Web application analysis with
OWASP Hatkit

Presentation

Martin Holst Swende

Senior Security Consultant, 2Secure AB
~3 years in IT-security

~5 years as software developer

Nmap and Webscarab contributor
Project leader of OWASP Hatkit projects
Twitter: @mhswende

Speaker at Defconig

eSecure

Web application testing

Is very diverse: from a low-level infrastructure
point-of-view to high-level application flow
There are many tools, but a central
component is an intercepting proxy

Usually complex beasts

Typical proxy features

Sitemapping

Content analysis
Fuzzing

Spidering

Interception

Manual request

Manual inspect
Sess. id analysis

Search

Traffic data

Traffic data
Traffic data
Traffic data

Live traffic

Traffic data +
sockets

Traffic data
Traffic data
Traffic data

No

No
No
No

Yes
No

No
No
No

Http-level: trivial.
Based on html inspection : e.g. in browser
DOM- javascript.

W3af, ratproxy, proxmon, webscarab, burp etc
JBroFuzz

Browser-based spiders with DOM-access. Many
choices.

None

An http/html/json/xml editor + sockets

An http/html/json/xml editor
Stompy

Wide range: grep to lucene

Typical proxy drawbacks

Resource intensive

All requests/responses get processed/buffered by the
proxy regardless if intercepted or not

OS security updates, video clips, etc.

This usually results in a huge memory footprint
Static view of request/response data

Static GUI, difficult/impossible to customize fields/views
Limited filtering and search capabilities
Limited post-processing capabilities
What get’s stored in the backend database?
Can | export it to other tools?
How do | even access the stored data?

The Hatkit Project

Http Analysis Toolkit

Write an intercepting proxy Hatkit Proxy
Lightweight
Memory-consumption does not grow with traffic
Streams all non-captured traffic to destination
Recording

Saves to database - MongoDB
Document store where parsed data is stored as JSON documents
Platform independent, Open Source and fast

Write an analysis engine Hatkit Datafiddler

Flexible
Using MongoDB advanced querying facilities
Using dynamic views for data

And open

With several different ways to analyze, export and use existing
applications.

the intercepting recording proxy

Based on OWASP Proxy (by Rogan Dawes)
Records traffic to DB

parsed object form
raw binary data
Syntax highlighting
FQ/NFQ intercept mode (think freedom as in telnet)
Proxy chaining
Reverse proxy mode
TCP interception (early beta)
...This is definitely not your all-in-one proxy!

TCP interception

Setup interception
DNS poisoning
[etc/hosts

Possible to alter packets using
Manual editing as hex/string

"Processor” —a BeanShell script
Processors

Each TCP session has their own script engine instance
Possible to keep state and record info in registry

Hatkit Datafiddler

The analysis engine

Whatis it?

What does it do?

Why use it?

How do | get it?

What does it run on, prerequisites?

Hatkit Datafiddler

What is it?
A framework to analyse web traffic

A platform based on MongoDB, with additional
functionality to extract and display information
geared towards web application testing

A platform for utilising existing tools on pre-
recorded data

Hatkit Datafiddler

What does it do?

Displays traffic data as defined by the user
(Tableview)

Traffic and pattern aggregation (Aggregator)
Traffic analysis via w3af and ratproxy (3pp)
Export recorded traffic to other proxies (3pp)
Filter and sort data (filters+tableview)

Cache proxying (cache-proxy, beta)

Traffic overview in Tableview

It is simple to write the kind of view you need for the
particular purpose at hand.
Example scenarios:

Analysing user interaction using several accounts with different
browsers, you are interested in cookies, user-agent

Analysing server infrastructure

Server headers,Banner-values, File extensions,Cookie names

Searching for potential XSS
Use filters to see only the requests where content is reflected

Analyzing brute-force attempt

Request parameter username, password, Response delay, body size, status
code and body hash

Detour - storage

Traffic is stored as parsed objects in the
database.

{{ request:
{ headers: { Host: “server.com”, Cookie: ...},
furi:{ path:"“/foobar”, params:{foo: “bar"}...},
...} /[Parsed request object

fresponse: ...} [/[Parsed response object

{ request-raw} //Binary raw content

{response-rawi //Binary raw content

5

Demo - Traffic overview

Demo - Traffic overview

Aggregation

Aggregation (grouping) is a feature of MongoDB.

It is like a specialized Map/Reduce
You provide the framework with a couple of directives and

the database will return the results, which are different kinds
of sums.

Pass JS right into the DB
Example scenarios:

Generate sitemap

Show all http response codes, sorted by host/path

Show all unique http header keys, sorted by extension

Show all request parameter names, grouped by host

Show all unique request parameter values, in grouped by host

Demo - Using aggregator

Traffic analysis

Datafiddler has a mechanism to run selected
traffic through third-party plugins.
Currently implemented*:

Ratproxy plugin. Starts ratproxy process, feeds traffic
through it, and collects output.

Generic proxy plugin. Feeds data to a proxy (e.g Burp)
which in turn uses a Datafiddler as forward proxy.

Webscarab export. Writes traffic data to webscarab.
Useful e.g. to do manual requests edit or use fuzzer.

W3af greppers
* Defconi1g-release

Demo — Ratproxy analysis

Demo — W3af greppers

Demo — Generic exporter

Hatkit Datafiddler

Upcoming features
Cache proxy

Datafiddler can act as forwarding proxy and use
collected traffic as cache. On cache miss, it can either

contact remote host orissue 403.

This enables:

Resume aborted scans (Nikto, ...)
Gather e.g. screenshots post mortem without access to target

Fuzzer integration
Send requests directly to a fuzzer.

Text search

Hatkit Datafiddler

Why use it?
To better be able to make sense of large bodies of
complex information

Hatkit Datafiddler

How do | get it?

Download the source
https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-datafiddler/

Or the released binaries

https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads

And check out the documentation
https://www.owasp.org/index.php/OWASP_ Hatkit Proxy Pr
oject
https://www.owasp.org/index.php/OWASP_ Hatkit Datafidd]
er Project

https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-datafiddler/
https://bitbucket.org/holiman/hatkit-datafiddler/
https://bitbucket.org/holiman/hatkit-datafiddler/
https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads
https://www.owasp.org/index.php/OWASP_Hatkit_Proxy_Project
https://www.owasp.org/index.php/OWASP_Hatkit_Proxy_Project
https://www.owasp.org/index.php/OWASP_Hatkit_Datafiddler_Project
https://www.owasp.org/index.php/OWASP_Hatkit_Datafiddler_Project

Hatkit Datafiddler

What does it run on, prerequisites?

Python

Qty

PyQt4 bindings

Python MongoDB driver
MongoDB

(optional: w3af)
(optional: ratproxy)

Tested on Linux and MacOSX

Who should care?

Application testers

Hatkit is very useful for analyzing remote servers and
applications from a low-level infrastructure point-of-view
to high-level application flow.

Server administrators

The Hatkit Proxy can be set as a reverse proxy, logging all
incoming traffic.

The Datafiddler can analyze user interaction, eg. detect
malicious activity and perform post mortem analyzis.

The back-end can scale to handle massive amounts of
data.

Contact

To learn more or join the project, join the
mailing lists
Owasp-hatkit-datafiddler-
project@lists.owasp.org

Owasp-hatkit-proxy-project@lists.owasp.org

mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org

Thank you all for listening

Questions?

Some additional screenshots...

... for you who weren’t there to see the
demos...

Traffic overview

M © Tabledata settings

Selection and viewing | Database filtering

Load foo v Save as:
Variables Column Coloring Enabled Title
v0 _id 0 vO & %] vO
vl regueskt.time 1 date(v1) %] Date
v2 request.headers 2 v ™~ Utc
v3 request.url 3 "Time: %s" % v1 ™~ Python
v4 response.status 4 |paramskring(v3) %] paramsktring(v3)
v5 response.headers 5 vd) %) vd
6 size(vs) ™ &~ size(vs)
7 cookies(v2)) M cookies(v2) L
Add variable Add Column

Help Revert Apply

The vo parameter is the object id. This column uses
| saveas: | 'Coloring’, which means that the value is not displayed,
instead a color is calculated from the hash of the value.

Column Coloring Enabled Title |
0 vo & v T
1 date(v1) Date 7 :
2 v ™~ Utc 7 :
3 "Time: %s" % v1 Python i
4 paramstring(v3) & paramskring(v3)
Menu
5 v4 () v4
6 size(vs) L size(vs) : ~_ faie Ui Pban
row 0 10317 10:43:41 | 1268819021004 Time: 1268819021004
7 cookies(v2) & cookies(v2) = row 1 0317 10:43:41 1268819021595 Time: 1268819021595
row 2 0317 10:43:41 1268819021634 Time: 1268819021634
| Add Column |
. row 3 0317 10:43:42 1268819022199 Time: 1268819022199
" | Apply ows [0317 10:43:42 1268819022731 Time: 1268819022731
ows 0317 10:43:41 1268819021429 Time: 1268819021429
owe I} 0317 10:43:41 1268819021610 Time: 1268819021610
ow? | 0317 10:43:41 1268819021643 Time: 1268819021643
row 8 0317 10:43:42 1268819022186 Time: 1268819022186
rowd [0317 10:43:42 1268819022221 Time: 1268819022221
row10 [0317 10:43:42 1268819022725 Time: 1268819022725
row 11 0317 10:43:42 1268819022900 Time: 1268819022300
ow12 [} 0317 10:43:42 1268819022920 Time: 1268819022920
rowi13] 0317 10:43:42 1268819022936 Time: 1268819022936
owld [} 0317 10:43:42 1268819022938 Time: 1268819022938
row1s [0317 10:43:42 1268819022945 Time: 1268819022945
rowi1s [0317 10:43:42 1268819022921 Time: 1268819022921
row17 [} 0317 10:43:42 1268819022959 Time: 1268819022959
rowi1s | 0317 10:43:42 | 1268819022992 |Time: 1268819022992

HatKit — Aggregator

© & @ HatKit Aggregator

Tree data | List data

- www.sec-t.org (4)

- assets (1)

- templates (1)

— 2009 (1)

+ site.css (1)

+ 2010 (1)

+ About.html (1)

+ 2009.htmi (1)

+ dn.se (2)
+ www.dn.se (248)
+ aftonbladet.se (14)

+ wwwec.aftonbladet.se (2)

+ iserver2.solutions.six.se (2)

+ sifomedia.citypaketet.se (4)

+ 0as.dn.se (4)

+ sifomedia.dn.se (5)

+ web2.easyresearch.se (1)

+ sifomedia.aftonbladet.se (3)

+ wwwapp.aftonbladet.se (2)

+ vader.hitta.se (1)

+ gfx.aftonbladet-cdn.se (2)
+ www.aftonbladet.se (22)

+ adsby.webtraffic.se (3)

1 aftnnhlardet Adallag-are ca 32 v

Expand all Undo Setup

HatKit — Aggregator

Basic Advanced

Pre-defined asfsli=sElt=z=10H
Aggregat: AggregatePathsSimple

can also sw
Yy Host->Server banner

List response headers
Currently
FNeElEe Host -> Parameter names

Host-=Parameter name-=value

Revert Help Apply

HatKit — Aggregator

Basic Advanced

Reduce: Load pre-defined or write below | fheme/martin/workspace/SnapDB/src/javascript/aggregate paths.js v
function(obj,res){

if(obj.request && obj.request.url && obj.request.ur.path)
{
var path=obj.request.url.path;
path=path.split("/"};
var dir=res.count;
for(x=0;x<path.length;x++) {
if(path[x].length = 0}{
var next = dirfpath[x]];
if('next){difpath[x]]={};}
dir=dirfpath[x]];

}
}
var n=nhi reniest naramsinnn- ¥
Initial | {"count': {}}
Key |['request.headers.Host'] [}

Cond | {}

Revert Help Apply

Traffic analysis via ratproxy

Settings | Database Filtering

& RatAnalyser
Ratproxy path

Jusr/binfratproxy

WebscarabExporter

ProxyExporter

Run

Traffic analysis via ratproxy

row 0
row1
row 2
row3
row4
rows
row6
row7
rows
row9
row 10
row 11
row12
row13
row 14
row 15
row 16
row 17
row 18
row 19

row 20

warn mod

1
1
1

1
1
5

mesg

Bad or no charset declared for renderable file
MIME type mismatch onrenderable file

XSS candidates (script)

Bad or no charset declared for renderable file
Risky Javascript code

Bad or no charset declared for renderable file
Markup in dynamic Javascript

Risky Javascript code

Bad or no charset declared for renderable file
Markup in dynamic Javascript

Risky Javascript code

MIME type mismatch on renderable file
Request splitting candidates

Bad or no charset declared for renderable file
MIME type mismatch on renderable file

MIME type mismatch on renderable file
Request splitting candidates

Request splitting candidates

Bad or no charset declared For renderable File
MIME type mismatch on renderable file

Risky Javascript code

off_par
- 200

- 200
200

200
innerHTML 200
- 200
- 200
innerHTML 200
- 200
- 200
innerHTML 200
- 200
ctype 200
- 200
- 200
- 200
ctype 200
ctype 200
- 200
- 200

document.write 200

res.code

res.payloadlength

18183
18183

1256
1634
1634
59829

res.mimetype

text/css
text/css
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/css
text/css
text/css
text/css
text/css
text/css
text/css
text/css
text/css

text/html

res.sniffedmime
text/plain
text/plain
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/javascript
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/css
text/plain
text/plain

text/html

res.charse

utf-8

utf-8

utf-8

utf-8
utf-8
utf-8

utf-8

