
Deemon:	Detecting	CSRF	with	Dynamic	
Analysis	and	Property	Graphs
G.	Pellegrino	et	al.
giancarlo.pellegrino@cispa.saarland
(presented	by	Martin	Johns,	SAP	Security	Research)

U	WON’T	BELIEVE	WHAT	DIS	CAT	IS	
DOIN’	!!!1!	

TWEET SHARE PIN SEND EMAIL

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 2

<img src="http://store.com/change_pwd.php?password=pwnd"
width="0px" height="0px"/>

Cross-Site	Request	Forgery	Attack

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 3

POST /login.php […] user=Alice&pwd=secret

200 OK
Set-cookie: session=YBLqp32F

GET /video.html

+

GET /change_pwd.php?password=pwnd
Cookie: session=YBLqp32F

If	cookie	is	valid,	then	
update	password

Look	at	this	
cat	video!

If	credentials	are	valid,	
create	and	send	a	
session	cookies

The	Forgotten	Sleeping	Giant

• Popular	vulnerability
• Among	top	10	security	risks	w/	XSS	and	SQLi
• Discovered	in	popular	websites,	e.g.,	Gmail,	Netflix,	and	ING

• Most	of	previous	efforts	spent	on	countermeasures:
• Origin	header,	synchronizer	tokens,	and	browser	plugins

• A	little	has	been	done	to	provide	techniques	for	the	detection
• Existing	(semi-)automated	techniques	focus	on	input	validation	and	logic	flaws
→Detection	of	CSRF	via	manual	inspection

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 4

[Top10_OWASP_2007-2013]

Building	a	tool	to	find	CSRF

• CSRF	is	not	overly	hard	to	find	for	pen	testers	or	security	experts	during	
dedicated	security	testing
• But

• Bug	pattern	is	unintuitive	for	developers
• Security	testing	is	often	used	in	automated	processes,	such	as	Q-Gates	or	regression	
testing

• Hence,	
• Can	we	build	a	tool	to	find	CSRF	automatically?

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 5

So,	why	is	it	hard	to	detect	CSRF	automatically?

• Challenges	(Operational):
1) Application	interaction
2) Side-effect	free	testing

• Challenges	(Detection):
1) CSRF	targets	state	transitions
2) Attacker	reliably	create	requests	incl.	parameters	and	values
3) Not	all	state	transitions	are	relevant

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 6

Challenge	O1:	Application	interaction

• CSRF	is	rarely	found	on	application	entry	pages	
• Instead,	in	general	it	requires	interaction	with	deeper	functionality	of	the	
application
• Thus,	“blind”	black-box	testing	is	unlikely	to	access	all	CSRF-relevant	interfaces

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 7

Challenge	O2:	Side-effect	free	testing

• Remember:	CSRF	is	all	about	causing	lasting	side-effects	on	the	server-side
• But:

• Testing	for	such	side	effects	potentially	causes…	side	effects
• Think:	

• Deletion	of	a	shopping	basket
• Terminating	an	authenticated	session
• ...

• How	can	we	ensure	that	our	testing	does	interfere	with	our	testing?

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 8

Challenge	D1:	CSRF	Targets	State	Transitions

• Determine	when	a	state	transition	occurs
• Not	all	operations	change	the	state	of	a	webapp

• E.g.,	View	user	data	vs	reset	user	password

• Learning	state	transitions	is	possible
• However,	existing	approach	can	be	inaccurate	or	operation-specific

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 9

GET /user_data.php
Cookie: session=YBLqp32F Show	user	data

GET /change_pwd.php?password=new_secret
Cookie: session=YBLqp32F Update	password

SELECT	*
FROM	users
[…]

UPDATE	users
SET	pwd=new_secret
[…]

Fire	a	state	
transition

Challenge	D2:	Attacker	Reliably	Creates	Requests

• Determine	relationships	between	parameters	and	transitions
• E.g.,	random	security	token	may	not	be	guessed	by	an	attacker

• Existing	techniques	do	not	determine	such	a	relationship
• E.g.,	Web	scanners	match	param names	against	list	of	predefined	names	(e.g.,	“token”)

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 10

GET /place_order.php?token=XZR4t6q
Cookie: session=YBLqp32F

Challenge	D3:	Not	all	State	Transitions	are	Relevant	

• Determine	the	relevance	of	a	state	transition
• State	transitions	can	be	the	result	of	operations	such	as	tracing	user	
activities
• They	are	state-changing	operations	but	not	necessarily	security-relevant

• Easy	for	humans	but	hard	for	machines

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 11

GET /product.php?id=201
Cookie: session=YBLqp32F

200 OK

1) PageCounter++
2) Return	product	

description

UPDATE	pages
SET	cnt =	cnt +	1
WHERE	id=201

Fire	a	state	
transition

Our	approach:	Deemon

• Approach:	Guided	grey-box	testing
• Input:	User	generated	interaction	traces

• E.g.,	Selenium	scripts	for	regression/UI	testing

• Infrastructure
• HTTP	observation
• Instrumented	server-side	that	monitors	all	state	changes

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 12

Our	Solution:	Deemon

• Application-agnostic	framework	for	developers	and	analysts
1. Infer	state	transitions	+	data	flow	from	program	executions
2. Property	graphs	for	uniform	and	reusable	model	representation
3. Graph	traversals	to	select	request	candidates	for	testing
4. Verify	replay-ability	of	HTTP	requests

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 13

Deemon:	Architecture

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 14

A F<				,				,						,				,						>			

Virtualized	Env.

Login	and	change	password

GET

200 OK

Dynamic	Trace	Generation

A F<				,				,						,				,						>			

<	GET ,	200,	GET ,	302 >			

<								,									>			

Reliable,	repeatable	workflow	testing

• The	architecture	allows	side-effect	free	testing
• Set	server	VM	into	vanilla	state
• Run	UI	workflow	and	record	all	traffic	&	server-side	effects
• …repeat	

• Clear	mapping	between:	UI	interaction	/	HTTP	requests	/	server-side	effects
• This	allow	the	identification	of	single	requests	between	traces

• Running	the	same	UI	workflow	multiple	times	and	comparing	HTTP	request	
parameters
• With	the	same	user	->	session	specific	parameters
• With	different	users	->	user	specific	parameters

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 15

Deemon:	Model	Construction

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 16

A

GET /

YBLqp32F

GET

hdrs

…

200 GET 302

next

caused

next

next next next

caused

UPDATE tbl

id=YBLqp

SQL

claus

…

SQL

next

caused

Traces	and	Parse	Trees

q0 q1q0→q1

trans to

accepts

FSM Data	flow	and	types

v1= YBLqp32F

Types: String, Session
unique

v2= YBLqp32F

Types: String, Session
unique

propag.

source

sink

has

A F<				,				,								,					,								>			

<	GET ,	200,	GET ,	302 >			

<								,								>			

Deemon:	Traversals

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 17

“Find	all	CSRF”
⇓

“Find	all	requests r	such	that:
1)	r	is	state-changing
2)	r	can	be	created by	an	attacker
3)	the	state	change	is	relevant”

⇓
“∀n:		request(n)

1)	∃tr,	qi,	qf:	trans(tr,	qi,	qf)		
∧		accepts(tr,	n)

2)	∀	v:	variable(v)	
∧	has(qf,	v)		
∧	v.Types ⋂	{“unguessable”}	=	∅

3)	relevant(r)”
⇓

[Query	processor]

GET

password

r

pwd

hdrs

qi qfqi→qf

trans to

r

accept

request(r)

∃tr,	qi,	qf:	trans(tr,	qi,	qf)	∧		accepts(tr,	r)

v1= pwd

Types: String

qf

has

url

∀	v:	variable(v)	∧	has(qf,	v)	∧	v.Types ⋂	{“unguessable”}	=	∅

<				,					,				,				,					>			

Deemon:	Testing

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 18

Graph	Traversals Test	Execution

<				,					,				,				,					>			

Requests

Queries

Virtualized	Env.

200 OK

?

GET

Failed Successful

Revisiting	the	Challenges

• O1)	Application	interaction
• Guided	testing	via	recorded	workflows

• O2)	Side-effect	free	testing
• Removal	of	side	effects	via	VM	snapshots

• D1)	CSRF	targets	state	transitions
• Monitoring	of	server-side	effects

• D2)	Attacker	reliably	create	requests	incl.	parameters	and	values
• Automated	analysis	of	parameter	roles	and	information	flows

• D3)	Not	all	state	transitions	are	relevant
• Removal	of	non-authentication	and	generic	state	transitions

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 19

Evaluation

• Inputs:	
• 10	Web	apps	from	the	Bitnami catalog	(avg 600k	LoC)
• 93	workflows	(e.g.,	change	password,	username,	add/delete	user/admin,	enable/disable	plugin)

•

•

• Attacks:
• User	account	takeover	in	AbanteCart and	OpenCart
• Database	corruption	in	Mautic
• Web	app	takeover	in	Simple	Invoices

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland
20

1,380	requests
194	not	st-ch

1,186	st-ch 164	relevant
1,022	not	relevant

111	unprotected

53	protected	(108	tokens)

219	tests
29	succ.
190	failed

14	distinct	CSRFs

Results	Analysis:	Awareness

1. Complete	Awareness:	all	state-changing	operations	are	protected
• E.g.,	Horde,	Oxid,	and	Prestashop

2. Unawareness:	none	of	the	relevant	state-changing	operations	are	protected
• I.e.,	Simple	Invoices

3. Partial	Awareness
• Role-based:	only	admin	is	protected

• I.e.,	OpenCart and	AbanteCart

• Operation-based:	adding	data	items	is	protected,	deleting	is	not	
• I.e.,	Mautic

Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 21

Takeaways

• Presented	Deemon:	Dynamic	analysis	+	
property	graphs
• Deemon detected	14	CSRFs	that	can	be	
exploited	to	takeover	accounts,	websites,	and	
compromise	database	integrity
• Discovered	alarming	behaviors:	security-
sensitive	operations	are	protected	in	a	selective	
manner
• Read	all	the	gory	details	or	play	with	Deemon:	

• G.	Pellegrino	et	al.:	Deemon:	Detecting	CSRF	with	
Dynamic	Analysis	and	Property	Graphs	in	24th	
ACM	Conference	on	Computer	and	Communications	
Security,	2017	(CCS	2017)

• https://github.com/tgianko/deemon
Giancarlo	Pellegrino,	gpellegrino@cispa.saarland 22

