
Copyright © 2008 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

OWASP

http://www.owasp.org

Web Application Vulnerabilities and
In-secure Software Root Causes:
The OWASP Top 10

Cincinnati Chapter Meeting

February 26th, 2008

Marco.Morana@OWASP.ORG

OWASP 2

Agenda

1. Application Security and The Medical Metaphor

2. Software Security From a Process Perspective

3. Software Security Strategy

4. Essential Elements For Secure Coding
Standards/Guidelines

5. OWASP Top Ten 2007

6. Security Issues, Threats, Software Root
Causes, Validations and Recommendations

OWASP 3

Application Security And The Medical Metaphor

Three dimensions of the application security
problem from the perspective of a sick patient
being visited by a doctor:

Symptoms

Risk factors

Root causes

OWASP 4

Symptoms, Causes and Risk Factors

The symptoms are the insecure observed
behavior of the application against potential
vulnerabilities and exploits

The root causes are security design flaws,
security bugs (coding errors), insecure-
configuration

The risk factors are the quantifiable risks such
as how much damage can be done, how easy is
to reproduce the exploits, how many users are
exposed and how easy is to discover the
vulnerabilities

OWASP 5

Symptoms Of Bad Application Security

A vulnerability in my ecommerce site allows a
user to manipulate price values so a product get
purchased for a lower price

Some of my customers credit card numbers
have been stolen and a financial fraud occurred
because of weak encryption (WEP) between POS
(Point Of Sale) terminal and branch servers

TAXID, PII and account numbers of my
customers got stolen by hackers exploiting a
XSS of my web site via phishing attacks

OWASP 6

How NO… I am Diagnosed a Cancer!

OWASP 7

Do Not Panic, There is Cure!

OWASP 8

Focus on the Root Cause: Insecure software..

… but keep a 360 degree
perspective:
People, Process and Tools

OWASP 9

Software Security Strategy

―If your software
security
practices are not
yet mature be
pragmatic and
start making
secure coding a
responsibility for
who builds
software in your
organization

OWASP 10

360 Deg Perspective: Security in the SDLC

OWASP 11

Focus Perspective: Source Code

“In case of software products such as
web applications, no matter how you
approach the problem of insecure
software, from the cost or the
engineering perspective, the
majority of security issues are
due to coding errors.‖

OWASP 12

What do I tackle first?

Baby Steps in Software Security

OWASP 13

Secure Coding Requirements

Describe secure coding requirements in terms of:

1. The common security issues (e.g. OWASP T10)

2. The issue type (e.g. Application Security Frame)

3. The security threat

4. The in-secure code root cause of the vulnerability

5. The “How to” find the vulnerability with black box
and white box testing

6. The secure coding requirement/recommendation

7. The risk rating (e.g. STRIDE/DREAD, OWASP)

OWASP 14

Common Security Issues: The OWASP Top 10

The Ten Most Critical Issues

Aimed to educate developers, architects and
security practitioners about the consequences of
the most common web application security
vulnerabilities

Living document: 2007 T10 different from 2004
T10

Not a silver bullet for software security

A great start, but not a standard “per se”

OWASP 15

Common Security Issues: OWASP Top 10 2007

1. Cross Site Scripting (XSS)
2. Injection Flaws
3. Insecure Remote File Include
4. Insecure Direct Object Reference
5. Cross Site Request Forgery (CSRF)
6. Information Leakage and Improper Error

Handling
7. Broken Authentication and Session

Management
8. Insecure Cryptographic Storage
9. Insecure Communications
10.Failure to Restrict URL Access

OWASP 16

Common Security Issues: Top 10 Methodology

Take the MITRE Vulnerability Trends for 2006,
and distill the Top 10 web application security
issues

http://cwe.mitre.org/documents/vuln-trends.html

OWASP 17

OWASP Top 10 2007 OWASP Top 10 2004 MITRE 2006
Raw Ranking

1. Cross Site Scripting (XSS) 4. Cross Site Scripting (XSS) 1

2. Injection Flaws 6. Injection Flaws 2

3. Insecure Remote File Include (NEW) 3

4. Insecure Direct Object Reference 2. Broken Access Control (split in 2007 T10) 5

5. Cross Site Request Forgery (CSRF) (NEW) 36

6. Info Leakage and Improper Error Handling 7. Improper Error Handling 6

7. Broken Auth. and Session Management 3. Broken Authentication and Session Management 14

8. Insecure Cryptographic Storage 8. Insecure Storage 8

9. Insecure Communications (NEW) Discussed under 10 8

10. Failure to Restrict URL Access 2. Broken Access Control (split in 2007 T10) 14

1. Unvalidated Input 7

5. Buffer Overflows 4, 8, and 10

9. Denial of Service 17

10. Insecure Configuration Management 29

Common Security Issues: 2007 T10 vs. 2004
T10 what made it and what did not

OWASP 18

Security Threats and OWASP T10 Vulnerabilities

Phishing

Exploit weak authorization, authorization,
session management and input validation
(XSS, XFS) vulnerabilities

Privacy violations

Exploit poor input validation, business rule
and weak authorization, injection flaws,
information leakage vulnerabilities

Identity theft

Exploit poor or non-existent cryptographic
controls, malicious file execution,
authentication, business rule and auth checks
vulnerabilities

OWASP 19

Security Threats and OWASP T10
Vulnerabilities (Cont)

System compromise, data destruction

Exploit injection flaws, remote file inclusion-
upload vulnerabilities

Financial loss

Exploit unauthorized transactions and CSRF
attacks, broken authentication and session
management, insecure object reference, weak
authorization-forceful browsing vulnerabilities

Reputation loss

Depend on any evidence (not exploitation) of a
web application vulnerability

OWASP 20

A1: Cross Site Scripting

 Issue

 A web site that gathers user input and
reflects input back to the browser

 Threats

 Attacker crafts a URL by attaching to it a
malicious script that is sent via phishing
or posted as a link on a malicious site.
The malicious script executes on the user
victim browser

OWASP 21

A1: Cross Site Scripting - Insecure Software
Root Cause

1. import java.io.*;

2. import javax.servlet.http.*;

3. import javax.servlet.*;

4. public class HelloServlet extends HttpServlet

5. {

6. public void doGet (HttpServletRequest req,
HttpServletResponse res) throws ServletException,
IOException

7. {

8. String input = req.getHeader(“USERINPUT”);

9. PrintWriter out = res.getWriter();

10.out.println(input); // echo User input.

11.out.close();

12.}

13.}

OWASP 22

A1: Cross Site Scripting -How to find the
potential vulnerability

 Verify whether an application or web server will
respond to requests containing simple scripts
with an HTTP response that are executed by
the user’s browser.

 The attack vector can be a script to show
sensitive information (e.g. cookie stored on the
browser) in an alert:

http://server/cgibin/testcgi.ex

e?<SCRIPT>alert(“Cookie”+docu

ment.cookie)</SCRIPT>

OWASP 23

A1: Cross Site Scripting -How to find the
potential vulnerability

Mitigate Encoded XSS Vectors!

OWASP 24

A1: Cross Site Scripting - Secure coding
requirements

1. Perform input data validation using white
lists (e,g, default deny) of unsafe characters
and output encoding. When using .NET make
sure that request validation is enabled as well
as HTML encoding for the content to be
displayed.

 <pages validateRequest="true" ...

/>

Server.HtmlEncode(string)

OWASP 25

A1: Cross Site Scripting - Secure coding
requirements

2. Enforce encoding in output to assure that
the browser interprets any special characters
as data and markup. HTML encoding usually
means < becomes <,

> becomes >,

& becomes &, and

" becomes "

The text <script> would be displayed as
<script> but on viewing the markup it would
be represented by <script>

OWASP 26

A2: Injection Flaws –SQL Injection Example

 Issue

 Unfiltered characters that can be used for SQL
commands and use of dynamic queries

 Threat

Malicious user constructs an input containing
malicious SQL query and supplies it in the
input variable.

The application passes the variable without
filtering directly to the dynamically
constructed SQL query or stored procedure.

SQL malicious query executes on the sever

OWASP 27

A2: Injection Flaws –SQL Injection Attack
Illustrated

3

Attacker sends data containing SQL fragments

Attacker enters SQL
fragments into a web page
that uses input in a query

1

Attacker views unauthorized data

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

Database
2 Application sends

modified query to
database, which
executes it

OWASP 28

A2: Injection Flaws-SQL Injection - Insecure
Software Root Cause

1. public List getProductsByTitleKeyWords(String[]
keywords)

2. {
3. JdbcTemplate jt = new

JdbcTemplate(getDataSource());

4. String query = "select * from products
where "+

createCriteria(keywords);

5. List list = jt.query(query, new

6. ProductRowMapper());
7. Iterator iter = list.iterator();
8. while (iter.hasNext()) {

Product prod = (Product) iter.next();
9. prod.setFeedback(getFeedBacks(prod));
10. }
11. return list;
12. }

OWASP 29

A2: Injection Flaws-SQL SQL Injection– How
To Find The Potential Vulnerability

 Via Penetration Testing Using Attack
Vectors
 ‗‘ (double apostrophe), (single quote)

 , (comma)

 --‗ (comment)

 OR ‗1‘=‘1—‗ (always true statement)

 aaa‘; DROP TABLE Docs;-- (use semicolon to
break out the query)

 Via Source Code Analysis

 Looks for instances of dynamic queries
constructions that use statement instead of
Prepared statements

OWASP 30

A2: Injection Flaws-SQL Injection - Secure
coding requirements

1. Use SQL Parameterized Queries Instead
of dynamic SQL generation: SELECT *
FROM users WHERE username=?

2. Use stored procedures to reduce the risk
of SQL injection (no SPs with dynamically
build queries! you need to pass parameters)

3. Use prepared statements such asstrongly
typed “PreparedStatement” in .NET use
“SqlCommand” with “SqlParameters”

OWASP 31

A2: Injection Flaws-SQL Injection - Secure
coding requirements

4. Filter user input to remove special
characters:

' " ` ; * % _

=&\|*?~<>^()[]{}$\n\r

5. Limit write database privileges for
application’s Functional ID (no DROP
privileges!)

6. Avoid detailed error messages (e.g. SQL
Exception Information) that are useful to an
attacker

OWASP 32

A3: Malicious File Execution

 Issue

Parameter manipulations leading to command
execution

Upload function can be used to upload
malicious scripts.

 Threats

Arbitrary commands can be run in the
application context by the operating system

Malicious files (e.g. script) can be executed
on the application server

OWASP 33

A3: Malicious File Execution - Insecure
Software Root Cause

1.String[] cmdArray = new String[2]; //
String array to store command

2.Runtime runtime = Runtime.getRuntime();

3.try {

4. cmdArray[0] = "cmd.exe /C" ;

5. String fromRequest =
request.getParameter("cmd");

6. cmdArray[1] = "dir
\""+fromRequest+"\"";

7. Process process =
runtime.exec(cmdArray);

8.}
…

OWASP 34

A3: Malicious File Execution – How To Find
the Vulnerability

If a user passes the following information in the

cmd parameter:

cmd=%3B+mkdir+hackerDirectory

At the code level:
cmdArray[0] = "cmd.exe /C" ;

String fromRequest =
“%3B+mkdir+hackerDirectory”

cmd[1] = "dir \""+fromRequest+"\"";

Process process = runtime.exec(cmd);

Final command executed is:
cmd.exe /C “dir; mkdir hackerDirectory”

OWASP 35

A3: Malicious File Execution – Secure Coding
Requirements

1. Do not use user controllable input when
executing commands on the operating system

2. Outline all acceptable values for the user
input (white list) and reject all other values
(default deny) before executing the command

3. Verify if the specified value is appropriate
by using an hash table lookup

4. Make sure that encoded commands are
escaped before execution

OWASP 36

A4: Insecure Direct Object Reference

Issue

Invalidated reference to an internal
implementation object, such as a file, directory,
database record, or key, as a URL or form
parameter

Threats

An attacker can manipulate direct object
references to access other objects without
authorization, unless an access control check is
in place.

OWASP 37

A4: Insecure Direct Object Reference:
Insecure Root Causes

 This code can be attacked to access the file
system:
 <select name="language"><option

value="fr">Français</option></select>

……require_once

($_REQUEST['language’]."lang.php");

 An attacker can change the cartID parameter
to whatever cart they want:
 int cartID = Integer.parseInt(

request.getParameter("cartID"));

String query = "SELECT * FROM table

WHERE cartID=" + cartID;

OWASP 38

A4: Insecure Direct Object Reference: How
You Can Find If You Are Vulnerable

Black Box Testing

Check if user parameters can be manipulated to
access other pages without authorization or to
access objects via parameter manipulation

White Box Testing

Check that object references to users are
validated

Check user entitlements to object

Check for any trusted user controlled input when
specify filenames, paths etc

OWASP 39

A4: Insecure Direct Object Reference - How
You Can Find If You Are Vulnerable

OWASP 40

A4: Insecure Direct Object Reference - How
You Can Find If You Are Vulnerable

OWASP 41

A4: Insecure Direct Object Reference -
Secure Coding Requirements

1. Avoid exposing direct object references
to users by using an index, indirect
reference map, or other indirect method that is
easy to validate. If a direct object reference
must be used, ensure that the user is
authorized before using it.

2. Avoid exposing your private object
references to users whenever possible, such
as primary keys or filenames

OWASP 42

A4: Insecure Direct Object Reference -
Secure Coding Requirements

3. Validate any private object references
extensively with an "accept known good"
approach

4. Verify authorization to all referenced
objects Use an index value or a reference map
to prevent parameter manipulation attacks.

OWASP 43

A5: Cross Site Request Forgery

Issue:
A CSRF attack forces a logged-on victim’s

browser to send a request to a vulnerable
web application, which then performs the
chosen action on behalf of the victim. Any
web application without a build in CSRF
control is vulnerable

Threats:
May direct the user to invoke logouts and

steal user credentials. In a bank application
might invoke processing requests such as
transfer of funds.

OWASP 44

A5: Cross Site Request Forgery

OWASP 45

A5: Cross Site Request Forgery- in-secure
software root causes

Non re-authenticated high risk transactions

<img

src="http://www.bank.com/transfer.do?frmA

cct=document.form.frmAcct&

toAcct=4345754&toSWIFTid=434343&amt=3434.

43">

Auto-POST of confidential data

<form> <input type="test" name="name"

value="John"/> <input type="test"

name="lastname" value="Dawson"/> <input

type="submit"/> </form>

OWASP 46

A5: CSRF: How You Can Find If You Are
Vulnerable

Check source code for forms that authorize
requests on automatic credentials (session cookies,
remember me functionality, SSO tokens)
Auto-Posting forms

, <iFrame> and <script>

XMLHTTPRequests

Some automated scanners can detect CSRF today

Record and replay transactions, manually check for
attack vectors
<img
src="http://www.example.com/logout.php">

OWASP 47

A5: CSRF: Secure Coding Requirements

1. Insert custom random tokens into every form
and URL
<form action="/transfer.do" method="post">

<input type="hidden" name="8438927730"

value="43847384383"> … </form>

2. Make sure there a no XSS vulnerabilities

3. Re-authenticate and perform out of band
verification when performing high risk transactions

4. Do not use GET requests for sensitive data or
to perform high risk transactions

5. For ASP.NET set ViewStateUserKey (similar
check as random token)

OWASP 48

A6: Information Leakage and Improper Error
Handling

Issue

Coding errors in exception handling and error
reporting can leak information about the
application or the user

Threats

Detailed error handling, stack traces in
default error messages can disclose
application information

Non generic error messages

Error codes in URL parameters can give
insight to validation of user credentials

OWASP 49

A6: Information Leakage and Improper Error
Handling

OWASP 50

A6: Information Leakage and Improper Error
Handling- insecure software root cause

Declarative setting in “web.config” file
“customErrors” set to Off and no custom re-
direct
<customErrors mode=“Off”/>

Error message and stack trace is displayed to
the user using “Server.GetLastError().ToString()”
<script language="C#" runat="server"> Sub
Page_Error(Source As Object, E As EventArgs)

Dim message As String = "<font face=verdana

color=red><h1>" & Request.Url.ToString()&

"</h1>" & "<pre>" &

Server.GetLastError().ToString()&

"</pre>" Response.Write(message) //

display message End Sub </script>

OWASP 51

A6: Information Leakage and Improper Error
Handling- How You Can Find If You Are
Vulnerable: Black Box Testing

Force errors to verify account harvesting
vulnerabilities

“The password you entered was not
recognized. Please enter it again

Force errors to verify information disclosure via
exception handling:

[SqlException (0x80131904): An
error has occurred while

establishing a connection to the

server.

OWASP 52

A6: Information Leakage and Improper Error
Handling- How You Can Find If You Are
Vulnerable: White Box Testing

JAVA

Information leakage can occur when
developers use printStackTrace() and
getStackTrace() exception methods

.NET

Information leakage can occur when
developers use objects such as
System.Exception with
ApplicationException and
SystemException and Exception object
StackTrace

OWASP 53

A6: Information Leakage and Improper Error
Handling -Secure Coding Requirement

1. Made exception information only to be
used as debugging information that is not
part of production release code. Use
Log4jLogger to log exception error messages
securely

2. Use declarative programming setting in
“web.config” file and set “customErrors” to On
and “mode=RemoteOnly”.

3. Use centrailized exception handling (e.g.
structsActionMessages & ActionErrors)

4. Do not display specific errors that allow for
account harvesting

OWASP 54

Broken Authentication Issues

Weak or no authentication as well in-secure
password management, weak passwords,
remember me features and “Autocomplete”
set OFF in web forms, weak secret answer
combination for password reset

Broken Authentication Threats

Flaws can lead to the spoofing of the
credentials in transit, man in the middle
attacks, brute forcing of password and
guessing of passwords

A7: Broken Authentication and Session
Management

OWASP 55

Session Management Issues

Failure to protect credentials and session tokens
through their lifecycle. Common issues include:

 session tokens not re-issued after
authentication

 not marked secure

 passed in clear

 passed via GET requests

with guessable values

 remaining active after logout and idle logout.

A7:Broken Authentication and Session

Management

OWASP 56

Session Management Threats

These flaws can lead tobHijacking of user or
administrative accounts, undermine authorization
and accountability controls and cause privacy
violations.

A7: Broken Authentication and Session Mgmt

OWASP 57

A7: Broken Authentication - insecure
software root cause

1. Http Cookie MyCookie;

2. MyCookie = Request.Cookies [“CookiesLoginAttempts”];

3. MyCookie.Expires=now.AddHours(10);

4. //decrement

5. int

logInAtt=Convert.ToInt32(MyCookie.Value.ToString());

6. CookieVal=int.Parse (MyCookie.Value.ToString());

7. If (CookieVal >0)

8. CookieVal-=1;

9. //store in response cookie

10. HttpCookie AttemptCntCookie = new HttpCookie

(“CookieLoginAttempts”);

11. AttemptCntCookie.Value =CookieVal.ToString();

OWASP 58

A7: Session Management - insecure
software root cause

 Cookies with confidential information
1. Set-Cookie: userid=jdoe; expires=Thu, 01-

Jun-2006 19:16:08 GMT; path=/

2. Set-Cookie: password=xxxxxxx;

expires=Thu, 01-Jun-2006 19:16:08 GMT;

path=/

 Cookies not marked Secure

 Set-Cookie: name=newvalue; expires=date; path=/;
domain=.example.org.

OWASP 59

A7: Broken Authentication - How You Can
Find If You Are Vulnerable

Automated Tools

Can only identify use of weak authentication
such as basic authentication, “Autocomplete”
OFF in web forms and remember me
functionality

Manual Test

To identify weak passwords (complexity),
flaws in password reset/change, timeouts and
logoff functionality, use of SSL

Source Code Analysis

Authentication setting in configuration files
(e.g. authentication mode="Forms“)

OWASP 60

A7: Session Management - How You Can
Find If You Are Vulnerable

Automated Tools

Most of automated scanning tool can only
identify session cookies not set with secure
flag, passed via GET instead of POST and
unpredictability (e.g. CookieDigger)

Manual Ethical Hacking with Web Proxy

Best way to find weak session management,
session invalidation at logout and re-issuance
after authentication

Source Code Analysis

For flaws in user and session management

OWASP 61

A7: Session Management -Secure Coding
Requirements

 Session Management
1. Consider using sessionID and manage session

on the server.
2. Invalidate the existing Session ID before

authentication
3. Issue a new Session ID after authentication
4. Invalidate this Session ID on logout
5. Set secure flag defaults to TRUE
6. Pass session IDs in secure cookies instead of in

URL parameters
7. Use POST instead of GET when passing

sensitive parameters
8. Should be random (128 bit)

OWASP 62

A7: Broken Authentication -Secure Coding
Requirements

 Authentication

1. Do not use weak form authentication such as
BASIC or NTLM

2. Ensure that SSL is used

3. Ensure that logins start with an encrypted web
page

4. Ensure that logouts are available in every page

5. Use only shared secrets in challenge/responses

6. Use trusted authentication (e.g. SSO) not
impersonation

7. Implement idle time-out

OWASP 63

A7: Broken Authentication -Secure Coding
Requirements

 Passwords

1. Enforce password complexity

2. Require old passwords for setting new

3. Use challenge/response and out of band for re-
setting passwords

4. Store passwords with irreversible encryption

OWASP 64

Issues

Failing to protecting sensitive data with
cryptography Failing to encrypt sensitive data
because of either using weak encryption
algorithms or short encryption keys.

Home-grown encryption

Failure to protect secrets such as private keys
via hard-coding and unprotected access

A8: Insecure Cryptographic Storage

OWASP 65

Threats

Disclosure of customer sensitive information,

Exposure of authentication data to
unauthorized users

Exposure of secrets such as keys and
challenge response answers

A8: Insecure Cryptographic Storage

OWASP 66

A8: Insecure Cryptographic Storage
- Insecure software root cause

 Hard-coding of passwords
int VerifyPwd(String password) { if

(passwd.Equals("68af404b513073584c4b6f2

2b6c63e6b")) { } return(0) return(1);}

 Errors when coding cryptography

public static String digest(String

password) {

MessageDigest md5

=MessageDigest.getInstance(“MD5");

byte[] hash =

md5.update(password.getBytes());

return makeStringFromBytes(hash);}

OWASP 67

A8: Insecure Cryptographic Storage
- How You Can Find If You Are Vulnerable

Automated Source Code Analysis

Can verify instances of use of unsafe algorithms
(MD5, DES, SHA1) as well as hard-coded keys
and credentials

Manual Source Code Analysis

Home grown cryptography such as missing to
use salt and seed when using digests

key sizes

Failing to use encryption for sensitive data and
authentication data

Weak keys and shared secrets management.

OWASP 68

A8: Insecure Cryptographic Storage
-Secure Coding Requirements

1. Use approved algorithms
(e.g. AES, RSA, SHA-256 instead of Blowfish, RC4, SHA1,

MD5) and recommended key strength (128 bit for
symmetric and 1048 for public)

2. Encrypt authentication credentials in
storage and transit

3. Protect PII and customer sensitive data in
storage and transit as appropriate
Do not store credit card data (CVV2, magnetic strip

information) see PCI compliance

4. Store keys in secure repositories
Use HSM and secure key storage such as CryptoAPI or

Java Key Store

OWASP 69

Issues

Failure to encrypt network traffic to protect
sensitive communications.

Not using SSL for communication with end
users as well as the back-end.

Threats

Identity theft, financial fraud

Non-compliance with standards

Loss of sensitive data such as credit card
information, bank account information and
health care information

A9: Insecure Communication

OWASP 70

A9 Insecure Communication - insecure
software root cause

Lack of configuration of SSL on the web server
secure connection properties are not set to true.
Tomcat 3.3. default configuration example:

<Http10Connector port="8080"
secure="false"
maxThreads="100"
maxSpareThreads="50"
minSpareThreads="10" />

http://tomcat.apache.org/tomcat-3.3-doc/serverxml.html

OWASP 71

A9 Insecure Communication
- How You Can Find If You Are Vulnerable

Vulnerability scanning tools

Can verify that SSL is used

Can only verify front end not back end

Foundstone SSL digger can verify encryption strength
(strong chipers enabled)

Manual Test

Old browsers such as Netscape 7.2 have custom setting
for SSL that can be used to verify SSL configuration

Code Review

Can verify use of API that enable SSL connection in the
back end (e.g. middle-tier and database, directories)

OWASP 72

A9: Insecure Communication
- How You Can Find If You Are Vulnerable

OWASP 73

A9: Insecure Communication -Secure Coding
Requirements

1. Use SSL

 For all connections that are authenticated

 When transmitting credentials, credit card
details, health and other private information

2. Use transport layer and link layer security

 Between web servers and application servers
and back end systems and repositories

3. Address PCI compliance and privacy

You much protect credit card holder data and
PII in storage and in transit

OWASP 74

Issues

URL web page access is enforced via
security by obscurity

Failure to enforce users role base access
controls to limit access to web pages

Threats

A motivated, skilled, or just plain lucky
attacker may be able to predict the location
of web pages and access these pages,
invoke functions, and view data.

A10: Failure to restrict URL access

OWASP 75

A10: Failure to restrict URL access - insecure
software root cause

 Typically this is a security flaw, server side RBAC
to set which web pages a user should be given
access to:

1. if (sess.getCurrentUser().NormalUser ()) {

2. URLList.add(“View Customer Details",

3. "/jsp/Customer.do?action=view&id=“ + custId));

4. } Else {//must be a super user

5. URLList.add(“View Customer Details",

6. "/jsp/Customer.do?action=view&id=“ + custId));

7. URLList.add(“Edit Customer Details",

8. "/jsp/Customer.do? action=edit&id=“ +
custId));

9. URLList.add(“Delete Customer",

10. "/jsp/Customer.do?action=delete&id=“ +
custId));

11. }

OWASP 76

A10: Failure to restrict URL access
- How You Can Find If You Are Vulnerable

Automated approaches

A scanning tool, like Nikto has the ability to
search for existent files and directories based
on a database of well-know resources

Static analysis tools are not contextual based
and cannot find access controls in the code
and link the presentation layer with the
business logic.

OWASP 77

A10: Failure to restrict URL access
- How You Can Find If You Are Vulnerable

Manual approaches

Verify the access control mechanism via
source code analysis and penetration test. By
logging on as user and super user/admin and
by forcing access to different web pages can
verify that RBAC is enforced.

OWASP 78

A10: Failure to restrict URL access -Secure
Coding Requirements

1. Enforce Role Base Access Controls

Ensure that RBAC is enforced on the server side to
enforce which user has access to which web page

2. Do not use security by obscurity

No HIDDEN parameters to enforce which web
pages are accessible

3. Enforce white list filtering to which web
pages should be accessible

Only allow file types that you intend to serve,
block any attempts to access log files, xml files,
etc.

OWASP 79

Thank You For Listening

OWASP 80

Further Reading

“Web Application Vulnerabilities And Insecure
Software Root Causes: Solving The Security Problem
From An Information Security Perspective”, In-secure
magazine, 2008 February Issue:
http://www.netsecurity.org/dl/insecure/INSECURE-
Mag-15.pdf

http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf
http://www.netsecurity.org/dl/insecure/INSECURE-Mag-15.pdf

