
(in)Secure code, Exploits and mitigation
AngularJS and MongoDB

Israel Chorzevski
Tech leader, AppSec Labs

Agenda

Mongo query manipulation (or SQL Injection)

Angular sanitation (or HTML injection)

Angular expression injection

Live simulations and exploits for everything…

Who am I

Israel Chorzevski, over 8 years in the security research

Tech leader at AppSec Labs, Application security experts

AppSec Labs services

• Training (secure coding, hacking)

• Consulting (SDLC)

• Penetration testing

• Mobile (Android, iOS, Windows)

AppSec Labs
Learning Management System

AppSec Labs
The leading Application Security Company

A bunch of Application Security Experts
Ninja Pentesters of Web & Mobile Apps

Elite Trainers for Hacking & Secure coding courses

Mongo DB

No SQL – Mongo DB

Document-oriented database

You have no rows, you have a collection of objects
(AKA documents)

Each document may have a different structure

Queries are written in BSON (binary JSON)

Simulation – The structure of the DB

No SQL – Mongo DB

Basic query structure

No SQL – Mongo DB

No SQL – Mongo DB

No SQL – Mongo DB

JSON.parse

Simulations

Manipulation

Denial of Service using $in

Change $inc to $set

No SQL – Mongo DB

And what happens if you have no JSON.parse?

Server code:

app.all('/login', function(req, res){

users.find({ user: req.body.u, pass: req.body.p },
function(err, user){

console.log (“successfully login”);

});

});

Simulation: node parameter_pollution.js

No SQL – Mongo DB

HTTP Parameter Pollution

What returns req.param(‘fieldX’) if the URL ends
with: ?fieldX=abc&fieldX=def

[‘abc’, ‘def’]

And what will it return if the URL ends with:
?fieldX[abc]=def

{abc: def}

No SQL – Mongo DB

Bypass login simulation

Original query:

users.find({user:req.body.u, pass:req.body.p},

Malicious bypass

<input name=“p[$ne]” value=“anything” />

Final query:

users.find({user:req.body.u, pass:{$ne: 1337}},

No SQL – Mongo DB

Mitigations:

Use libraries that support parameterized queries

Perform strong input validation using:
Type validation (string is a string and not an object)

Regular expression (white list approach)

Angular

Angular

Angular

Controller, Expression and
Binding

ng-controller

Set the controller ($scope)

ng-bind and {{expression}}

There are two ways to show a variable content (or function’s result) into the

page

Example: {{variable}}

ng-model

Binds an element to a variable. two-way data binding ($scope --> view and

view --> $scope),

Example: <input type=“text” ng-model=“variable” />

Binding

Simulation

http://victim-site.com:2000/angular/my_details/

ng-bind and {{expression}}

Two ways to show a variable content (or function’s result) into the page

Example: {{variable}} <span ng-

bind=“variable”>

ng-model

Binds an element to a variable. two-way data binding ($scope --> view

and view --> $scope),

Example: <input type=“text” ng-model=“variable” />

http://victim-site.com:2000/angular/my_details/my_details_mix.htm

ng-bind – Encode the HTML

ng-bind-html – Allow filtered HTML

linky – Encode the HTML, change links to be
clickable

http://victim-site.com:2000/angular/xss_filters2/

Direct content updating is still vulnerable !

Angular Filters

http://victim-site.com:2000/angular/xss_filters2/

ng-bind-html – Allow filtered HTML

ng-bind-html is also not safe

Text injection

Paint big pictures

Track users using external pictures
Referrer leakage

Angular Filters

Inject models:
{{scared_message | filter}}

Inject scripts:
{{myAlert()}}

http://victim-site.com:2000/angular/xss/new_vectors2.php

Angular – New Injections

http://victim-site.com:2000/angular/xss/new_vectors2.php

New technologies
Introduce new vulnerabilities
May reintroduce old vulnerabilities

Strong input validation can assist and is
always recommended

Learn, learn, learn…

Conclusions

QUESTIONS ?

Israel@AppSec-Labs.com

THANK YOU !

Israel@AppSec-Labs.com

