
OWASP German Chapter 
Stammtisch Initiative/Ruhrpott

Android App Pentest Workshop 102



About
• What we try to cover in the second session:

– MITM attacks

– Understanding smali code

– Removing smali code

– Adding smali code

– JNI (Java Native Interface)



Setup
• You will need the following:

– A laptop or any hardware that can run a VM

– VM: Ubuntu 16.10 Yakkety(64bit).vdi

– Android VM: Android-x86.5.1 rc1.vdi

– Virtualbox (recommended)

– Internet connection to google up things

DL: https://drive.google.com/drive/folders/0BwhtuArcTcxMWlhvTW5SYkFsbWc

https://drive.google.com/drive/folders/0BwhtuArcTcxMWlhvTW5SYkFsbWc


Attended last session?

Follow the instructions at 
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest/b
lob/master/CHANGELOG.md

https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest/blob/master/CHANGELOG.md
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest/blob/master/CHANGELOG.md
https://github.com/OWASP-Ruhrpott/owasp-workshop-android-pentest/blob/master/CHANGELOG.md


Recap - Session 1

• Setup of a Mobile Application Pentest Environment
• Basics of Mobile Application Pentests
• Common issues in Mobile Applications



Man In the Middle Attacks



How to MITM

• There are many way to redirect traffic



How to MITM

• There are many way to redirect traffic
– Layer2 attacks
– Redirect via iptables on a router/switch
– Android proxy settings (not working in VM)
– etc.



Task – Basic HTTP Request
• You will find iptables rules in /sdcard/Download/proxy.iptables

iptables -t nat -A OUTPUT -o eth0 -p tcp --dport 80 -j DNAT --to 10.13.13.102:8080

• Start HTTP server: sudo python ~/Resources/http/http.py

[10 min]



Basic HTTP Request – Commands
Command Comment
iptables -t nat -A OUTPUT -o eth0 -p tcp --dport 80 -j DNAT --to 10.13.13.102:8080 Traffic redirection

Start Burp with a proxy listening on Port 8080

Open android application and submit HTTP request

View Burp Logs



Task - Basic HTTPS Request
• This time the application uses a SSL/TLS secured connection
• Modify your iptables
• Start https server: sudo python ~/Resources/https/https.py

Can you still intercept the traffic? 

[10 min]



Basic HTTPS Request – Commands
Command Comment
iptables -t nat -A OUTPUT -o eth0 -p tcp --dport 443 -j DNAT --to 10.13.13.102:8080 Traffic redirection

Start Burp with a proxy listening on Port 8080

Import Burp CA into android VM

Open android application and submit HTTPS request

View Burp Logs



Task – SSL Pinning
“Pinning is the process of associating a host with their expected X509 
certificate or public key. Once a certificate or public key is known or seen for a 
host, the certificate or public key is associated or 'pinned' to the host. ”

Hint: You do not have to modify the source code!

[10 min]



SSL Pinning – Commands
Command Comment
iptables -t nat -A OUTPUT -o eth0 -p tcp --dport 443 -j DNAT --to 10.13.13.102:8080

Replace assets/owasp.crt with Burp certificate

Import Burp CA on android VM

Open android application and submit HTTPS request

View Burp Logs



Introduction to smali code

• We will not discuss all kind of syntax elements
• But we will discuss enough to get you prepared for the next tasks







any of static, private, or constructor



none of static, private, or constructor



any of static, private, or constructor

none of static, private, or constructor



Registers are used for storing. Starts with 0, can be up to 15 [some 
„move“ instructions can use other, too]



Registers are used for storing. Starts with 0, can be up to 15 [some 
„move“ instructions can use other, too]



Some more about registers
• Further information: https://github.com/JesusFreke/smali/wiki/Registers

https://github.com/JesusFreke/smali/wiki/Registers


20/01/20
17



Primitive Types
Symbol Type

V void - can only be used for return types

Z boolean

B byte

S short

C char

I int

J long (64 bits)

F float

D double (64 bits)



Some more about types
• Further information: 

https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields

https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields


Even more links
• https://github.com/JesusFreke/smali/wiki

• https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

• https://source.android.com/devices/tech/dalvik/index.html

• http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html


Task –Root Detection Bypass



Root Detection Bypass – Commands
Command Comment
java -jar apktool_2.2.0.jar d <AppName> Decode apk

Browse to decompiled code and open .smali file Open file with your favourite editor

Change e.g. file path, delete check or change if statement Modify smali code

java -jar apktool_2.2.0.jar b ./app-debug Rebuild

keytool -genkey -alias mystore -keyalg RSA -keystore KeyStore.jks -keysize 2048 Create keystore (needs to be done only once)

jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore <name> <apk> 
<alias> -storepass <pw>

Sign apk - othervise you wouldn’t be allowed to install

adb uninstall <app> Uninstall old version

adb install <apk> Install new version



What about new code?
• Sometimes you want to extend the code with your own, e.g. logcat 

messages

const-string v0, “owasplog"
const-string v1, “Hello"
invoke-static {v0, v1}, 
Landroid/util/Log;->e(Ljava/lang/String;Ljava/lang/String;)I



The “simple” way
• We want to avoid writing our own smali code
• We can use Java2Smali (https://github.com/ollide/intellij-java2smali) 

which is an Android Studio plugin

https://github.com/ollide/intellij-java2smali


Task - Secure Encryption

• Add your own log messages to the application
• Understand the encryption/decryption process
• Break it!



Secure Encryption

• Cipher text AxoYZ2hsHi1VVSE5MEdbJG0LQVA+PTZATGw/NldTPw 
(base64)

• Based on android.os.Build.ID
• Cipher text XOR android.os.Build.ID



Java Native Interface

“The Java Native Interface (JNI) is a programming framework that enables 
Java code running in a Java Virtual Machine (JVM) to call and be called by 
native applications (programs specific to a hardware and operating system 
platform) and libraries written in other languages such as C, C++ and 
assembly.” https://en.wikipedia.org/wiki/Java_Native_Interface



Risks that come with JNI

• Vulnerabilities that do not occur within JAVA such as Buffer Overflows

=> Android itself has protections/mitigations against those



Task - Library Call

Your task is to extract the library and build your own project which can use 
the library!



Library Call – Commands
Command Comment

adb pull /data/app/ruhrpott.owasp.com.vuln_app_1 . Download apk + library folder

strings ./lib/x86/liblibcall.so | grep -i java Retrieve name of function and namespace

Create new Android Studio project with same 
namespace as apk

Create same class and function name

Load Library

https://developer.android.com/ndk/samples/sample_
hellojni.html

https://developer.android.com/ndk/samples/sample_hellojni.html
https://developer.android.com/ndk/samples/sample_hellojni.html
https://developer.android.com/ndk/samples/sample_hellojni.html


END OF SESSION 2



Other CTF Challenges

https://drive.google.com/drive/folders/0B_nKK17ymHGpUF9uR1BWRWNC
bU0?usp=sharing (goo.gl/LKJRPT) 

https://drive.google.com/drive/folders/0B_nKK17ymHGpUF9uR1BWRWNCbU0?usp=sharing
https://drive.google.com/drive/folders/0B_nKK17ymHGpUF9uR1BWRWNCbU0?usp=sharing
https://drive.google.com/drive/folders/0B_nKK17ymHGpUF9uR1BWRWNCbU0?usp=sharing

