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Agenda

Mongo query manipulation (or SQL Injection)

Angular sanitation (or HTML injection)

Angular expression injection

Live simulations and exploits for everything…



Who am I

Israel Chorzevski, over 8 years in the security research

Tech leader at AppSec Labs, Application security experts

AppSec Labs services

• Training (secure coding, hacking)

• Consulting (SDLC)

• Penetration testing

• Mobile (Android, iOS, Windows)



AppSec Labs
Learning Management System



AppSec Labs
The leading Application Security Company

A bunch of Application Security Experts 
Ninja Pentesters of Web & Mobile Apps 

Elite Trainers for Hacking & Secure coding courses



Mongo DB



No SQL – Mongo DB

Document-oriented database

You have no rows, you have a collection of objects 
(AKA documents)

Each document may have a different structure

Queries are written in BSON (binary JSON)

Simulation – The structure of the DB



No SQL – Mongo DB

Basic query structure



No SQL – Mongo DB
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No SQL – Mongo DB

JSON.parse

Simulations

Manipulation

Denial of Service using $in

Change $inc to $set



No SQL – Mongo DB

And what happens if you have no JSON.parse?

Server code:

app.all('/login', function(req, res){

users.find( { user: req.body.u, pass: req.body.p }, 
function(err, user){

console.log (“successfully login”);

});

});

Simulation: node parameter_pollution.js



No SQL – Mongo DB

HTTP Parameter Pollution

What returns req.param(‘fieldX’) if the URL ends 
with: ?fieldX=abc&fieldX=def

[‘abc’, ‘def’]

And what will it return if the URL ends with: 
?fieldX[abc]=def

{abc: def}



No SQL – Mongo DB

Bypass login simulation

Original query:

users.find({user:req.body.u, pass:req.body.p}, 

Malicious bypass

<input name=“p[$ne]” value=“anything” />

Final query:

users.find({user:req.body.u, pass:{$ne: 1337}}, 



No SQL – Mongo DB

Mitigations:

Use libraries that support parameterized queries

Perform strong input validation using:
Type validation (string is a string and not an object)

Regular expression (white list approach)
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Controller, Expression and 
Binding

ng-controller

Set the controller ($scope)

ng-bind and {{expression}}

There are two ways to show a variable content (or function’s result) into the 

page

Example: <span>{{variable}}</span> <span ng-bind=“variable”></span>

ng-model

Binds an element to a variable. two-way data binding ($scope --> view and 

view --> $scope),

Example: <input type=“text” ng-model=“variable” />



Binding

Simulation

http://victim-site.com:2000/angular/my_details/

ng-bind and {{expression}}

Two ways to show a variable content (or function’s result) into the page

Example: <span>{{variable}}</span> <span ng-

bind=“variable”></span>

ng-model

Binds an element to a variable. two-way data binding ($scope --> view 

and view --> $scope),

Example: <input type=“text” ng-model=“variable” />

http://victim-site.com:2000/angular/my_details/my_details_mix.htm


ng-bind – Encode the HTML

ng-bind-html – Allow filtered HTML

linky – Encode the HTML, change links to be 
clickable

http://victim-site.com:2000/angular/xss_filters2/

Direct content updating is still vulnerable !

Angular Filters

http://victim-site.com:2000/angular/xss_filters2/


ng-bind-html – Allow filtered HTML

ng-bind-html is also not safe

Text injection

Paint big pictures

Track users using external pictures
Referrer leakage

Angular Filters



Inject models:
{{scared_message | filter}}

Inject scripts:
{{myAlert()}}

http://victim-site.com:2000/angular/xss/new_vectors2.php

Angular – New Injections

http://victim-site.com:2000/angular/xss/new_vectors2.php


New technologies
Introduce new vulnerabilities
May reintroduce old vulnerabilities

Strong input validation can assist and is 
always recommended

Learn, learn, learn…

Conclusions



QUESTIONS ?

Israel@AppSec-Labs.com



THANK YOU !

Israel@AppSec-Labs.com


