
On the (Same) Origin of Scripties
Evolving a new security policy for the web

Jasvir Nagra and Mike Samuel

Google, Inc.
{jasvir,msamuel}@google.com

23 June 2010

OWASP

Argument in a nutshell
Social Networks compose web applications from small apps

This breaks the same origin policy

A network that gives developers the most authority will grow.

The bigger networks can neither trust nor police developers.

And they can't predict all the threats they will face.

Virtualization lets you promiscuously grant authority to grow.

And dial it back later, after you understand threats.

Without breaking APIs.

OWASP

What is Authority?

Authority : ability to influence or exercise power

In browsers, web applications can:
initiate network requests
display a user interface
observe user activity
...

Most of this authority is available "ambiently".

Ambient Authority: authority available regardless of how a web
application was loaded

OWASP

Ambient Authority in Browsers
top.location = ...
Content-Disposition: attachment
window.open(...)
window.getComputedStyle(...)

<form action=http://...>
<script src=http://...>
<html>...</html>
xhr.open(..., ..., false)
<iframe><input type=file></iframe>

document.cookie
document.body
xhr.open(...)
body.onkeypress
Object.prototype.toString = ...
window.forms
<input autocomplete=yes>
window.createEventObject

In same origin

Irrespective of origin

OWASP

Ambient Authority in Browsers
top.location = ...
Content-Disposition: attachment
window.open(...)
window.getComputedStyle(...)

<form action=http://...>
<script src=http://...>
<html>...</html>
xhr.open(..., ..., false)
<iframe><input type=file></iframe>

document.cookie
document.body
xhr.open(...)
body.onkeypress
Object.prototype.toString = ...
window.forms
<input autocomplete=yes>
window.createEventObject

In same origin

Irrespective of origin
redirect any reachable frame
initiate a download
create a window (modulo user interaction)
sniff browser history
scan local network
GET or POST to any domain with cookies
load code from any source
impersonate another website
deny service
present file upload controls

modify and read cookies
modify and inspect the entire UI
read result of GET or POST to same origin
intercept user events
change behavior of language intrinsics
read forms before submission
present an input that might be autofilled
spoof user events

OWASP

What's a Social Network To Do?
Introduces New Tools Improves Existing Tools

Large Audience
(All Web Devs)

Limited. Slow to take hold.

E.g. window.toStaticHtml

Good, but doesn't address
zero-days.

E.g. PHP magic quotes.

Small Audience
(Library Authors
& Security folk)

Good, but targets very
particular attacks.

E.g. Uniform Messaging

The sweet spot.
A small group can address
emerging threats.

E.g. native JSON

Virtualization

Caja, browser virtualization. No plugins required.

A layer of software between the real authority and the invoker.

When a threat emerges, tame the APIs involved.

Preserve APIs, but bound authority.

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

What do we want to Protect?

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Dealing with Ambient APIs

Real Browser Authority Virtual Browser Authority

OWASP

Architecture

OWASP

Architecture

OWASP

Architecture

OWASP

Architecture

OWASP

Architecture

OWASP

Architecture

OWASP

Architecture

OWASP

Example App

OWASP

Example App

OWASP

Example App

Why Virtualize?

Problem: Implemented policy is not what you want

If you
can't wait for new standards
can't wait for browsers to roll out fixes to most of your users
can't wait for third party dev to rewrite their code

Solution: You need your security policy in code you control.

OWASP

Why Virtualize?

Problem: Required security policy changes

If your threat model changes because
cost of an exploit may decrease
cost of weaponizing an exploit may decrease
the value your are protecting may increase
you may overlook an attack vector

Solution: You need your security policy in code you control.

OWASP

Argument in a nutshell

Social Networks compose web applications from small apps

This breaks the same origin policy

A network that gives developers the most authority will grow.

The bigger networks can neither trust nor police developers.

And they can't predict all the threats they will face.

Virtualization lets you promiscuously grant authority to grow.

And dial it back later, after you understand threats.

Without breaking APIs. OWASP

Software Interposition for the Web

Google Caja

http://code.google.com/p/google-caja/

jasvir@google.com
msamuel@google.com

google-caja-discuss@googlegroups.com

http://caja.appspot.com/

OWASP

Appendix: What is an OCAP Language

Authority follows from Object references.

If you can reference an object then you have all the authority its
public API exposes.

To grant authority to a piece of code, you pass it objects.

In an OCAP Language
Objects are inviolable - only manipulable through public API
Objects are unforgeable. To create an object you must
have authority to do so granted via an object reference.
Objects are not ambiently available. All authority flows from
granted references.

OWASP

Appendix: Language Support

EcmaScript version 5
Backwards compatible strict mode
Statically Analyzable scopes
Runtime message interception (no doesNotUnderstand)
Object freezing

EcmaScript Harmony (version 6?)
Proxies
Ephemeron tables

OWASP

Appendix: Efficiency
Overhead from

Code bloat
Runtime checks
Virtualization

Strategies
Speed : do as much analysis statically as possible.
Latency : memoize work per module

EcmaScript 5
Our transformer becomes a verifier. No runtime checks /
code bloat. (except when code dynamically loaded)

EcmaScript 6
Proxies reduce virtualization overhead

OWASP

