On the (Same) Origin of Scripties

Evolving a new security policy for the web

Jasvir Nagra and Mike Samuel

Google, Inc.
{jasvir,msamuel}@google.com

OWASP

23 June 2010

Permission is granted to copy, distribute and for modify this
document under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

Argument in a nutshell

Social Networks compose web applications from small apps
This breaks the same origin policy

A network that gives developers the most authority will grow.
The bigger networks can neither trust nor police developers.
And they can't predict all the threats they will face.
Virtualization lets you promiscuously grant authority to grow.

And dial it back later, after you understand threats.

Without breaking APIs. ©

What is Authority?

Authority : ability to influence or exercise power

In browsers, web applications can:
e initiate network requests
e display a user interface
e observe user activity
o ...

Most of this authority is available "ambiently".

Ambient Authority: authority available regardless of how a web
application was loaded

OWASP o

Ambient Authority in Browsers

Irrespective of origin

top.location = ...
Content-Disposition: attachment
window.open(...)
window.getComputedStyle(...)

<form action=http://...>
<script src=http://...>
<html>...</html>
xhr.open(..., ..., false)
<iframe><input type=file></iframe>
In same origin
document.cookie
document.body
xhr.open(...)
body.onkeypress
Object.prototype.toString = ...
window.forms
<input autocomplete=yes>
window.createEventObject OWASP o

Ambient Authority in Browsers

Irrespective of origin

top.location = ...
Content-Disposition: attachment
window.open(...)
window.getComputedStyle(...)

<form action=http://...>

<script src=http://...>
<html>...</html>

xhr.open(..., ..., false)

redirect any reachable frame

initiate a download

create a window (modulo user interaction)
sniff browser history

scan local network

GET or POST to any domain with cookies
load code from any source

Impersonate another website

deny service

<iframe><input type=file></iframe> present file upload controls
In same origin

document.cookie
document.body

xhr.open(...)
body.onkeypress
Object.prototype.toString = ...
window.forms

<input autocomplete=yes>
window.createEventObject

modify and read cookies

modify and inspect the entire Ul

read result of GET or POST to same origin
intercept user events

change behavior of language intrinsics
read forms before submission

present an input that might be autqgfilled
spoof user events

What's a Social Network To Do?

Introduces New Tools

Improves Existing Tools

Large Audience
(All Web Devs)

Limited. Slow to take hold.

E. J. window.toStaticHtml

Good, but doesn't address
zero-days.

E.g. PHP magic quotes.

Small Audience
(Library Authors
& Security folk)

Good, but targets very
particular attacks.

E.g. Uniform Messaging

The sweet spot.
A small group can address
emerging threats.

E.g. native JSON

OWASP 0

Virtualization

Caja, browser virtualization. No plugins required.
A layer of software between the real authority and the invoker.

When a threat emerges, tame the APIs involved.

Preserve APIs, but bound authority.

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority

Date @

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority

Date @ - » Date

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority
ActiveX byl
Date @ - » Date

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority

XHR 3

ActiveX ol
Date @ - » Date

What do we want to Protect?

Real Browser Authority Virtual Browser Authority

ActiveX ;;T‘

Date @

XHR QZ@ XHR
" g (ML Box

» Date

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority
XHR 5| < -~ XHR
owerf a
ActiveX bt EB“
Date @ » Date

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority
location O:gb
document | ©
iﬂ - >
XHR power”| XHR
ActiveX “*fsi’ =
Date @ » Date

Dealing with Ambient APls

Real Browser Authority Virtual Browser Authority
c
location O;gﬁo L~ < O:g{) location
s
document | g e document
;\ - >
XHR OZ@ 18 XHR
ActiveX b eRpTLBx
Date @ - » Date

Architecture

container.com

Cache

Browser

Architecture

container.com

Cache

Browser

Architecture

Cache

Cajoler

container.com

Cache

Browser

Architecture

gadget.com

HTML

ﬂ

Cache

Cajoler

container.com

Cache

Browser

Architecture

gadget.com

HTML

ﬂ

Cache

Cajoler

container.com

Cache

Browser

Architecture

gadget.com

HTML

ﬂ

Cache

Cajoler

container.com

Safe
HTML

(0))
S
©
O

Safe

JS
-

Browser

Architecture

gadget.com

HTML

ﬂ

Cache

Cajoler

container.com

Safe
HTML

(0))
S
©
O

Safe

JS
-

Browser

Window

Example App

gadget.com

CSS

b {
color: blue

}

HTML
<link rel=sty..>
<script src=...>
<b onclick=f()>
Hello, World!

T

JavaScript

function £() {
alert('Hello')

}

Example App

gadget.com cajoler
CSS HTML
b { <style>
color: blue -gadget123__ b {
} color: blue
}
</style>
<b id="x0___ ">
Hello, World!

HTML
<link rel=sty..>
<script src=...> JavaScript

<b onclick=f()> <

Hello, World! (function(G___){
\~____—_’,———*‘——‘ var alert = G .alert;

$('x0__")
.addEventListener(f);

;;;ction £() {

JavaScript alert('Hello');
function £() { [' }

alert('Hello') HOo

}

Example App

gadget.com cajoler container.com
CSS HTML
< cajita.jsB domita.jsB
b { style> . .
OCAPS for virtualizes
color: blue -gadgetl123__ b {
} color: blue JS the DOM
}
</style>
<b id="x0__ "> \
ﬁ‘,‘,‘,?' Horld! Container HTML
HTML
<link rel=sty..>
<script src=...> JavaSCrlpt
<b onclick=f()> < 1
Hello, World! (function(G___){ :
- \ var alert = G____.alert; “ m
$('x0__") NI Gadget Static HTML
.addEventListener(f);
) ;;l;ction £() { —
function £() { f' } 1T i
alert(Hello') L HoO Gadget JavaScript
} \/\ -
S ——

Why Virtualize”?

Problem: Implemented policy is not what you want

If you
e can't wait for new standards
e can't wait for browsers to roll out fixes to most of your users
e can't wait for third party dev to rewrite their code

Solution: You need your security policy in code you control.

Why Virtualize”?

Problem: Required security policy changes

If your threat model changes because
e cost of an exploit may decrease
e cost of weaponizing an exploit may decrease
e the value your are protecting may increase
e you may overlook an attack vector

Solution: You need your security policy in code you control.

Argument in a nutshell

Social Networks compose web applications from small apps
This breaks the same origin policy

A network that gives developers the most authority will grow.
The bigger networks can neither trust nor police developers.
And they can't predict all the threats they will face.
Virtualization lets you promiscuously grant authority to grow.

And dial it back later, after you understand threats.

Without breaking APls. ©

Software Interposition for the Web

Google Caja
http://code.google.com/p/google-caja/

jasvir@google.com
msamuel@google.com

google-caja-discuss@googlegroups.com

http://caja.appspot.com/

Appendix: What is an OCAP Language

Authority follows from Object references.

If you can reference an object then you have all the authority its
public APl exposes.

To grant authority to a piece of code, you pass it objects.

In an OCAP Language
e Objects are inviolable - only manipulable through public API

e Objects are unforgeable. To create an object you must
have authority to do so granted via an object reference.
e Objects are not ambiently available. All authority flows from

granted references.

€

Appendix: Language Support

EcmaScript version 5
e Backwards compatible strict mode
e Statically Analyzable scopes
e Runtime message interception (no doesNotUnderstand)
e Object freezing

EcmaScript Harmony (version 67?)
e Proxies
e Ephemeron tables

Appendix: Efficiency

Overhead from
e Code bloat
e Runtime checks
e Virtualization

Strategies
e Speed : do as much analysis statically as possible.
e Latency : memoize work per module

EcmaScript 5
e Our transformer becomes a verifier. No runtime checks /
code bloat. (except when code dynamically loaded)

EcmaScript 6
e Proxies reduce virtualization overhead

OWASP 0

