. Web Application Vulnerabilities and
@A In-secure Software Root Causes:
The OWASP Top 10

Cincinnati Chapter Meeting
February 26, 2008
Marco.Morana@OWASP.ORG

OWASP

Copyright © 2008 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

http://www.owasp.or

Agenda

ol S

d

Application Security and The Medical Metaphor
Software Security From a Process Perspective
Software Security Strategy

Essential Elements For Secure Coding
Standards/Guidelines

OWASP Top Ten 2007

Security Issues, Threats, Software Root
Causes, Validations and Recommendations

Application Security And The Medical Metaphor

B Three dimensions of the application security
problem from the perspective of a sick patient
being visited by a doctor:

» Symptoms
» Risk factors
» Root causes

Symptoms, Causes and Risk Factors

B The symptoms are the insecure observed
behavior of the application against potential
vulnerabilities and exploits

B The root causes are security design flaws,
security bugs (coding errors), insecure-
configuration

B The risk factors are the quantifiable risks such
as how much damage can be done, how easy is
to reproduce the exploits, how many users are
exposed and how easy is to discover the
vulnerabilities

©

Symptoms Of Bad Application Security

m A vulnerability in my ecommerce site allows a
user to manipulate price values so a product get
purchased for a lower price

B Some of my customers credit card numbers
have been stolen and a financial fraud occurred
because of weak encryption (WEP) between POS
(Point Of Sale) terminal and branch servers

m TAXID, PII and account numbers of my
customers got stolen by hackers exploiting a
XSS of my web site via phishing attacks

How NO... I am Diagnosed a Cancer!

Do Not Panic, There is Cure!

Focus on the Root Cause: Insecure software..

... but keep a 360 degree
perspective:
People, Process and Tools

R L R
~T

—

Software Security Strategy

Y OOX A AN !.v.v "v‘v.v.v.v XX OUUUTAAAAAARA? V.v.v.v.-.v.-.v.-' N A v‘v.-.-.-.... Yoy
)) ’:‘.;.':."".' XXX XXX XXX T

'.°..ooo.o.o.o..f.?.?o?o?o?o?o-o*':.;\‘ "If your software
" security
practices are not
yet mature be
pragmatic and
start making
secure coding a
responsibility for
who builds
software in your
organization

OWASP e 9

i .":‘:"'5" o"oo’o’:'o°:':°o'ooouommmumm.om,m.
XA .’&. ,’m‘,_m‘.‘.”, XYOOUOUOOCOAMMIMAAANAA A

ealism and Responsi

\ -

360 Deg Perspective: Security in the SDLC

-
E g Requirements Design Development Testing Bn”:%';:gﬁgf_m
-
!
. E Praliminary szl_-:ur'rt'|.I _San:ur_'rtv Seoure Co d_a Sacurity churinf Eacu_ra
.E - Sottware | Requirements | Risk-Dnven | Implementation Tests Configuration | Operations
=B Rizk Engineering Design & Deployment
5 B. Analysis
i3
"
1
Ongoing 5-SDLE Activities
Metrics and Measuraments, Traiming, and Swareness
)
A
Define Define Securs Paer Code Functional Securs
Use & Security Architecturs Review Tast Configuration
Mizuzs Requiremaentz | & Dasign
Cazes Patterns Automated Rizk Driven Securs
Static and Tests Deployment
Threat Dynamic
Madealing Code Review Systems
Secunty Test Tasts
Planning Security Unit
Testz White Box
Security Tasting
Architacturs
Review Black Box
Testing
J
~
High-Level Technical Incident
Rizk Rigk Managemant
Azzazameants Azzezzmant
Patch
Managemant

10

Focus Perspective: Source Code

"In case of software products such as
web applications, no matter how you
approach the problem of insecure
software, from the cost or the
engineering perspective, the
majority of security issues are
due to coding errors.”

Baby Steps in Software Security

What do I tackle first?

Secure Coding Requirements

Describe secure coding requirements in terms of:
The common security issues (e.g. OWASP T10)
The issue type (e.g. Application Security Frame)
The security threat

The in-secure code root cause of the vulnerability
T

ne “"How to” find the vulnerability with black box
and white box testing

The secure coding requirement/recommendation
/. The risk rating (e.g. STRIDE/DREAD, OWASP)

i h e

o

©

Common Security Issues: The OWASP Top 10

B The Ten Most Critical Issues

B Aimed to educate developers, architects and
security practitioners about the consequences of
the most common web application security
vulnerabilities

m Living document: 2007 T10 different from 2004
T10

m Not a silver bullet for software security
m A great start, but not a standard “per se”

Common Security Issues: OWASP Top 10 2007

. Cross Site Scripting (XSS)

. Injection Flaws

. Insecure Remote File Include

. Insecure Direct Object Reference

. Cross Site Request Forgery (CSRF)

1
2
3
4
5
6. Information Leakage and Improper Error
Handling

7/

8

0.

1

. Broken Authentication and Session
Management

. Insecure Cryptographic Storage
Insecure Communications

0. Failure to Restrict URL Access

Common Security Issues: Top 10 Methodology

m Take the MITRE Vulnerability Trends for 2006,
and distill the Top 10 web application security
Issues

25.00% -

20.00% -

15.00% -

10.00% -
. I I
0.00%

T
U o 7} U Q H o @ coLtom ccce U U0 o< wu
£ c 2 gttﬂ oo Z .4:5 SEPE w665 g‘Ecn gEc S ow
R ® gk> £25 2H ©eFS ¥twf Zaf 3a8 p>SE
o i U g o QDE ! [o Cmwn Qoo QM@ o O

WE hec 0o n g LC SUQUT n Lo w it m 3 Cm
ac c cC O- et = Eu’mm S h o c on £ hu = e
Em o |—|E E QU E.l_-l CEB“‘C c m = Q = Q= [1s s
[- o 3 o gw e 5 0 % ¢ Ja E.: w5

o @] g Sua £ 5w £ g

(] 3 hat M c -

= i o E . g S E

— = oy - m 8

owasp @@

16

http://cwe.mitre.org/documents/vuln-trends.html

Common Security Issues: 2007 T10 vs. 2004
T10 what made it and what did not

OWASP Top 10 2007 OWASP Top 10 2004 MITRE 2006
Raw Ranking
1. Cross Site Scripting (XSS) 4. Cross Site Scripting (XSS) 1
2. Injection Flaws 6. Injection Flaws 2
3. Insecure Remote File Include (NEW) 3
4. Insecure Direct Object Reference 2. Broken Access Control (split in 2007 T10) 5
5. Cross Site Request Forgery (CSRF) (NEW) 36
6. Info Leakage and Improper Error Handling 7. Improper Error Handling 6
7. Broken Auth. and Session Management 3. Broken Authentication and Session Management 14
8. Insecure Cryptographic Storage 8. Insecure Storage
9. Insecure Communications (NEW) Discussed under 10
10. Failure to Restrict URL Access 2. Broken Access Control (split in 2007 T10) 14
1. Unvalidated Input 7
5. Buffer Overflows 4, 8,and 10
9. Denial of Service 17
10. Insecure Configuration Management 29

©

Security Threats and OWASP T10 Vulnerabilities

m Phishing

» Exploit weak authorization, authorization,
session management and input validation
(XSS, XFS) vulnerabilities

m Privacy violations

» Exploit poor input validation, business rule
and weak authorization, injection flaws,
information leakage vulnerabilities

H Identity theft

» Exploit poor or non-existent cryptographic
controls, malicious file execution,
authentication, business rule and auth checks
vulnerabilities ©

Security Threats and OWASP T10
Vulnerabilities (Cont)

m System compromise, data destruction

» Exploit injection flaws, remote file inclusion-
upload vulnerabilities

H Financial loss

» Exploit unauthorized transactions and CSRF
attacks, broken authentication and session
management, insecure object reference, weak
authorization-forceful browsing vulnerabilities

m Reputation loss

» Depend on any evidence (not exploitation) of a
web application vulnerability

©

T
A1l: Cross Site Scripting

B Issue

» A web site that gathers user input and
reflects input back to the browser

B Threats

» Attacker crafts a URL by attaching to it a
malicious script that is sent via phishing
or posted as a link on a malicious site.
The malicious script executes on the user
victim browser

Al: Cross Site Scripting - Insecure Software
Root Cause

1. import java.io.*;

2. import javax.servlet.http.*;

3. import javax.servlet. *;

4. public class HelloServlet extends HttpServlet

5. (

6. public void doGet (HttpServletRequest req,
HttpServletResponse res) throws ServletException,
IOException

7. {

8. String input = req.getHeader (“USERINPUT”);
9. PrintWriter out = res.getWriter(),
10.out.println(input),; // echo User input.
1l.out.close(),

12.}

13.}

Al: Cross Site Scripting -How to find the
potential vulnerability

m Verify whether an application or web server will
respond to requests containing simple scripts
with an HTTP response that are executed by
the user’s browser.

B The attack vector can be a script to show
sensitive information (e.g. cookie stored on the
browser) in an alert:
http://server/cgibin/testcgi.ex

e ?<SCRIPT>alert (“"Cookie”+docu
ment.cookie)</SCRIPT>

OWASP e 2

Al: Cross Site Scripting -How to find the
potential vulnerability

) 404 Not Found - Mozilla Firefox

Fil=: Edit ‘View Go Bookmarks Tools Help
Ca - - &) D [httws:fww W com/+AC)-+ADAAPE-SCRIPT-+AD7-slert(1234)+ADz- JSCRIPT-+AD?-

N Ot F ou nd https:/ /vwe. #u |

N
The recuested URL /"> 4%

T
A1l: Cross Site Scripting - Secure coding
requirements

1. Perform input data validation using white
lists (e,g, default deny) of unsafe characters
and output encoding. When using .NET make
sure that request validation is enabled as well
as HTML encoding for the content to be
displayed.

» <pages validateRequest="true" ...

/>

Server.HtmlEncode (string)

T
A1l: Cross Site Scripting - Secure coding
requirements

2. Enforce encoding in output to assure that
the browser interprets any special characters
as data and markup. HTML encoding usually
means < becomes <,

> becomes >,
& becomes &, and
" becomes "

The text <script> would be displayed as
<script> but on viewing the markup it would
be represented by <script>

©

A2: Injection Flaws —SQL Injection Example

= Issue

= Unfiltered characters that can be used for SQL
commands and use of dynamic queries

= Threat

» Malicious user constructs an input containing
malicious SQL query and supplies it in the
input variable.

» The application passes the variable without
filtering directly to the dynamically
constructed SQL query or stored procedure.

» SQL malicious query executes on the sever

©

A2: Injection Flaws —SQL Injection Attack
Illustrated

@ Attacker sends data containing SQL fragments

2

* Attacker enters SQL
fragments into a web page
that uses input in a query

gggggggg

Custom Code

Application sends
modified query to
database, which
executes it

A2: Injection Flaws-SQL Injection - Insecure
Software Root Cause

1. public List getProductsByTitleKeyWords (String[]

keywords)

2. |

3. JdbcTemplate jt = new
JdbcTemplate (getDataSource()),

4. String query = "select * from products
where "+

createCriteria (keywords) ;

5 List list = jt.query(query, new
6. ProductRowMapper()) s
7 Iterator iter = list.iterator(),
8 while (iter.hasNext()) {
Product prod = (Product) iter.next();
9. prod. setFeedback (getFeedBacks (prod)) ;
10. }
11. return list;,
12. }

OWASP e -

A2: Injection Flaws-SQL SQL Injection— How
To Find The Potential Vulnerability

B Via Penetration Testing Using Attack
Vectors
» ""(double apostrophe), (single quote)
» , (comma)
» =-='(comment)
» OR '1'="1—"(always true statement)
» aaa’; DROP TABLE Docs;-- (use semicolon to
break out the query)
B Via Source Code Analysis

» Looks for instances of dynamic queries
constructions that use statement instead of
Prepared statements

©

A2: Injection Flaws-SQL Injection - Secure
coding requirements

1. Use SQL Parameterized Queries Instead
of dynamic SQL generation: SELECT *
FROM users WHERE username="?

2. Use stored procedures to reduce the risk
of SQL injection (no SPs with dynamically
build queries! you need to pass parameters)

3. Use prepared statements such asstrongly
typed “PreparedStatement” in .NET use
“"SglCommand” with “SqglParameters”

T
A2: Injection Flaws-SQL Injection - Secure
coding requirements

4. Filter user input to remove special
characters:

A

=g\ | *?~<> () [1{}$\n\r

5. Limit write database privileges for
application’s Functional ID (no DROP
privileges!)

6. Avoid detailed error messages (e.g. SQL
Exception Information) that are useful to an
attacker

©

A3: Malicious File Execution

= Issue

» Parameter manipulations leading to command
execution

» Upload function can be used to upload
malicious scripts.

= Threats

» Arbitrary commands can be run in the
application context by the operating system

» Malicious files (e.g. script) can be executed
on the application server

©

A3: Malicious File Execution - Insecure
Software Root Cause

1.String[] cmdArray = new String[2]; //
String array to store command

2. Runtime runtime = Runtime.getRuntime (),
3. try {

4. cmdArray[0] = "cmd.exe /C" ;

5.

String fromRequest =
request.getParameter ("cmd") ;

6. cmdArray[1l] = "dir
\""+fromRequest+"\"";

7. Process process =
runtime.exec (cmdArray) ;

8. }

T
A3: Malicious File Execution — How To Find
the Vulnerability

m If a user passes the following information in the
cmd parameter:

cmd=%3B+mkdir+hackerDirectory

H At the code level:

cmdArray[0] = "cmd.exe /C" ;

String fromRequest =
“$3B+mkdir+hackerDirectory”

cemd[1] = "dir \""+fromRequest+"\"";
Process process = runtime.exec (cmd)

m Final command executed is:
cmd.exe /C “dir,; mkdir hackerDirectory”

OWASP e ”

T
A3: Malicious File Execution — Secure Coding
Requirements

1. Do not use user controllable input when
executing commands on the operating system

2. Outline all acceptable values for the user
input (white list) and reject all other values
(default deny) before executing the command

3. Verify if the specified value is appropriate
by using an hash table lookup

4. Make sure that encoded commands are
escaped before execution

A4: Insecure Direct Object Reference

m Issue

» Invalidated reference to an internal
implementation object, such as a file, directory,
database record, or key, as a URL or form
parameter

H Threats

» An attacker can manipulate direct object
references to access other objects without
authorization, unless an access control check is
in place.

©

A4: Insecure Direct Object Reference:
Insecure Root Causes

B This code can be attacked to access the file
system:

) <select name="language''><option
value="fr">Francais</option></select>
...... require once
($S_REQUEST['language’]."lang.php");

B An attacker can change the cartID parameter

to whatever cart they want:

» int cartID = Integer.parselnt/(
request.getParameter('"cartID"));

String query = '"SELECT * FROM table
WHERE cartID=" + cartID,

©

A4: Insecure Direct Object Reference: How
You Can Find If You Are Vulnerable

m Black Box Testing

» Check if user parameters can be manipulated to
access other pages without authorization or to
access objects via parameter manipulation

® White Box Testing

» Check that object references to users are
validated

» Check user entitlements to object

» Check for any trusted user controlled input when
specify filenames, paths etc

©

A4: Insecure Direct Object Reference - How
You Can Find If You Are Vulnerable

#¥- Pharmacy - Netscape
Fle Edt View Go Commuricator Help

—

_[D

R T P TR -
Back Foiwed Reload

Home Search Netscape Prnt

Security oisD

4 oy paies

" Bookmarks & Goto:[rto:/vwew.abo. com/phamacy/pee.aspTback=/phamacy/scpts asptpatientid=" |] €7 Whets Relate
| RlinstantMessage 5] WebMail &) Contact H) People H YellowPages [Downoad (4§ Channels

Prescriptions and refills delivered to your door.

pharmacy | Health Profile

*----Kelly Update Profile

Sex: Female

Birthday: 8/4/1965
Phone number. 277 77777

Address: ‘77 . Mlanta Canraig

Medical Conditions: Asthma ; High Blood Pressure

Current Medication: Ambien
e mmesen.” Update Profile

Sex: Male
Birthday: 7/3/50
Phone number.
Address : «~

home || health | beauty Jf wellness

your list | shopping bag checkout vyour account prescriptions help

patientid=*

OWASP e 39

A4: Insecure Direct Object Reference - How
You Can Find If You Are Vulnerable

$¥< Pharmacy - Netscape

Fie Edt View Go Communicator Help

2 2 3 DA 2 @ IS & @
Back Fowad Reload Home Search Netscape Prnt Security Sto » = J
:L ‘f “Bookmaks A Goto: lhltp: /wwven.abe.com/phatmacy/pre. asp?back=/phatmacy/scr dts. asphpatientid=730865 j Q,u!’ What's Related

7 RlnstantMessage @) Members [F) WebMail) Connections (&) BizJoumal & SmeUpdate [T Miktplace

-

&l pharmacy

=) Prescriptions and refills delivered to your door.

your list | shopping bag checkout | your account prescriptions help

pharmacy | Health Profile

T —, Smith

patientid=790865

Update Profile

Sex: Female
Birthday: 5/5/1970
Phone number: ~ 5
Address:: i . e e A
Medical Conditions: Pregnancy ; AIDS
Current Medication: Prozac

OWASP e 40

A4: Insecure Direct Object Reference -
Secure Coding Requirements

1. Avoid exposing direct object references
to users by using an index, indirect
reference map, or other indirect method that is
easy to validate. If a direct object reference
must be used, ensure that the user is
authorized before using it.

2. Avoid exposing your private object
references to users whenever possible, such
as primary keys or filenames

A4: Insecure Direct Object Reference -
Secure Coding Requirements

3. Validate any private object references
extensively with an "accept known good"
approach

4. Verify authorization to all referenced
objects Use an index value or a reference map
to prevent parameter manipulation attacks.

A5: Cross Site Request Forgery

H Issue:

» A CSRF attack forces a logged-on victim’s
browser to send a request to a vulnerable
web application, which then performs the
chosen action on behalf of the victim. Any
web application without a build in CSRF
control is vulnerable

H Threats:

» May direct the user to invoke logouts and
steal user credentials. In a bank application
might invoke processing requests such as
transfer of funds.

A5: Cross Site Request Forgery

Qur Web App User Hostile \WWeb App
i I !
I 1 l
| Logi |
1 gin() ,
Use() :
Navigate Tof) |
S-L
Run since already authenticated()
K- +—1

- L

v

A5: Cross Site Request Forgery- in-secure
software root causes

®m Non re-authenticated high risk transactions
<img
src="http://www.bank.com/transfer.do?frmA

cct=document. form. frmAccté&

toAcct=4345754&toSWIFTid=434343&amt=3434.
43">

B Auto-POST of confidential data

<form> <input type=''test'" name='"name"
value="John'"/> <input type='"test"
name="lastname" value="Dawson'/> <input
type="submit"/> </form>

©

A5: CSRF: How You Can Find If You Are
Vulnerable

B Check source code for forms that authorize
requests on automatic credentials (session cookies,
remember me functionality, SSO tokens)

» Auto-Posting forms
» , <iFrame> and <script>

» XMLHTTPRequests
B Some automated scanners can detect CSRF today

B Record and replay transactions, manually check for
attack vectors
»

©

T
A5: CSRF: Secure Coding Requirements

1. Insert custom random tokens into every form
and URL

<form action="/transfer.do" method="post'>
<input type="hidden'" name="8438927730"
value="43847384383"> .. </form>

Make sure there a no XSS vulnerabilities

3. Re-authenticate and perform out of band
verification when performing high risk transaction

4. Do not use GET requests for sensitive data or
to perform high risk transactions

5. For ASP.NET set ViewStateUserKey (similar
check as random token) ©

N

A6: Information Leakage and Improper Error
Handling

m Issue

» Coding errors in exception handling and error
reporting can leak information about the
application or the user

H Threats

» Detailed error handling, stack traces in
default error messages can disclose
application information

» Non generic error messages

» Error codes in URL parameters can give
insight to validation of user credentials

©

A6: Information Leakage and Improper Error
Handling

J 50L Server does not exist or access denied. - Microsoft Internet Explorer |2 x|
File Edit Wew Favorites Tools Help ﬁ
Back » = - (@ 7] 723 | Qhsearch (G Favorites SlMedia ®| By S = - R

Address I@ http:{flacalhast{Session Test 'WebForm1, aspx j G0 | Links **

Server Error in '/SessionTest' Application.

5QL Server does not exist or access denied.

Description: &n unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the errar and where it originated in the code.
Exception Details: System Data SolCliert SglException: SGL Server does not exist or access denied.

Source Error:

Line 24: I

Line 25: System.Data.SqlClient.SqlConnection conn = new System.Data.SqlClient.SqlConnection{Connectionstring);
Line 26: conn.Open();

Line 27: 1

Line 28: catch (System.Exception ex)

Source File: ciinetpubiwasarootizessiontestwebforml aspx.ce Line: 26

Stack Trace:

[SglException: SQL Server does not exist or access denied.]
system.Data.sqlClient.ConnectionPool . .GetConnection{Boolean& isInTransaction) +474
System.Data.5qlClient. SqlConnectionPoolManager.GetPooledConnection{SqlannectionString options, Booleand isInTransaction) +372
System.Data.5qlclient. SqlConnection. Open{) +384

sessionTest.wWebForml.Page_Load{Object sender, Ewentfrgs e) in c:yinetpubbwwroothsessiontestiwebforml. aspx.cs:26

[Exception: Couldn't connect to Server=dbServer;Initial Catalog=dbMName;User=EBlaine;Password=myPassword]
SessionTest.WebFarml.Page_Load{Object sender, Ewentfrgs e) 1n c:yinetpubdwaroothysessiontestiwebforml. aspx.cs:30
System.wWeb.UI.Contral . OnLoad{Eventirgs e) +67
System.wWeb.UL.Control.LoadRecursive() +35
System.web.UI.Page.ProcessRequestMain{) +750

Yersion Information: Microsoft MET Framework Yersion:1 1 4322 2407, 4SP MET Yersion:1.1 4322 2407

/|

& Dore [BEareae
OWASP 49

A6: Information Leakage and Improper Error
Handling- insecure software root cause

m Declarative setting in “web.config” file

“customErrors” set to Off and no custom re-
direct
» <customErrors mode=“Off”/>

B Error message and stack trace is displayed to
the user using “Server.GetLastError().ToString()”

» <script language=''C#" runat="server"> Sub
Page Error (Source As Object, E As EventArgs)
Dim message As String = '<font face=verdana
color=red><hl1>" & Request.Url.ToString() &
"</hl1>" & "<pre>" &
Server.GetLastError (). ToString() &
"</pre>'" Response.Write (message) //
display message End Sub </script>

A6: Information Leakage and Improper Error
Handling- How You Can Find If You Are
Vulnerable: Black Box Testing

m Force errors to verify account harvesting
vulnerabilities

» "The password you entered was not
recognized. Please enter it again

m Force errors to verify information disclosure via
exception handling:

» /[SglException (0x80131904): An
error has occurred while
establishing a connection to the
server.

©

A6: Information Leakage and Improper Error
Handling- How You Can Find If You Are
Vulnerable: White Box Testing

mJAVA

» Information leakage can occur when
developers use printStackTrace () and
getStackTrace () exception methods

m.NET

» Information leakage can occur when

developers use objects such as
System.Exception With

ApplicationException and

SystemException and Exception object
StackTrace

©

T
A6: Information Leakage and Improper Error
Handling -Secure Coding Requirement

1.

Made exception information only to be
used as debugging information that is not
part of production release code. Use
Log4jLogger to log exception error messages

securely

. Use declarative programming setting in

“web.config” file and set “customErrors” to On
and “mode=RemoteOnly”.

. Use centrailized exception handling (e.g.

structsActionMessages & ActionErrors)

Do not display specific errors that allow for
account harvesting

©

A7: Broken Authentication and Session
Management

H Broken Authentication Issues

» Weak or no authentication as well in-secure
password management, weak passwords,
remember me features and “Autocomplete”
set OFF in web forms, weak secret answer
combination for password reset

H Broken Authentication Threats

» Flaws can lead to the spoofing of the
credentials in transit, man in the middle
attacks, brute forcing of password and
guessing of passwords

A7:Broken Authentication and Session

Management
m Session Management Issues

» Failure to protect credentials and session tokens
through their lifecycle. Common issues include:

» session tokens not re-issued after
authentication

= not marked secure

= passed in clear

= passed via GET requests

= with guessable values

= remaining active after logout and idle logout.

©

A7: Broken Authentication and Session Mgmt

m Session Management Threats

» These flaws can lead tobHijacking of user or
administrative accounts, undermine authorization
and accountability controls and cause privacy
violations.

A7: Broken Authentication - insecure
software root cause

1. Http Cookie MyCookie;
2. MyCookie = Request.Cookies ["“CookiesLoginAttempts”];,
3. MyCookie.Expires=now.AddHours (10)
4. [//decrement
5. int
logInAtt=Convert.ToInt32 (MyCookie.Value.ToString());
6. CookieVal=int.Parse (MyCookie.Value.ToString()):;
7. If (CookieVal >0)
8. CookieVal-=1;,
9. //store in response cookie
1

0. HttpCookie AttemptCntCookie = new HttpCookie
(“"CookieLoginAttempts”);

11. AttemptCntCookie.Value =CookieVal.ToString()

A7: Session Management - insecure
software root cause

m Cookies with confidential information

1. Set-Cookie: userid=jdoe, expires=Thu, 01-
Jun-2006 19:16:08 GMT,; path=/

2. Set-Cookie: passSword=xXXXXXX,
expires=Thu, 01-Jun-2006 19:16:08 GMT,
path=/

B Cookies not marked Secure

» Set-Cookie: name=newvalue, expires=date; path=/;
domain=.example.org.

A7: Broken Authentication - How You Can
Find If You Are Vulnerable

H Automated Tools

» Can only identify use of weak authentication
such as basic authentication, "Autocomplete”
OFF in web forms and remember me
functionality

H Manual Test

» To identify weak passwords (complexity),
flaws in password reset/change, timeouts and
logoff functionality, use of SSL

m Source Code Analysis

» Authentication setting in configuration files
(e.g. authentication mode="Forms") ©

A7: Session Management - How You Can
Find If You Are Vulnerable

H Automated Tools

» Most of automated scanning tool can only
identify session cookies not set with secure
flag, passed via GET instead of POST and
unpredictability (e.g. CookieDigger)

® Manual Ethical Hacking with Web Proxy

» Best way to find weak session management,
session invalidation at logout and re-issuance
after authentication

m Source Code Analysis
» For flaws in user and session management

©

A7: Session Management -Secure Coding
Requirements

B Session Management

1.

® N ouUuhlw N

Consider using sessionID and manage session
on the server.

. Invalidate the existing Session ID before

authentication

Issue a new Session ID after authentication
Invalidate this Session ID on logout

Set secure flag defaults to TRUE

Pass session IDs in secure cookies instead of in
URL parameters

Use POST instead of GET when passing
sensitive parameters

Should be random (128 bit) ©

T
A7: Broken Authentication -Secure Coding
Requirements
m Authentication

1.

Do not use weak form authentication such as
BASIC or NTLM

. Ensure that SSL is used

. Ensure that logins start with an encrypted web

page

. Ensure that logouts are available in every page
. Use only shared secrets in challenge/responses

. Use trusted authentication (e.g. SSO) not
Impersonation

. Implement idle time-out ®

T
A7: Broken Authentication -Secure Coding

Requirements
m Passwords

1.
2.
3.

Enforce password complexity
Require old passwords for setting new

Use challenge/response and out of band for re-
setting passwords

Store passwords with irreversible encryption

A8: Insecure Cryptographic Storage

m Issues

» Failing to protecting sensitive data with
cryptography Failing to encrypt sensitive data
because of either using weak encryption
algorithms or short encryption keys.

» Home-grown encryption

» Failure to protect secrets such as private keys
via hard-coding and unprotected access

A8: Insecure Cryptographic Storage

H Threats
» Disclosure of customer sensitive information,

» Exposure of authentication data to
unauthorized users

» Exposure of secrets such as keys and
challenge response answers

OWASP e 65

A8: Insecure Cryptographic Storage
- Insecure software root cause

B Hard-coding of passwords

int VerifyPwd (String password) { if
(passwd.Equals ("68af404b513073584c4b6£f2

2béc63e6b")) { } return(0) return(l) ;)

m Errors when coding cryptography
public static String digest (String

password) {

MessageDigest md5
=MessageDigest.getInstance ("MD5")
byte[] hash =

md5 . update (password.getBytes ()),

return makeStringFromBytes (hash) ; }

A8: Insecure Cryptographic Storage
- How You Can Find If You Are Vulnerable

m Automated Source Code Analysis

» Can verify instances of use of unsafe algorithms
(MDS5, DES, SHA1) as well as hard-coded keys
and credentials

® Manual Source Code Analysis

» Home grown cryptography such as missing to
use salt and seed when using digests

» key sizes

» Failing to use encryption for sensitive data and
authentication data

» Weak keys and shared secrets management.

©

T
A8: Insecure Cryptographic Storage
-Secure Coding Requirements

1. Use approved algorithms

(e.g. AES, RSA, SHA-256 instead of Blowfish, RC4, SHA1,
MD5) and recommended key strength (128 bit for
symmetric and 1048 for public)

2. Encrypt authentication credentials in
storage and transit

3. Protect PII and customer sensitive data in
storage and transit as appropriate

Do not store credit card data (CVV2, magnetic strip
information) see PCI compliance

4. Store keys In secure repositories

Use HSM and secure key storage such as CryptoAPI or
Java Key Store ©

A9: Insecure Communication

m Issues

» Failure to encrypt network traffic to protect
sensitive communications.

» Not using SSL for communication with end
users as well as the back-end.

H Threats
» Identity theft, financial fraud
» Non-compliance with standards

» Loss of sensitive data such as credit card
information, bank account information and
health care information

©

A9 Insecure Communication - insecure
software root cause

B Lack of configuration of SSL on the web server
secure connection properties are not set to true.
Tomcat 3.3. default configuration example:

<Http10Connector port="8080"
secure="false"
maxThreads="100"
maxSpareThreads="50"
minSpareThreads="10" />

OWASP e 70

http://tomcat.apache.org/tomcat-3.3-doc/serverxml.html

A9 Insecure Communication
- How You Can Find If You Are Vulnerable

m Vulnerability scanning tools
» Can verify that SSL is used
» Can only verify front end not back end

» Foundstone SSL digger can verify encryption strength
(strong chipers enabled)

H Manual Test

» Old browsers such as Netscape 7.2 have custom setting
for SSL that can be used to verify SSL configuration

H Code Review

» Can verify use of API that enable SSL connection in the
back end (e.g. middle-tier and database, directories)

©

A9: Insecure Communication
- How You Can Find If You Are Vulnerable

SEL Texl B ezults

OpenSS L Cipher Hame
MLLL-M05

HMULL-SHA
EXP-DES-CHC-5Hs
ExXP-BCZ-CBC-WD &
EXP-ACA-MDS
Ex=P1024-DHE-DS5-DES-CRC-SHA
EXFP1024-DHE-DS5-H CA-SHA,
EXP1024-DE 5-CRIC-5HA
ExP1024-BC4-5HA

ADH-AFS178-5HA
ADH-AES 256 5HA

DH-DS5-AFS12A-5HA
DH-RSA-AES128-5HA

| Cipher Descriphon | Cipher Shrength
.r.E_',I Exchange: Mone; Authentication: Mone; Encrepborc Hone; MALC: DS Mo S ecuriby

Eey Exchange: Hone: Authentication: Hone: Encosplon: None)l: MAC: SHA] NoSecunly

K.y Exchanga: RSA[S1 2): Authantication: R SA: Encrpptiore DES[A0): MAC: SHAL Weak Secuny
Key Exchange: RSAISD1 2]- Authenbication: B SA: Encrepbon: RCA40E MAC: MDS ‘Weak Secuny
Key Excharnge: RSA[S1 2], Authenlication: B Sa; Encipption RCAA40) MaC- MDS Wweak Secumy

K.ey Exchangs: EQH [EXPORT - 1024); Authentication: 0 5%% ; Enciyption: DES[BE]; MAL: 5HAT Weak Secumy
Key Exchange: EQOH [EXPORT -1 024): Authenticalion: D55 : Enciwpton: BCAOE: MAT: SHAT ‘Weak Secunly
Koy Exchanga: RSA [EXPORT - 1024); Authentic ation: ASA: Encrpption: DES[EE]: MAC: SHAT Wealk 5ecuiy

K.cy Exchange: RSA [EXPORT - 1024]; Authenticabion: ASA ; Encrypbion: ACASE; MAC: MDS ‘Weak Secunly
Wweak Secumy

Key Excharnge: R5A; Authenticatiomn: R5A; Encrpption: 0 ESHRL MAC SHA1

K.ay Exchanga: ADH ; Authentication: RS A Encrpplion: AES[128]; MAL: SHAT Weak Hecunly
Key Exchange: ADH : Authentcation: BSA : Encrsphon: D ESEZGR: MAC: SHAT Weak Secunly
Ky Exchanga: DH: Authentication: 055 Enciyption: AE S[1 28} MAC: SHA Strong Securny
Koy Exchange: DH ; Authenhicabion: AS5A; Encryption: AE 51201 MAC: SHAT Strong Secunty

T
A9: Insecure Communication -Secure Coding

Requirements

1. Use SSL
B For all connections that are authenticated

B When transmitting credentials, credit card
details, health and other private information

2. Use transport layer and link layer security

B Between web servers and application servers
and back end systems and repositories

3. Address PCI compliance and privacy

You much protect credit card holder data and
PII in storage and in transit

©

A10: Failure to restrict URL access

m Issues

» URL web page access is enforced via
security by obscurity

» Failure to enforce users role base access
controls to limit access to web pages

H Threats

» A motivated, skilled, or just plain lucky
attacker may be able to predict the location
of web pages and access these pages,
invoke functions, and view data.

©

A10: Failure to restrict URL access - insecure
software root cause

m Typically this is a security flaw, server side RBAC
to set which web pages a user should be given
access to:

if (sess.getCurrentUser ().NormalUser ()) {
URLList.add (“"View Customer Details',

"/jsp/Customer.do?action=view&id=" + custId)),

WN R

} Else {//must be a super user
URLList.add (“View Customer Details",

"/jsp/Customer.do?action=view&id=" + custId)),
URLList.add (“Edit Customer Details",

"/jsp/Customer.do? action=edit&id=" +
custIld));

URLList.add (“Delete Customer',

10. "/jsp/Customer.do?action=delete&id=" +
custId)) ,

11. } ‘D

N 0 ™

O

A10: Failure to restrict URL access
- How You Can Find If You Are Vulnerable

m Automated approaches

» A scanning tool, like Nikto has the ability to
search for existent files and directories based
on a database of well-know resources

» Static analysis tools are not contextual based
and cannot find access controls in the code
and link the presentation layer with the
business logic.

A10: Failure to restrict URL access
- How You Can Find If You Are Vulnerable

® Manual approaches

» Verify the access control mechanism via
source code analysis and penetration test. By
logging on as user and super user/admin and
by forcing access to different web pages can
verify that RBAC is enforced.

A10: Failure to restrict URL access -Secure
Coding Requirements

1. Enforce Role Base Access Controls

Ensure that RBAC is enforced on the server side to
enforce which user has access to which web page

2. Do not use security by obscurity

No HIDDEN parameters to enforce which web
pages are accessible

3. Enforce white list filtering to which web
pages should be accessible

Only allow file types that you intend to serve,
block any attempts to access log files, xml files,

etc. ©

Thank You For Listening

OWASP 79

Further Reading

"Web Application Vulnerabilities And Insecure
Software Root Causes: Solving The Security Problem
From An Information Security Perspective’] In-secure

magazine, 2008 February Issue:

http://www.netsecurity.org/dl/insecure/INSECURE-
Mag-15.pdf

OWASP e 80

http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf

