
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

OWASP Static Analysis (SA) Track
Session 1: Intro to Static Analysis

Eric Dalci
Cigital
edalci at cigital dot com

5/07/09

OWASP

OWASP SA Track: Goals

 Cover the ins and outs of Static Analysis
 Who, What, When, Where, How, Why

 Provide hands-on experience using commercially
available tools

 Provide hands-on tool customization guidance

 Provide guidance on organizational adoption and
integration of SA into your SDLC

OWASP

OWASP SA Track Roadmap

Intro To Static Analysis

Tool Assisted Code Reviews

Tool Adoption and Deployment

Fortify SCA Ounce Labs

Customization Lab Fortify SCA

Customization Lab Ounce Labs

SESSION TOPIC

1 •  Lecture
•  2 hours

•  Lab w/ Expert
•  2-3 hours

•  Lab w/ Expert
•  3 hours

•  Lab w/ Expert
•  3 hours

•  Lecture
•  2-3 hours

2

3

4

5

OWASP

Background

 Work at Cigital Inc.
 And previously at NIST

  National Institute of Standards and
Technology
  Software Quality Group
  Software Security Group

 I save the ugly baby…

OWASP

Objectives

 Understand why you should be using a Static
Analysis tool to perform secure code review.

 Know what type of vulnerabilities you can scan
for with a Static Analysis tool.

 Know the limits and strengths of Static Analysis
Tools

OWASP

Agenda

 Automated “Secure” Code Review
 Exercise – Manual Code Review
 Static Analysis

OWASP

Catching a bug: Opportunities

SA: STATIC ANALYSIS TOOLS

OWASP

Bug vs. Flaw

Implementation bug Architecture flaw

Source: http://www.flickr.com/photos/sensechange/521943309
Source: http://www.flickr.com/photos/savetheclocktower/172724622

 50%-50%

OWASP

Attacks on the Application Layer

 According to Gartner and CERT, 75 percent of
security breaches occur at the Application layer.

 And from 2005 to 2007 alone, the U.S. Air Force
says application hacks have increased from 2
percent to 33 percent of the total number of
attempts to break into its systems.

Source: Gartner IT Services Forecast, 2007

OWASP

What’s in the
code?

 Assumptions
 Ex : “This function call will never fail”

 Function calls
 Ex : “X calls Y which calls Z which calls System.exit()”

 Settings
 Ex: “Forward requests from www.blah.com/admin to the

servlet userRequest”
 Input data handling

 Ex: “Hello ${userInput.name} !”
 Error handling

 Ex: Catch(Exception err) {
System.out.println(“Something bad happened:”+

err.printStackTrace()) }
 Vulnerabilities ?

OWASP

Type of automated code analysis

 Type checking
 Style checking
 Property Checking
 Program understanding
 Bug finding (Quality)
 Security Review

OWASP

Automated Code Review

 Automated Code Review (Pros and Cons)
 [+] Relatively Fast
 [+] Can be very efficient (high number of findings)
 [+] Integrated with IDE

  trace analysis, bug information, etc.

 [+] Bring Security knowledge to the developers
  Propose remediation to bugs

 [+] Consistent

 [-] Require human intervention to discriminate false/true positive
 [-] High level of false positives
 [-] Many false negatives remain (depending on the tool’s

coverage)
 [-] False sense of security

badness-
ometer

OWASP

 How does it work ?

Static Analysis Internals

Source
Code

Build
Model

Security
Knowledge

Perform
Analysis

Findings

Incremental
Analysis

Auditor’s
 inputs

Notes : The Incremental analysis is
 not possible with all SA tools

OWASP

EXERCISES

Code review : Let’s find some bugs

OWASP

Exercise: Security Review - 1/5

 What’s wrong with this code?

#define MAXSIZE 40
int main(int argc, char **argv)
{

 char buf[MAXSIZE];
 if(gets(buf))
 printf("result: %s\n", buf);
 return 0;
}

 The problems could be found with
 Semantic analysis
 Data flow analysis

OWASP

Exercise: Security Review - 2/5

 The following XML configuration file setup the
session timeout for a web application.

 What’s wrong with this setting ?

 This could be discovered with a configuration
analysis (Xpath)

<web-app>
 <session-config>
 <session-timeout>180</session-timeout><!-- time in minutes -->
 </session-config>
</web-app>

OWASP

Exercise: Security Review - 3/5

 What’s wrong with this code?
 char* ptr = (char*)malloc (SIZE);

if (abrt) {
 free(ptr);
}
free(ptr);

 This could be found with a control flow analysis

OWASP

Exercise: Security Review - 4/5

 What’s wrong with this code?
Public static boolean getUserSSN(String Id) {
Connection con = null;
Try{

//… instantiate Connection
Statement st = con.createStatement();
ResultSet rs = st.executeQuery(“Select ssn FROM tuserssn

WHERE id =“+ Id);
While (rs.next()) { //…Process the query results}
}

 This could be found with data flow analysis

OWASP

Exercise: Security Review - 5/5

 What’s wrong with this code?
public class RegisterUser extends HttpServlet
{

 String UserName;
 protected void doPost (HttpServletRequest req, HttpServletResponse
res)

 {
 UserName = req.getParameter(" UserName ");
 //process UserName
 out.println(UserName + ", thanks for visiting!");
 }

}

 This could be found with structural analysis

OWASP

STATIC ANALYSIS

OWASP

Code level analysis by Static Analysis tools
Examples

 Data Flow
 Track user data. Great for spotting SQL injection, XSS, etc.

 Control Flow
 State machine (Safe State, Error State, etc.)

 Structural
 Identifies vulnerable code structure

 Semantic Analyzer
 “Glorified” grep

 Configuration
 Scan XML and .properties files

 Etc.

OWASP

Data Flow Analysis

 Data flow analysis tracks data from its source to its
consumption site.

 For a web application, data flow analysis is probably the
most relevant as it is able to follow untrusted user input.

 Data originates from Source type of function
 Data is being consumed (e.g. interpreted) in Sink type of

function.
 Entry points are directly accepting user controlled data

(i.e. Inbound taint)
 Data flow analysis uses taint propagation techniques.

OWASP

The Data-Flow Model

  Taint can have different origin (user input, property
files, database, etc.)

  Tainted Data flows between Sources and Sinks.

OWASP

Control flow

 The control flow analysis is the analysis of state
and transition. We can represent a control flow
using a state machine.

 Control flow analysis is good for finding race
condition type of problem where sequence of
calls matters.

 Examples:
 Open and close a resource
 Validate and invalidate a session ID

OWASP

Control Flow Model : A State Machine

 Rule : Call “setSecure” if new Cookie is created.

Start
State

New
Cookie
State

Secure
State

Error
State

new Cookie(“name”, “value”); Cookie.setSecure(true);

State machine for Secure Cookie Flag

OWASP

Structural analysis

 Structural analysis refers to a particular code
construct

 The structural analysis can involve relation
between Classes (e.g. inheritance, Class type,
etc.)

 Language specific code construct could be
analyzed for vulnerabilities or quality issues.

 For instance in Java, code construct such as try/
catch blocks, member field assignment, method
with specific signature, return statements, etc.
would be recognized.

OWASP

Semantic Analysis

 The Semantic of code relate to the meaning of a
particular code within its context.
 Ex: The Class Animal.Insect.Bug is different from the

Class Software.Security.Bug

 The ancestor of semantic analysis is grep
 Example:

 In C code, a semantic analysis would find all instance
of “gets()”

OWASP

Configuration

 A configuration analysis applies to XML or
property files.

 Typically properties are set in deployment
descriptor.

 It is possible to overload/create a property at
runtime, but then we will need other type of
analysis to handle that code.

OWASP

Exercise : What type of analysis would you
apply ?

 Check that the code always call “produce()”
before “consume()”

 Check that there are no clear text password
encoding in property files

 Check that no User controlled data ends up in
the variable “command”:
Runtime.getRuntime().exec(command)

  Check that “unsafeEncrypt()” never get used.
 Check that all the finally blocks have the

necessary clean up code “buffer.flush()”.

OWASP

OWASP top 10 & possible corresponding
analysis

1.  Cross Site Scripting (XSS)
2.  Injection Flaws
3.  Malicious File Execution
4.  Insecure Direct Object

Reference
5.  Cross Site Request Forgery

(CSRF)
6.  Information Leakage and

Improper Error Handling
7.  Broken Authentication and

Session Management
8.  Insecure Cryptographic

Storage
9.  Insecure Communications
10.  Failure to Restrict URL

Access

1.  Data Flow Analysis
2.  Data Flow Analysis
3.  Data Flow Analysis
4.  Data Flow Analysis
5.  NA
6.  All 5 analysis

7.  Control Flow
8.  Structural, Semantic
9.  Structural, Semantic
10.  Configuration

OWASP

SA tools’ Dirty little secret

 Without special engineering, SA tools can’t
follow the flow of control or data when it’s
not explicit in the code.

 For Web 2.0 and mashup don’t even ask the
news is even worse.

Resources: Spring Framework’s vulnerability
www.springsource.com/securityadvisory

OWASP

More examples of SA tools’ limits

 Ignore what you do well and their impact to the
rest of the findings
 Ex. .NET Request Validation is turned on, but the tool

ignore it and report injection type of problems.

 No bridge between declarative and
programmatic security
 Ex: XML, <Property secure=“true”/>
 Ex: Code, Property.set(“secure”,”false”)

OWASP

And more…

 We talked about what you can’t cheaply detect…
 ‘business logic’ problems
 Flaws
 Just because it was detected, doesn’t mean it’s

exploitable (or discoverable, externally)

OWASP

Tool coverage

Visible in the Code Visible in the design

Generic
defects

SA tools’ sweet spot.

Tools’ built-in rules should
find those issues.
Ex: Buffer Overflow

Most likely found through Architecture
analysis

Ex: The program sends credentials in
clear text

Context-
Specific

defects

The tools needs to be
customized to understand
context specific functions
and rules.
Ex: Processing of Trade
order

Require understanding of general
security principles and context specific
knowledge

Ex: Trading data not sanitized properly
for Personal information and visible to
third party

OWASP

How to improve a tool’s results?

 Customize (Rules, Engines, Filters, etc.)
 Extend the tool’s coverage: Write custom rules

 Access the engine API
 Use given rule grammar to write new rules

 Feed information to the model (dynamic model
change)
 Example: defining validation functions

OWASP

Future evolution

 SA Tool should help code understanding
 SA Tools should help manual code review

(Hybrid code review). They should point to
interesting part of the code (e.g. “Point of
Interests”)

 Rule extension should be easier
 Code visualization should help architecture

review
 Querying the SA Model should almost be like

natural languages (maybe like a search
engine….Google you code !?)

OWASP

Q/A

Thank you !

