

 Martin Holst Swende

 Senior Security Consultant, 2Secure AB

 ~3 years in IT-security

 ~5 years as software developer

 Nmap and Webscarab contributor

 Project leader of OWASP Hatkit projects

 Twitter: @mhswende

 Speaker at Defcon19

 Is very diverse: from a low-level infrastructure
point-of-view to high-level application flow

 There are many tools, but a central
component is an intercepting proxy

 Usually complex beasts

Feature Requirement Must be
in
proxy?

Possible alternatives

Sitemapping Traffic data No Http-level: trivial.
Based on html inspection : e.g. in browser
DOM– javascript.

Content analysis Traffic data No W3af, ratproxy, proxmon, webscarab, burp etc

Fuzzing Traffic data No JBroFuzz

Spidering Traffic data No Browser-based spiders with DOM-access. Many
choices.

Interception Live traffic Yes None

Manual request Traffic data +
sockets

No An http/html/json/xml editor + sockets

Manual inspect Traffic data No An http/html/json/xml editor

Sess. id analysis Traffic data No Stompy

Search Traffic data No Wide range: grep to lucene

 Resource intensive
 All requests/responses get processed/buffered by the

proxy regardless if intercepted or not
▪ OS security updates, video clips, etc.

 This usually results in a huge memory footprint
 Static view of request/response data
 Static GUI, difficult/impossible to customize fields/views
 Limited filtering and search capabilities

 Limited post-processing capabilities
 What get’s stored in the backend database?
 Can I export it to other tools?
 How do I even access the stored data?

 Write an intercepting proxy
 Lightweight

▪ Memory-consumption does not grow with traffic
▪ Streams all non-captured traffic to destination

 Recording
▪ Saves to database - MongoDB

▪ Document store where parsed data is stored as JSON documents
▪ Platform independent, Open Source and fast

 Write an analysis engine
 Flexible

▪ Using MongoDB advanced querying facilities
▪ Using dynamic views for data

 And open
▪ With several different ways to analyze, export and use existing

applications.

 Based on OWASP Proxy (by Rogan Dawes)
 Records traffic to DB

 parsed object form

 raw binary data

 Syntax highlighting
 FQ/NFQ intercept mode (think freedom as in telnet)
 Proxy chaining
 Reverse proxy mode
 TCP interception (early beta)
 …This is definitely not your all-in-one proxy!

 Setup interception

 DNS poisoning

 /etc/hosts

 Possible to alter packets using

 Manual editing as hex/string

 ”Processor” – a BeanShell script

 Processors

 Each TCP session has their own script engine instance

 Possible to keep state and record info in registry

 What is it?
 What does it do?
 Why use it?
 How do I get it?
 What does it run on, prerequisites?

 What is it?

 A framework to analyse web traffic

 A platform based on MongoDB, with additional
functionality to extract and display information
geared towards web application testing

 A platform for utilising existing tools on pre-
recorded data

 What does it do?

 Displays traffic data as defined by the user
(Tableview)

 Traffic and pattern aggregation (Aggregator)

 Traffic analysis via w3af and ratproxy (3pp)

 Export recorded traffic to other proxies (3pp)

 Filter and sort data (filters+tableview)

 Cache proxying (cache-proxy, beta)

 It is simple to write the kind of view you need for the
particular purpose at hand.

 Example scenarios:

 Analysing user interaction using several accounts with different
browsers, you are interested in cookies, user-agent

 Analysing server infrastructure
▪ Server headers,Banner-values, File extensions,Cookie names

 Searching for potential XSS
▪ Use filters to see only the requests where content is reflected

 Analyzing brute-force attempt
▪ Request parameter username, password, Response delay, body size, status

code and body hash

 Traffic is stored as parsed objects in the
database.
{{ request:

 { headers: { Host: “server.com”, Cookie: …},

 { uri : { path : “/foobar” , params:{ foo: “bar”}…},

 …} //Parsed request object

{ response : …} //Parsed response object

{ request-raw} //Binary raw content

{response-raw} //Binary raw content

}

 Aggregation (grouping) is a feature of MongoDB.
 It is like a specialized Map/Reduce

 You provide the framework with a couple of directives and
the database will return the results, which are different kinds
of sums.
 Pass JS right into the DB

 Example scenarios:
 Generate sitemap

 Show all http response codes, sorted by host/path

 Show all unique http header keys, sorted by extension

 Show all request parameter names, grouped by host

 Show all unique request parameter values, in grouped by host

 Datafiddler has a mechanism to run selected
traffic through third-party plugins.

 Currently implemented*:
 Ratproxy plugin. Starts ratproxy process, feeds traffic

through it, and collects output.

 Generic proxy plugin. Feeds data to a proxy (e.g Burp)
which in turn uses a Datafiddler as forward proxy.

 Webscarab export. Writes traffic data to webscarab.
Useful e.g. to do manual requests edit or use fuzzer.

 W3af greppers

 * Defcon19-release

 Upcoming features
 Cache proxy

▪ Datafiddler can act as forwarding proxy and use
collected traffic as cache. On cache miss, it can either
contact remote host or issue 403.

▪ This enables:
▪ Resume aborted scans (Nikto, …)

▪ Gather e.g. screenshots post mortem without access to target

 Fuzzer integration
▪ Send requests directly to a fuzzer.

 Text search

 Why use it?

 To better be able to make sense of large bodies of
complex information

 How do I get it?
 Download the source

▪ https://bitbucket.org/holiman/hatkit-proxy/
▪ https://bitbucket.org/holiman/hatkit-datafiddler/

 Or the released binaries
▪ https://bitbucket.org/holiman/hatkit-proxy/downloads
▪ https://bitbucket.org/holiman/hatkit-datafiddler/downloads

 And check out the documentation
▪ https://www.owasp.org/index.php/OWASP_Hatkit_Proxy_Pr

oject
▪ https://www.owasp.org/index.php/OWASP_Hatkit_Datafiddl

er_Project

https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-proxy/
https://bitbucket.org/holiman/hatkit-datafiddler/
https://bitbucket.org/holiman/hatkit-datafiddler/
https://bitbucket.org/holiman/hatkit-datafiddler/
https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-proxy/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads
https://bitbucket.org/holiman/hatkit-datafiddler/downloads
https://www.owasp.org/index.php/OWASP_Hatkit_Proxy_Project
https://www.owasp.org/index.php/OWASP_Hatkit_Proxy_Project
https://www.owasp.org/index.php/OWASP_Hatkit_Datafiddler_Project
https://www.owasp.org/index.php/OWASP_Hatkit_Datafiddler_Project

 What does it run on, prerequisites?
 Python

 Qt4

 PyQt4 bindings

 Python MongoDB driver

 MongoDB

 (optional: w3af)

 (optional: ratproxy)

Tested on Linux and MacOSX

 Application testers
 Hatkit is very useful for analyzing remote servers and

applications from a low-level infrastructure point-of-view
to high-level application flow.

 Server administrators
 The Hatkit Proxy can be set as a reverse proxy, logging all

incoming traffic.

 The Datafiddler can analyze user interaction, eg. detect
malicious activity and perform post mortem analyzis.

 The back-end can scale to handle massive amounts of
data.

 To learn more or join the project, join the
mailing lists

 Owasp-hatkit-datafiddler-
project@lists.owasp.org

 Owasp-hatkit-proxy-project@lists.owasp.org

mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-datafiddler-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org
mailto:Owasp-hatkit-proxy-project@lists.owasp.org

 Questions?

 … for you who weren’t there to see the
demos…

The v0 parameter is the object id. This column uses
'Coloring', which means that the value is not displayed,
instead a color is calculated from the hash of the value.

