Center for IT-Security, Privacy

Deemon: Detecting CSRF with Dynamic
Analysis and Property Graphs

G. Pellegrino et al.
giancarlo.pellegrino@cispa.saarland

(presented by Martin Johns, SAP Security Research)

<img src="http://store.com/change pwd.php?password=pwnd"
width="0px" height="0px"/>

Cross-Site Request Forgery Attack

Look at this .
cat video!

A -

POST /login.php [..] user=Alice&pwd=secret If credentials are valid,
create and send a
session cookies

200 OK
Set-cookie: session=YBLgp32F

GET /video.html
] - @

GET /change pwd.php?password=pwnd // If cookie is valid, then

Cookie: session=YBLqQp32F update password

P 4

Giancarlo Pellegrino, gpellegrino@cispa.saarland 3

The Forgotten Sleeping Giant CISPA

* Popular vulnerability
« Among top 10 security risks w/ XSS and SQLi "o
* Discovered in popular websites, e.g., Gmail, Netflix, and ING

* Most of previous efforts spent on countermeasures:
* Origin header, synchronizer tokens, and browser plugins

* A little has been done to provide techniques for the detection

* Existing (semi-)automated techniques focus on input validation and logic flaws
—>Detection of CSRF via manual inspection

Giancarlo Pellegrino, gpellegrino@cispa.saarland 4

.
Building a tool to find CSRF CISPA

* CSRF is not overly hard to find for pen testers or security experts during
dedicated security testing

* But
* Bug pattern is unintuitive for developers
» Security testing is often used in automated processes, such as Q-Gates or regression
testing

* Hence,
e Can we build a tool to find CSRF automatically?

Giancarlo Pellegrino, gpellegrino@cispa.saarland

So, why is it hard to detect CSRF automatically? CISPA

* Challenges (Operational):
1) Application interaction
2) Side-effect free testing

* Challenges (Detection):
1) CSRF targets state transitions
2) Attacker reliably create requests incl. parameters and values
3) Not all state transitions are relevant

Giancarlo Pellegrino, gpellegrino@cispa.saarland 6

.
Challenge O1: Application interaction CISPA

* CSRF is rarely found on application entry pages

* Instead, in general it requires interaction with deeper functionality of the
application

* Thus, “blind” black-box testing is unlikely to access all CSRF-relevant interfaces

Giancarlo Pellegrino, gpellegrino@cispa.saarland 7

Challenge O2: Side-effect free testing CISPA
 Remember: CSRF is all about causing lasting side-effects on the server-side
* But:
 Testing for such side effects potentially causes... side effects
* Think:

» Deletion of a shopping basket
e Terminating an authenticated session

* How can we ensure that our testing does interfere with our testing?

Giancarlo Pellegrino, gpellegrino@cispa.saarland 8

Challenge D1: CSRF Targets State Transitions CISPA

n GET /user data.php

Cookie: session=YBLgp32F

Show user data

GET /change pwd.php?password=new_ secret
Fire a state :> Cookie: session=YBLgp32F

transition

 Determine when a state transition occurs

* Not all operations change the state of a webapp
» E.g., View user data vs reset user password

 Learning state transitions is possible

}/ Update password

UPDATE users
SET pwd=new_secret

[..]

_—
% SELECT *
FROM users

[..]

* However, existing approach can be inaccurate or operation-specific

Giancarlo Pellegrino, gpellegrino@cispa.saarland

Challenge D2: Attacker Reliably Creates Requests CISPA

0 =

GET /place_order.php?token=XZR4t6q

N/
Cookie: session=YBLgp32F A%xgg

=

* Determine relationships between parameters and transitions
» E.g., random security token may not be guessed by an attacker

* Existing techniques do not determine such a relationship
* E.g., Web scanners match param names against list of predefined names (e.g., “token”)

Giancarlo Pellegrino, gpellegrino@cispa.saarland 10

Challenge D3: Not all State Transitions are Relevant Cispra

GET /product.php?id=201

Fire a state : Cookie: session=YBLgp32F
transition

1) PageCounter++
2) Return product
description

200 OK

UPDATE pages
SETcnt=cnt+1
WHERE id=201

* Determine the relevance of a state transition

Il

» State transitions can be the result of operations such as tracing user
activities
* They are state-changing operations but not necessarily security-relevant

 Easy for humans but hard for machines

Giancarlo Pellegrino, gpellegrino@cispa.saarland 11

Our approach: Deemon

» Approach: Guided grey-box testing

* Input: User generated interaction traces
* E.g., Selenium scripts for regression/Ul testing

* Infrastructure

 HTTP observation
* Instrumented server-side that monitors all state changes

User Actions Trace

Network Trace
User Actions |:| |:| - / E_//

a 4 ... 4

Function Call Trace
Tests

[
DB Queries | \E’

Oracle /’—’—\\
el C

Web Application

N |
Web Application\\‘ ;] E j/

User Actions Replay Dynamic Traces Generation Building a Model Model Mining

Giancarlo Pellegrino, gpellegrino@cispa.saarland

Test Execution

CISPA

[\

Test Result

12

Our Solution: Deemon CISPA

User Actions Trace

Oracle &

Network Trace i N)
User Actions El |:| - o /-—> E'_——/ @
[i <
= N DB Queries ‘I \ @/ Web Application
Web Application - ‘g :I E :
User Actions Replay Dynamic Traces Generation Building a Model Model Mining Test Execution Test Result

* Application-agnostic framework for developers and analysts
1. Infer state transitions + data flow from program executions
2. Property graphs for uniform and reusable model representation
3. Graph traversals to select request candidates for testing
4. Verify replay-ability of HTTP requests

Giancarlo Pellegrino, gpellegrino@cispa.saarland 13

Deemon: Architecture

Dynamic Trace Generation

PNNINCE

<GET, 200, GET, 302 >

-
e
e
-

‘\
\‘\
200 OK S~
sh@ne_/ 0 «
178 ' N I

Login and change password ’ ’

Virtualized Env.

Giancarlo Pellegrino, gpellegrino@cispa.saarland 14

.
Reliable, repeatable workflow testing CISPA

* The architecture allows side-effect free testing

e Set server VM into vanilla state
 Run Ul workflow and record all traffic & server-side effects

° ...repeat

* Clear mapping between: Ul interaction / HTTP requests / server-side effects
* This allow the identification of single requests between traces

* Running the same Ul workflow multiple times and comparing HTTP request
parameters
* With the same user -> session specific parameters
* With different users -> user specific parameters

Giancarlo Pellegrino, gpellegrino@cispa.saarland 15

Deemon: Model Construction

Traces and Parse Trees FSM Data flow and types

next next

caused caused Jo—q
! v,= YBLgp32F
has Types: String, Session

unique

next next next

(o) (/)&
| vergpazr | [.|

next

propag.

accepts

source
v,= YBLgp32F

Types: String, Session
unique

[UPDATE] [tbl]G@

e || .
\ sink

Giancarlo Pellegrino, gpellegrino@cispa.saarland 16

Deemon: Traversals

O

>®

GET
“Find all CSRF”

U [password [pwd]
“Find all requests r such that: request(r)
1) r is state-changing

2) r can be created bym, <g

~——

3) the state change is relevant” accept

« U trans to
Vn: request(n) e

1) 3tr, q;, g¢ trans(tr, g, qp)
A accepts(tr, n)

2) V v: variable(v) atr, g, q¢ trans(tr, g;, gg) A accepts(tr, r)

Ahas(q, v) s
A v.Types N {“unguessable”} = @ £ ve=pwd
3) relevant(r)” Types: String
U
[Query processor] V v: variable(v) A has(q, v) A v.Types N {“unguessable”} = @

Giancarlo Pellegrino, gpellegrino@cispa.saarland 17

Deemon: Testing

Graph Traversals Test Execution

29999, —

Requests

<88g88 > 200 OK g

Falled Successful

V

V|rtuaI|zed Env.

Giancarlo Pellegrino, gpellegrino@cispa.saarland 18

.
Revisiting the Challenges CISPA

e O1) Application interaction
* Guided testing via recorded workflows

* 02) Side-effect free testing
 Removal of side effects via VM snapshots

* D1) CSRF targets state transitions
* Monitoring of server-side effects

e D2) Attacker reliably create requests incl. parameters and values
e Automated analysis of parameter roles and information flows

* D3) Not all state transitions are relevant
 Removal of non-authentication and generic state transitions

Giancarlo Pellegrino, gpellegrino@cispa.saarland 19

Evaluation CISPA

* Inputs:
* 10 Web apps from the Bitnami catalog (avg 600k LoC)
* 93 workflows (e.g., change password, username, add/delete user/admin, enable/disable plugin)

e 219 tests W o
9 succ.— 14 distinct CSRFs

» Attacks:
e User account takeover in AbanteCart and OpenCart
* Database corruption in Mautic
* Web app takeover in Simple Invoices

Giancarlo Pellegrino, gpellegrino@cispa.saarland

I ———
Results Analysis: Awareness CISPA

1. Complete Awareness: all state-changing operations are protected
e E.g., Horde, Oxid, and Prestashop

2. Unawareness: none of the relevant state-changing operations are protected
* |.e., Simple Invoices

3. Partial Awareness

* Role-based: only admin is protected
* |l.e., OpenCart and AbanteCart

* Operation-based: adding data items is protected, deleting is not
* |l.e., Mautic

Giancarlo Pellegrino, gpellegrino@cispa.saarland 21

Takeaways

* Presented Deemon: Dynamic analysis +
property graphs

e Deemon detected 14 CSRFs that can be
exploited to takeover accounts, websites, and
compromise database integrity

* Discovered alarming behaviors: security-
sensitive operations are protected in a selective
manner

e Read all the gory details or play with Deemon:

* G. Pellegrino et al.: Deemon: Detecting CSRF with
Dynamic Analysis and Property Graphs in 24th
ACM Conference on Computer and Communications
Security, 2017 (CCS 2017)

* https://github.com/tgianko/deemon

Giancarlo Pellegrino, gpellegrino@cispa.saarland

repository Pull requests Issues Marketplace Explore
£ tgianko / deemon ©Watch~ 7 *Star 12 YFork 3
<> Code Issues 0O Pull requests 0 Projects 0 Wiki Insights

Deemon is a tool to detect CSRF in web applications. Deemon has been used for the paper "Deemon:
Detecting CSRF with Dynamic Analysis and Property Graphs" by G. Pellegrino, M. Johns, S. Koch, M.
Backes, and C. Rossow.

csrf vulnerability-detection security-testing

® 621 commits 2 branches © 0 releases 12 2 contributors

Branch: master - | New pull request Create new file Upload files Find file [NeLLERIECLITLILEL RS

24 tgianko Typo on Florian's name Latest commit ccb9610 2 days ago

m csrf-test-runner added the licence into our readme 27 days ago
m data added the licence into our readme 27 days ago
m deep-modeling added the licence into our readme 27 days ago
m docs added that we ship a compiled selenese binary 27 days ago
= mosgi added the licence into our readme 27 days ago
i rawtrace-analysis added the licence into our readme 27 days ago
m selenese-runner added that we ship a compiled selenese binary 27 days ago
m testing added the licence into our readme 27 days ago
m vilanoo/src added the licence into our readme 27 days ago
m zumka added the licence into our readme 27 days ago

.gitignore Update dockerfile and other docker infrastructure files 11 months ago
g README.md Typo on Florian's name 2 days ago
B create-consecutive-stat.. added the licence into our readme 27 days ago

run-csrf-test.sh added the licence into our readme 27 days ago

run-test-runner.sh added the licence into our readme 27 days ago
B run-test.sh added the licence into our readme 27 days ago

README.md

Deemon Project

This is the code base of Deemon, a tool to detect CSRF in web applications. Deemon is an
application-agnostic, automated framework designed to be used by developers and security
analysts during the security testing phase of the software development life-cycle. The current
version of Deemon supports PHP-based web applications that use MySQL databases.

Deemon has been used for the paper Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs by G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow.

22

