OWASP Static Analysis (SA) Track

Session 1: Intro to Static Analysis

Eric Dalci
Cigital
edalci at cigital dot com

OWASP

5/07/09

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or

OWASP SA Track: Goals

m Cover the ins and outs of Static Analysis
» Who, What, When, Where, How, Why

B Provide hands-on experience using commercially
available tools

B Provide hands-on tool customization guidance

m Provide guidance on organizational adoption and
integration of SA into your SDLC

©

OWASP SA Track Roadmap

SESSION TOPIC
: : * Lect
O Intro To Static Analysis ecture
* 2 hours
* Lab w/ Expert

e %] [% * 2-3 hours

0 > Customization Lab [] * Lab w/ Expert
* 3 hours
0 Customization Lab [] < * Lab w/ Expert
* 3 hours
i * Lecture
é Tool Adoption and Deployment + 53 hours

©

Background

m Work at Cigital Inc.
m And previously at NIST

» National Institute of Standards and
Technology
= Software Quality Group
= Software Security Group

m | save the ugly baby...

Objectives

m Understand why you should be using a Static
Analysis tool to perform secure code review.

m Know what type of vulnerabilities you can scan
for with a Static Analysis tool.

m Know the limits and strengths of Static Analysis
Tools

Agenda

B Automated “Secure” Code Review
B Exercise — Manual Code Review
m Static Analysis

Catching a bug: Opportunities

SECURITY EXTERNAL CODE REVIEW PENETRATION
REQUIREMENTS REVIEW TooLs) TESTING
ABUSE Risk RISK=2ASED Ri1sk SECURITY
CASES ANALYSIS SECURITY TESTS ANALVS 15 opr:vmows
REQUIREMENTS | | ARCHITECTURE TEST PLANS CODE TESTS AND FEFDBACK FROM
AND USE CASES AND DESIGN TEST RESULTS THE FIELD
/

SA: STATIC ANALYSIS TOOLS

Bug vs. Flaw

Implementation bug _ _ Architecture flaw

N 4

Source:

N ww . flic) o/q oo o,
Source: htip.//wwwtlicki.com/photos/savetheclocktower/I 72724622

Attacks on the Application Layer

m According to Gartner and CERT, 75 percent of
security breaches occur at the Application layer.

m And from 2005 to 2007 alone, the U.S. Air Force
says application hacks have increased from 2
percent to 33 percent of the total number of
attempts to break into its systems.

Source: Gartner IT Services Forecast, 2007

©

What's in the

"?
code: B Assumptions

» Ex : “This function call will never fail”

m Function calls
» Ex : “X calls Y which calls Z which calls System.exit()”

m Settings

» Ex: “Forward requests from www.blah.com/admin to the
servlet userRequest”

B Input data handling

» Ex: “Hello ${userlnput.name} !”

m Error handling
» Ex: Catch(Exception err) {

System.out.printin(“Something bad happened:”+
err.printStackTrace()) }

® Vulnerabilities ?

Type of automated code analysis

m Type checking

m Style checking

m Property Checking

m Program understanding
B Bug finding (Quality) ¢a
m Security Review =

Automated Code Review

B Automated Code Review (Pros and Cons)
» [+] Relatively Fast
» [+] Can be very efficient (high number of findings)
» [+] Integrated with IDE
= trace analysis, bug information, etc.

» [+] Bring Security knowledge to the developers
= Propose remediation to bugs

» [+] Consistent

badness-
ometer

» [-] Require human intervention to discriminate false/true positive
» [-] High level of false positives

» [-] Many false negatives remain (depending on the tool’s
coverage)
» [-] False sense of security

©

Static Analysis Internals

Auditor’s
inputs

m How does it work ?

Source
Code

Perform
Analysis

Incremental
Analysis

Findings

Notes : The Incremental analysis is

Security
Knowledge

not possible with all SA tools

Code review : Let's find some bugs

EXERCISES

Exercise: Security Review - 1/5

m What's wrong with this code?

#define MAXSIZE 40
int main(int argc, char **argv)

{
char buf[MAXSIZE];
if(gets(buf))
printf("result: %s\n", buf);
return O;
}

m The problems could be found with
» Semantic analysis
» Data flow analysis

Exercise: Security Review - 2/5

B The following XML configuration file setup the
session timeout for a web application.

m What's wrong with this setting ?

<web-app>
<session-config>
<session-timeout>180</session-timeout><!-- time in minutes -->
</session-config>
</web-app>

m This could be discovered with a configuration
analysis (Xpath)

Exercise: Security Review - 3/5

m What's wrong with this code?

char” ptr = (char*)malloc (SIZE);
if (abrt) {
free(ptr);

}
free(ptr);

m This could be found with a control flow analysis

Exercise: Security Review - 4/5

m \What's wrong with this code?

Public static boolean getUserSSN(String Id) {
Connection con = null;
Try{

/... instantiate Connection
Statement st = con.createStatement();

ResultSet rs = st.executeQuery(“Select ssn FROM tuserssn
WHERE id =+ Id);

While (rs.next()) {//...Process the query results}
}

m This could be found with data flow analysis

Exercise: Security Review - 5/5

m What's wrong with this code?
public class RegisterUser extends HttpServlet

{
String UserName;

protected void doPost (HttpServietRequest req, HitpServletResponse
res)

{

UserName = req.getParameter(" UserName ");
//[process UserName
out.printin(UserName + ", thanks for visiting!");

}
}

B This could be found with structural analysis

STATIC ANALYSIS

Code level analysis by Static Analysis tools
Examples

m Data Flow
» Track user data. Great for spotting SQL injection, XSS, etc.

m Control Flow
» State machine (Safe State, Error State, etc.)

m Structural

» Identifies vulnerable code structure
B Semantic Analyzer

» “Glorified” grep
m Configuration

» Scan XML and .properties files

m Etc.

Data Flow Analysis

m Data flow analysis tracks data from its source to its
consumption site.

B For a web application, data flow analysis is probably the
most relevant as it is able to follow untrusted user input.

m Data originates from Source type of function

m Data is being consumed (e.g. interpreted) in Sink type of
function.

m Entry points are directly accepting user controlled data
(i.e. Inbound taint)

m Data flow analysis uses taint propagation techniques.

©

The Data-Flow Model

m Taint can have different origin (user input, property
files, database, etc.)

m Tainted Data flows between Sources and Sinks.

Sources of Taint Cleanses Taint _Sinks for Taint_

(),/ @ K\‘ ()
read () sprintf ()

' scanf () ' l strcpy () l
' recv ())\ strlen ()

All Other
7 Functions _

Taint is Preserved

Control flow

B The control flow analysis is the analysis of state
and transition. We can represent a control flow
using a state machine.

m Control flow analysis is good for finding race
condition type of problem where sequence of
calls matters.

B Examples:

» Open and close a resource
» Validate and invalidate a session ID

Control Flow Model : A State Machine

m Rule : Call “setSecure” if new Cookie is created.

' =

new Cookie(“name”, “value”);

>

Cookie.setSecure(true);

State machine for Secure Cookie Flag

Structural analysis

m Structural analysis refers to a particular code
construct

B The structural analysis can involve relation
between Classes (e.g. inheritance, Class type,
etc.)

B Language specific code construct could be
analyzed for vulnerabilities or quality issues.

m For instance in Java, code construct such as try/
catch blocks, member field assignment, method
with specific signature, return statements, etc.
would be recognized.

©

Semantic Analysis

B The Semantic of code relate to the meaning of a
particular code within its context.

» Ex: The Class Animal.Insect.Bug is different from the
Class Software.Security.Bug

B The ancestor of semantic analysis is grep

m Example:

» In C code, a semantic analysis would find all instance
of “gets()”

Configuration

B A configuration analysis applies to XML or
property files.

m Typically properties are set in deployment
descriptor.

m It is possible to overload/create a property at
runtime, but then we will need other type of
analysis to handle that code.

|

Exercise : What type of analysis would you

apply ?

m Check that the code always call "produce()”
before "consume()”

B Check that there are no clear text password
encoding in property files

m Check that no User controlled data ends up in

the variable "command”:
Runtime.getRuntime().exec(command)

B Check that “unsafeEncrypt()” never get used.

B Check that all the finally blocks have the
necessary clean up code “buffer.flush()”.

©

OWASP top 10 & possible corresponding
analysis

1. Cross Site Scripting (XSS) 1. Data Flow Analysis
2. Injection Flaws | 2. Data Flow Analysis
3. Malicious F!Ie Execgtlon 5. Data Flow Analysis
4. Insecure Direct Object ,
Reference 4. Data Flow Analysis
5. Cross Site Request Forgery 5. NA
(CSRF) 6. All 5 analysis

6. Information Leakage and
Improper Error Handling

7. Broken Authentication and 7. Control Flow
Session Management 8. Structural, Semantic

8. Insecure Cryptographic 9. Structural, Semantic
Storage _ |

9. Insecure Communications 10. Configuration

10. Failure to Restrict URL

Access Q

SA tools’ Dirty little secret

m \Without special engineering, SA tools can’t
follow the flow of control or data when it's
not explicit in the code.

m For Web 2.0 and mashup don't even ask the
NEews is even worse.

Resources: Spring Framework’s vulnerability
WWW.springsource.com/securityadvisory

More examples of SA tools’ limits

m Ignore what you do well and their impact to the
rest of the findings
» EX. .NET Request Validation is turned on, but the tool
ignore it and report injection type of problems.

m No bridge between declarative and
programmatic security
» Ex: XML, <Property secure="true"/>
» Ex: Code, Property.set(“secure”,"false”)

And more...

m \We talked about what you can't cheaply detect...
» ‘business logic’ problems
» Flaws

» Just because it was detected, doesn’t mean it’s
exploitable (or discoverable, externally)

|
Tool coverage

Visible in the Code | Visible in the design
Generic Most likely found through Architecture
defects analysis
Ex: The program sends credentials in
clear text
Context- | The tools needs to be Require understanding of general
S ifi customized to understand | security principles and context specific
PECITC | ontext specific functions | knowledge
defects and rules. Ex: Trading data not sanitized properly
Ex: Processing of Trade for Personal information and visible to
order third party

e ©

How to improve a tool’s results?

m Customize (Rules, Engines, Filters, etc.)

m Extend the tool’s coverage: Write custom rules
» Access the engine API
» Use given rule grammar to write new rules

m Feed information to the model (dynamic model
change)
» Example: defining validation functions

Future evolution

B SA Tool should help code understanding

B SA Tools should help manual code review
(Hybrid code review). They should point to
interesting part of the code (e.g. "Point of
Interests”)

H Rule extension should be easier

B Code visualization should help architecture
review

B Querying the SA Model should almost be like
natural languages (maybe like a search
engine....Google you code !?)

©

Q/A

Thank you !

