Apparmor, seccomp

Ulimits (in container startup, or global per-
container config)

User namespaces (map uids inside
containers to an uid-namespace outside
containers)

Kernel namespaces

e Linux kernel feature for isolating and virtualizing system resources

 When a container is started, Docker creates a set of namespaces for that container.
Processes inside a container see only these namespaces (and no system artifacts)

 Examples: pid (process isolation), net (network isolation), ipc (interprocess
communication), mnt (mount points), uts (unix timesharing system)

 Namespace support in Linux kernel since 2008, tested and mature code

Control groups (cgroups)

e Linux kernel feature. In kernel mainline since 2008
e Possibility to limit, account and isolate resource usage
* Applied when starting a container (docker run flags, or in docker-compose file)

* CPU, memory, max pids count, (network, disk 1/0)

Kernel capabilities

Traditional UNIX systems have privileged
processes (uid 0, root) and unprivileged
processes (uid != 0, non-root). Root
processes bypass all kernel permission
checks

From kernel 2.2. onwards, root
permissions can be split into more gradual
list of capabilities

In practice, if one gets into a container,
limited capability possibilities make it
harder to extend an attack

Docker grants by default: SETPCAP,
MKNOD, AUDIT_WRITE, CHOWN,
NET_RAW, DAC_OVERRIDE, FOWNER,
FSETID, KILL, SETGID, SETUID,
NET_BIND _ SERVICE, SYS_CHROOT,
SETFCAP

Not granted, for example: SYS_TIME,
SYS RAWIO, NET_ADMIN, SYS_PTRACE

http://man7.org/linux/man-
pages/man7/capabilities.7.html

A shared Kernel

* Host and Docker containers share the same kernel

e Risk factor: if the kernel contains a vulnerability, and code in a container can access it, easy
to extend an attack

* Important to keep the kernel updated

ty

securi

Increasir

Different layers of security

Docker image building (e.g. Dockerfile and processes)

Docker runtime (docker run, docker-compose or similar)

Docker Engine

Docker host

Docker image hardening

What do we want to achieve?

e Limit the possibility of getting into a
container

e Limit tools and possibility of using external
tools for extending the attack

Docker Daemon

* Have a standardized way for creating and
maintaining images

Docker image / tech recommendations

* Do not run software as root. Create an e Build always on a fresh base image (e.g.
user instead (or use user namespaces) docker pull [image] before build)

* Prepare software so that root is mounted * Use minimal base image (for example
as read-only (and use tmpfs with limits for alpine)
run files)

When downloading software, check for
* Do not trust community images (even with checksums
public Dockerfile) on Docker hub. Build
your images on official base images

Docker image / tech recommendations cont.

* Use specific versions (e.g. “FROM e Add a HEALTHCHECK command for
node:7.7.2-alpine instead of node:latest) orchestration

* Do not store secrets to Dockerfiles. Use * Do not install unnecessary software (e.g.
docker secrets instead (ENV —variables are for debugging or testing purposes)

a bad practice, may leak information)

Docker image / policy recommendations

* Create hardened docker-compose.yml &
Dockerfile templates to be distributed for
software projects

* Review changes to Dockerfiles by a
security/ops-knowledgeable person

* Make sure that when image is built later
on, it’ll be exactly the same as before

Use a Cl pipeline to build Docker images

Install a system to scan for vulnerabilities
at Docker images (ecosystem still partially
forming, multiple tools)

Docker runtime

e Use docker-compose instead of manual
docker run commands

* Multiple benefits; e.g. container linking,
private network generation

e Add default flags: drop unnecessary
capabilities, limit new privileges (no-new-
privileges), set memory limit, limit cpu
usage when needed, set read-only flag

version: '2.1'
services:

mongo-test:
image: mongo:3.4.4
security_opt: ['no-new-privileges"]
cap_drop: ["all"]
cap_add: ["SETUID", "SETGID", "CHOWN"]
mem_limit: 256m
cpu_shares: 1024
read_only: true

tmpfs:

- "/run:rw,noexec,nosuid,size=128k"

- "/tmp:rw,noexec,nosuid,size=10M"
volumes: ["/srv/mongo-data-test:/data"]

Docker host & engine recommendations

e Keep host kernel updated!

e Use centralized logging with Docker log App 3
drivers (remote syslog, splunk, gelf, etc)

Bins/Libs Bins/Libs

* Deny internal container communications
(icc=false) Docker Daemon

* Keep Docker updated

* Note that users who control docker
daemon (belong to docker group)
effectively have a root on host

Apparmor & seccomp

Linux Kernel security features, good for
enhanced security. Supported by Docker
since 2014 (apparmor) and 2016
(seccomp)

Benefits: alleviate the risk of getting into a
container, reduce the risk of extending an
attack

Still a bit of hassle to set up. Seccomp not
available in Swarm mode (see
moby#25209) or in Kubernetes
(kubernetes feature #135). Kubernetes has
beta-level apparmor support

Apparmor

App-specific profiles that restrict program
capabilities such as file permissions and
network access

Initial release 1998 by SUSE, supported by
Canonical since 2009. Not enabled by default
in RedHat based distros

Seccomp

seccomp = SECure COMPuting with filters

Allows filtering of kernel syscalls that an
application can make

By Andrea Arcangeli, 2005. Available by
default in most Linux systems

Seccomp

Mitigates the risk of shared kernel
between host and containers

Limit the available syscalls only to the ones
needed by a container

If a process in a container accesses denied
syscall, it’ll get SIGKILL

Profile is in JSON format. Use strace to get
list of all syscalls

Application

1/O

System call interface

Kernel

Seccomp (cont.)

Docker has a default seccomp profile that
limits some available syscalls

S docker run —security-opt no-new-
privileges —security-opt
seccomp=profile.json hello-world

Preferably in docker >=1.13, might need to
add docker-specific syscalls in lower
versions

See moby/moby repo issues #22252,
#24661

Apparmor

* Mostly in Debian based OS’es
e Used mainly for per-file permission limits

* r=read, w=write, a =append, x =
execute, m = memory map executable, k =
lock, | = link

* Prepend a line with “owner” keyword to
only allow UID of the process

profile docker-nginx
flags=(attach_disconnected,mediate_deleted) {
/etc/ld.so.cacherr,
/etc/nginx/conf.dr,

/run/nginx.pid rw,
/var/cache/nginx/** rw,

... etc

Bins/Libs

App 2

Bins/Libs

App 3

Bins/Libs

Docker Daemon

