
Smartphones, App-stores and HTML 5

ENISA work on Smartphones and App stores and HTML 5 security

Dr Giles Hogben

Programme Manager, Secure Applications and Services

European Network and Information Security Agency

• Supports EU institutions

• Facilitator of information
exchange between EU
institutions, public
sector & private sector.

• Collecting and analysing

• Promoting best practice

• Raising awareness

ENISA

2

Smartphones

• Sensors: Precise position, Camera,
Mic, Acceleration, Orientation,
Magnetic field, Temperature, ….

• Full internet access through a
standard browser

• Computer in your pocket – high-
powered processor.

• Download third party applications
from “marketplaces”.

5

6

7

8

9

10

11

Talk outline

• ENISA’s Smartphone report

– Top 10 Risks

– Opportunities

– Recommendations

• Secure Smartphone Dev Guidelines Project

• App-store security

• HTML 5 + security analysis preliminary results

12

• Group of 30 security/smartphone
experts

– All big smartphone platform vendors
(except one)

– Standards bodies (e.g. GSMA)

– Governmental IT departments
(ministries)

– Corporate IT departments (banks,
telcos)

Report Contributions

13

• Risks are rated in three usage scenarios

– Consumer usage

• Daily life, social networks, emails, games.

– Employee usage

• Business phone, corporate email, some
workflow apps.

– High official or aide

• Business phone, corporate email,
sensitive data.

• Important: Cross-over from one scenario to
another is common (daily, weekly or ad-hoc).

Risks in different usage scenarios

14

1. Device loss leading to data leakage

2. Improper decommissioning

3. Unintentional data disclosure

4. Phishing attacks

5. Spyware

6. Network spoofing attacks

7. Surveillance attacks

8. Diallerware

9. Financial malware

10. Network congestion

10 information security risks

15

• Smartphones are full of sensitive (corporate) data
and carried around.

• Not always auto-locked and password-protected.

• Encryption schemes are sometimes insecure.

– E.g. iOS3 disk encryption has flaws.

• UK government survey:

– 2% reported their mobile phone was
 stolen last year

1.Device loss -> data leakage

16

• Smartphone is loaded with personal data, with sensors
and network interfaces.

• Collecting meaningful consent is difficult

• Covert channels

– Photos may contain location data

– Address book may contain private data

– “I can stalk u” (smartphone version of “Please rob me”)

• Interface to privacy and security settings is not easy

2.Unintended disclosure of data

18

• Decommissioning PC’s is common, not yet for smartphones.

• By 2012 100 million phones will be recycled per year.

– In a recent study, 26 mobile phones were bought second-hand on eBay

– 1 from a senior sales director

– 2 with “embarrassing details of personal nature”

– 4 allowed to identify the owner

– 7 allowed to identify the owner's employer

3.Attacks on decommissioned phones

19

• Phishing is a big problem

• On smartphones

– Trust cues are harder to find or absent

– Phishing apps can be used

– Attackers can phish using SMS, or bluetooth

• SMiShing: SMS from your bank asking to confirm or cancel a purchase, by
visiting a site or calling a number.

4.Phishing

20

• Taintdroid: “Half of apps studied share location
information and unique identifiers with advertisers.”

– Phone number, device ID’s, IMSI, ICC-ID, Location data

• S-Mobile study: “70% of 50.000 apps suspicious. “

• iPhone keyboard cache and addressbook are by
default accessible to apps. And other files with
private data.

5.Spyware

21

• Mobility in the network sense

• Network spoofing at airports e.g.

• Should be prevented by SSL but...
most users skip warnings.

• Worked at Blackhat

– Blackhat 2009 SSL downgrade

• But people can’t do without hotspots.

– Hackers too: Blackhat 2010 Fake GSM basestation

6.Network spoofing

22

• Smartphones for keeping someone under surveillance.

• Android app Tap snake is a frontend for GPS spy.

• Any method: Unintentionally disclosed data, steal phone, network
spoofing, phishing...

7. Surveillance attacks

23

• Unauthorized access to premium number or sms

– Premium SMS services

– Pay through SMS schemes

– In app purchases

• Quick money (ask telco's)

8.Mobile diallerware

24

• Every bank is going “app” now

• Phishing banking apps on Android market

• Example: Zeus in the Mobile (SymbOS/Zitmo)

• Undetected by anti-virus software

9. Banking malware

25

• Attacker steals online username and password using a
malware (ZeuS 2.x) and get’s the user’s mobile number by
phishing.

• Attacker infects the smartphone by sending an SMS with a
link to Zitmo. The user must accept (‘Nokia update’).

• Attacker logs in with the stolen username and password,
using the user's PC as a proxy and performs a banking
transaction.

• An SMS is sent to the smartphone with the authentication
code. Zitmo intercepts the SMS and sends it to malware
authors.

• The SMS is never displayed on the victim's phone.

• Attacker fills in the SMS code and completes transaction.

http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-
threat/

Using Zitmo

26

http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/
http://www.isarg.in/blog/2011/02/23/zitmo-the-new-mobile-threat/

10. Network and signalling overload

• Signalling overload: Typical smartphone 8 X
more signalling traffic than a laptop with a
USB dongle .

• Data capacity overload: 39 fold increase
between 2009 and 2014 (Cisco).

• BUT - In Europe, Analogue TV spectrum
and spectral efficiency gains will help a lot!

• Developers should design software
accordingly – esp for flash events.

Talk outline

• ENISA’s Smartphone report

– Top 10 Risks

– Opportunities

– Recommendations for IT officers

• Secure Smartphone Dev Guidelines

• App-store security

• HTML 5 + security analysis preliminary results

28

1. Sandboxing and capabilities

2. Controlled software distribution

3. Remote application removal

4. Backup and recovery

5. Extra authentication options
E.g. smartphone as OTP generator.

6. Extra encryption options
E.g. end-to-end voice encryption.

Information security Opportunities

29

Talk outline

• ENISA’s Smartphone report

– Risks

– Opportunities

– Recommendations

• Secure Smartphone Dev Guidelines

• App-store security

• HTML 5 + security analysis preliminary results

30

• Recommendations are risk-based, addressing the highest risks first.

• Incremental (mostly) from E to H.

• We urge IT administrators to issue advice regarding consumer usage.

• Recommendations for IT administrators are in the form of policy rules.

• Top three recommendations:

– Turn on auto-lock

– Encrypt data on your phone

– Install only apps you trust

• Follow-up – secure smartphone development guidelines.

Recommendations

31

Sample recommendation

32

Talk outline

• ENISA’s Smartphone report

– Risks

– Opportunities

– Recommendations

• Secure Smartphone Dev Guidelines

• App-store security

• HTML 5 + security analysis preliminary results

33

Secure Smartphone App Dev Guidelines

• ENISA/OWASP project follow up on top 10 risks

– Risk based

• Secure design principles

• Controls

• Platform specific how-tos how-not-tos, common errors
and vulnerabilities.

• Code (on how to implement common controls), how not-to
app (mobile version of WebGoat).

• Open source libraries - mobile version of ESAPI

How to get involved

• Wiki is here:
– Project outline:

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-
_Secure_Development_Guidelines

– Controls and principles:

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-
_Top_Ten_Mobile_Controls

• We need
– Reviewers for design principles and controls (still time to

contribute too)
– Drafters and contributors for platform-specific how-tos and

how-not-tos (from July)
– Open source libraries

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Secure_Development_Guidelines
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Secure_Development_Guidelines
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Secure_Development_Guidelines
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Secure_Development_Guidelines
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Controls
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Controls
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Controls
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Controls
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Controls

Talk outline

• ENISA’s Smartphone report

– Top 10 Risks

– Opportunities

– Recommendations

• Secure Smartphone Dev Guidelines

• App-store security

• HTML 5 + security analysis preliminary results

36

37

App stores
(10 Billion apps downloaded from Apple’s app store, e.g.)

Walled gardens: A new (old) way of
distributing software

• Apple app-store

• Android market

• Google chrome store

• Mozilla store

• Windows phone seven

• Linux repositories

• Amazon app-store

• …..

39

40

I1: App

developer

App +

 metadata

I2: WG

controller

Approval of app

MP2: Package

and store app

MP1:

Acceptance

check

D1: App store

App +

metadata

Apps +

metadata +

reputation

P6: Show

apps and

reputation

Apps + metadata

+ reputation

P7: Show

updates and

revocations

Comment or

complaint

App

D2: Local

apps

P9: Browse

and download

apps

App

I3: Device

user

Approval for install

or update

App ID

App

MP4: Run app

P10: Periodic

app check

P4: Revoke

app

App ID

P3: Delete

app

Comment or complaint

about app

P8: Submit

comment or

complaint

Trackrecord

and reputation of apps

App ID

App ID

D3: Local data

Read data
Write data

MP3: Install,

uninstall apps

New app

Approval for install

 or uninstall

Updated

app

P1: Submit

app

P2: Update

app

App

App

P5: Monitor

trackrecord

and reputation

of apps

App IDs of revoked

or updated apps

App ID

App metadata, comments,

complaints,

download numbers

App ID

App-store dangers

• Update processes – slow and
cumbersome, vulnerable to attack.

• Spoofed apps (e.g. banking, recent
Android attacks) can piggy-back
reputation.

• Malicious apps can circumvent
walled garden defences through:
– Runtime interpreters
– Elevation of privilege (through permissions

fatigue)
– Errors in vetting.

App-store dangers

• Federation (Amazon, Google,
etc…) -> jailbreaking or
voluntary opening of the
garden.

• Misplaced sense of trust – in
review process/reputation
system
– maybe the app-store does not

promise any security checks at
all.

Example incident 1

• DroidDream was hidden in look-alike versions of
popular apps on the marketplace (piggybacking
on their reputation).

• In a matter of days, there were around 200.000
downloads.

• Following the attack, Google released an
"Android Market security update"

• Immediately after this, researchers found
malware versions of the Android security update
(with a virus called Android.Bgserv) in third-party
Android markets.

http://www.net-security.org/malware_news.php?id=1648
http://www.net-security.org/malware_news.php?id=1648
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://www.symantec.com/connect/blogs/androidbgserv-found-fake-google-security-patch-part-ii

• Malware disguised as popular
apps (super guitar solo e.g.).

• 200.000 downloads within days.

• Google used the kill-switch

• Google’s security patches were
re-posted with malware in them.

Droid Dream

45

46

Walled gardens: The 5 layers of
defence

Kill Switch

Remove
software

Reputation

Vet software

Identify
developers

Thoughts on Kill switches

• Benefits
– Fix the problem when the malware is already

in the wild.
– In many ways this is what we need for

malware – bot-hunters love it.

• Risks
– False positives and market-driven kills
– Access to the user’s device may be against

legislation on access to computer systems.
– May violate security policy in high-assurance

cases
– Only covers malicious apps – what about

other software flaws – e.g. pdf reader.

Talk outline

• ENISA’s Smartphone report

– Risks

– Opportunities

– Recommendations

• App-store security

• Secure Smartphone Dev Guidelines

• HTML 5 + security analysis preliminary results

50

W3C specifications in scope

HTML5 Security Analysis 51

• HTML 5 specification
• Cross-origin messaging specification

– XML Http Request levels 1 and 2
– Uniform Messaging Policy
– Cross-Origin Resource Sharing
– HTML5 Web Messaging

• Device API specifications
– Media Capture API
– System Information API
– Permissions for Device API Access
– Device API Privacy Requirements
– Web Storage
– Geolocation API Specification

• Widget specifications
– Widget Access Request Policy
– Digital Signatures for Widgets

In collaboration with

Scope of the analysis

HTML5 Security Analysis 52

• Attacker model
– Web attacker - controls malicious

website(s)
– Gadget attacker - controls malicious

gadget, embedded in an integrator page.

• Focus on:
– Cross-origin, multi-provider applications
– Persistent client-side storage
– Integration of device APIs
– What can be fixed within the spec
– Risks to end-users (whether the spec is

fixed or not)

• Out of Scope:
– HTML x<5 web security problems (such as

XSS, SQL/code injection, session
management) are out of scope

1

*Based on attacker types used by Barth et al. in ‘Securing frame communication in browsers’ (USENIX Security Symposium 2008)

Model

HTML5 Security Analysis 53

Application Cache

Web Storage

External Communication
(CORS, UMP, XHR 1+2)

Device “Sensor” API
(Sysinfo API, Geolocation, …)

Media API

Inter-Window Communication
(Web messaging, window

navigation, descendant policy)

UI
(User input, output rendering)

Window
(Origin, Location,

history, document)

Event Handlers DOM

Sandbox

Methodology

HTML5 Security Analysis 54

• Iterative and repeatable process

– Applied to the 13 specifications in scope

– 1000+ pages of specification!

• 3 step analysis

– Summary of security-relevant features in spec

– Threat analysis of specification in isolation

– Cross-specification analysis results

• 4 security questions drive analysis

Four security questions

HTML5 Security Analysis 55

1. Are core security-relevant aspects of new capabilities
secure, well-defined?
-privacy problems, unprotected features, …

2. Do the new specifications violate isolation properties
between origins or restricted contexts?
-sandboxes or private browsing mode

3. Is the new specification consistent with other
specifications?
-Permission management, access control, …

4. How do security-relevant aspects of the specification
rely on correct user security decisions?

3-step analysis

HTML5 Security Analysis 56

• Step 1: Security-focused study of the specification in
isolation:
– Capabilities: functional capabilities offered by the spec

• e.g. establish a message channel with another browsing context

– User Involvement: how and when is the user involved in
granting access
• e.g. give consent for an origin to access location information

– Security/privacy considerations: both explicit and implicit
considerations
• Explicit: e.g. image capture is only possible with explicit permissions

• Implicit: e.g. an established message port cannot be passed to other
origins

Step 2: Identification of specification-specific
threats and underspecified behavior

• Example threat: retrieving the timing of
location events from location cache via binary
search.

• Example under-specification: requirements for
browser behavior when asking permissions

Step 3: identification of cross-
specification issues:

• Inconsistencies between the specifications

• Interaction of features across specifications

– E.g. Operation in restricted contexts (sandbox or
private browsing mode)

Analysis results

HTML5 Security Analysis 59

Well-defined /
Secure

Isolation
Properties

Consistency
User

Involvement

HTML5 6 3 2 2

Web Messaging 1 2

XMLHttpRequest 1 + 2 1

CORS 2 1

UMP

Web Storage 3 1 1

Geolocation API 4 1 3 1

Media Capture API

System Information API 2 1 1 2

Widgets - Digital Signatures 2

Widgets - ARP 2 1

Total 21 9 7 8

Analysis sample: Geo-location API

HTML5 Security Analysis 60

• Capabilities:

– Access to the current location

– Both one-shot and monitoring

• Security and Privacy Assumptions

– Consent is required!

– Spec already explicitly mentions several privacy
considerations

• Recipients must not retransmit the location information

Analysis sample: Geolocation API (1)

HTML5 Security Analysis 61

• Threat: Cache Polling
– Location retrieval from cache can be forced

Using a maxAge attribute, the age of the location
can be determined

• Underspecification: Monitoring Lifetime
– The location can be monitored with a “watch

process”

– This process can be canceled

Does it disappear if the document no longer
exists?

Analysis sample: Geolocation API (2)

HTML5 Security Analysis 62

• Underspecification: Behavior in restricted
contexts

– Can sandboxed document request location?

• Which origin is used in the consent UI?

• Can the permission be stored?

– Private browsing mode?

• Are stored permissions valid?

• If a permission is obtained in private browsing mode,
can it be stored?

Analysis sample: Geolocation API (3)

HTML5 Security Analysis 63

• User Involvement: Permission management

– UI elements

• The UI has to mention the origin

The UI does not have to indicate the nature of the
permission (one-shot or monitoring)

– Long-term permission management

• Vaguely specified: “should be easily revocable”

• In practice: non-intuitive implementation

Non-Intuitive Implementation (Firefox)

Conclusions 1.
Controlling functionality

HTML5 Security Analysis 65

• Huge set of new capabilities

– Only coarse-grained access policies for capabilities
available

• E.g. on/off switch for scripts in sandbox environments

• Newly introduced elements and attributes
increase the XSS attack surface

– E.g. The HTML5 Security Cheatsheet identifies 10+
additional HTML5 vectors

 Preliminary conclusions 2.
Under-specification and inconsistency across specifications

HTML5 Security Analysis 66

• Many issues involve under-specification and
inconsistencies

• Use in restricted context (sandbox or private
browsing mode)

– User-consent

– Consistent permission management

Preliminary conclusions 3.
Dependency on end-user and need for thorough analysis

HTML5 Security Analysis 67

• Strong dependency on end-user policing
– Both for granting access as well as long-term

permission management and cleanup

• Formal analysis helps:
– Subsets that were formally analyzed (e.g. CORS) have

substantially less defects

– Formal analysis of the full set of specifications is
however a huge effort...

– Also quite some discrepancies between specification
and browser implementations

Timelines

• HTML 5 – Late July

• App-stores –Early July

• Secure dev guidelines

– principles – 1st draft End-June

– Code- level controls, Sept.

You might also be interested in…

• Botnets: Detection, measurement,
disinfection and defence – best practice and
analysis. http://www.enisa.europa.eu/botnets

• Botnets: 10 hard questions – Analysis by
ENISA and expert group.
http://www.enisa.europa.eu/botnets-10Q

• Cloud computing:
https://www.enisa.europa.eu/act/rm/files/del
iverables/cloud-computing-risk-assessment

http://www.enisa.europa.eu/botnets
http://www.enisa.europa.eu/botnets
http://www.enisa.europa.eu/botnets-10Q
http://www.enisa.europa.eu/botnets-10Q
http://www.enisa.europa.eu/botnets-10Q
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment

Giles Hogben (giles.hogbenQenisa.europa.eu)

Secure applications and services, ENISA

https://www.enisa.europa.eu/act/application-security

Contact me

70

https://www.enisa.europa.eu/act/application-security
https://www.enisa.europa.eu/act/application-security
https://www.enisa.europa.eu/act/application-security
https://www.enisa.europa.eu/act/application-security

