

build | integrate | secure

Application Portfolio Risk Ranking Banishing FUD With Structure and Numbers

Dan Cornell

OWASP AppSec DC 2010 November 11th, 2010

Overview

- The Problem
- Information Gathering
- Application Scoring
- Risk Rank & Tradeoff Analysis
- Discussion
- Conclusion, Next Steps, and Q&A

Some Key Questions for Today's Session

- Where do you start?
- What applications represent the biggest risk?
- What attributes make applications more or less risky?
- What are the most cost-effective way to manage the risk of inherited applications?
- What approaches might work for your organization?

Desired Outcomes

- Understand risk-based options for managing the security of inherited applications
- Develop a framework for ranking risks with specific applications
- Understand some of the decision-making factors that come into play when risk-ranking applications
- Apply one tactic from what you learn today next week at your organization

Personal Background

- Denim Group CTO
- Developer by background
 - Java, .NET, etc

Denim Group Background

- Professional services firm that builds & secures enterprise applications
- Secure development services:
 - Secure .NET and Java application development
 - Post-assessment remediation
 - Secure web services
- Application security services include:
 - External application assessments
 - Code reviews
 - Software development lifecycle development (SDLC) consulting
 - Classroom and e-Learning instruction for developers

What you Don't know CAN Hurt You

- Passion: Get security professionals to ask a better set of questions
- Today's presentation focuses on helping you increase your IQ in the arena of software portfolio risk

Background – the Current State of Affairs

- Creating meaningful enterprise-wide software security initiatives is hard
- The vast majority of info regarding software security focuses on testing software writing more secure code or SDLC process improvement
- Most organizations have hundreds or thousands of legacy applications that work!
 - They represent money already spent ROI?
 - They are viewed "part of the plumbing" by management
 - The codebases can be millions of lines of code
- Industry is focused on web applications
 - Other software risks must be taken into consideration
 - Web services, mobile applications, SaaS, certain desktop applications

Key Facts

- 66% have adopted a risk-based approach to remediation of application vulnerabilities
- 71% have an executive or team with primary ownership and accountability for application security
- 66% have defined communications channels between security, operations, and development teams
 - Source: "Securing Your Applications: Three Ways to Play," Aberdeen Group, August 2010

Goal for Our Model

- Transparent Decisions and calculations should be explainable
- Adaptable Not every organization has the same drivers, goals or resources
- Practical Get something that works and iterate

Methodology

- Steal steal!
 - Andrew Jacquith's Application Insecurity Index (AII) from his book Security Metrics
 - Nick Coblentz's blog posts on the topic
 - Other example spreadsheets, etc
- Simplify simplify!
 - Great is the enemy of the good enough
 - Any information collected should provide value
 - Work in progress
- Test with organizations
- Repeat

Step 1: Develop Initial Criteria

- Business Importance Risk
- Assessment Risk

Step 2 – Information Gathering

- Build a Portfolio of Applications
 - Public-facing web sites
 - Customer-facing web applications
 - Partner-facing web applications
 - Internal- or partner-facing web services
 - Customer Relationship Management (CRM) systems
 - Financial applications
 - "Green screen" mainframe applications
 - Software as a Service (SaaS) applications

Step 2 – Information Gathering (Continued)

- Collect Background Information
 - Development Details
 - Vendor (if any)
 - Audience
 - Hosting Details
- Assess the Data
 - Type (CCs, PII, ePHI, etc)
 - Compliance Requirements
- Determine the Scale
 - Lines of Code
 - Dynamic Pages
 - Concurrent Users
 - User Roles

Step 2 – Information Gathering (Continued)

- Assess the Underlying Technology
 - Infrastructure (OS, hardware, etc)
 - Platform (.NET, Java, PHP, etc)
 - Versions
- Assess the Security State
 - Assessment Activity (type, date, etc)
 - Vulnerabilities (high, medium, low)
 - Protection (IDS/IPS, WAF)

Step 3 – Application Scoring

- Business Importance Risk
 - Business Function (customer interface, internal but public-facing, departmental use only)
 - Access Scope (external, internal)
 - Data Sensitivity (customer data, company confidential, public)
 - Availability Impact (serious, minor, minimal, or no reputation damage)

Step 3 – Application Scoring (Continued)

- Technology Risk
 - Authentication (methods, enforcement)
 - Data Classification (formal approach or not)
 - Input / Output Validation (structured or not)
 - Authorization Controls (resource checks in place or not)
 - Security Requirements (explicitly documented or not)
 - Sensitive Data Handling (controls in place like encryption or not)
 - User Identity Management (procedures in place for account creation, access provisioning, and change control or not)
 - Infrastructure Architecture (network segmentation, patching)

Step 3 – Application Scoring (Continued)

- Assessment Risk
 - Technical Assessment (assessment activity, vulnerabilities still present)
 - Regulatory Exposure (unknown, subject to regulation)
 - Third-Party Risks (outsourced development, SaaS hosting, etc)

Step 4: Determine Assessment Approach

- Currently using OWASP Application Security Verification Standard (ASVS)
- Determine what you consider to be a Critical, High, Medium, Low
- Determine what assessment approach/standard you want to use

Results Comparison

- Let's analyze our results
- Apply quantitative decision-making analysis concepts
 - Want to understand what level of effort addresses the highest amount of risk
- Tradeoff analysis

Evaluation

- Pros
 - Provides for a structured approach
 - Calculations are observable
 - Standards can be set for specific organizations
- Cons
 - Can seem like a lot of data to collect
 - Technology Risk is hard to get at a proper level of granularity
 - Excel spreadsheet combines data and code
 - Needs work for dealing with "cloud" stuff

So where do you go from here?

Example Artifacts

- Application Tracking and Risk-Ranking Spreadsheet
 - What are the applications?
 - What are their characteristics?
 - How do they rank against one another?
- Risk-Ranking Planning Spreadsheet
 - Which applications are critical, high, medium or low?
 - How are you going to deal with each application?

Potential Follow-up Options

- End of Life
- Remediate
- Potential Testing Approaches
 - Tailoring to Documented Risk
 - Work identified list from top to bottom
- Application Security Verification Standard (ASVS)
 - Levels of application-level security verification that increase in breadth and depth as one moves up the levels
 - Verification requirements that prescribe a unique white-list approach for security controls
 - Reporting requirements that ensure reports are sufficiently detailed to make verification repeatable, and to determine if the verification was accurate and complete.

What you can do now!

- Collect or scrub your initial application inventory
- Develop relationships with 3rd parties who can help you through the identification process
- Find a peer that is conducting the same risk ranking
- Familiarize yourself with OWASP OpenSAMM and OWASP ASVS

Conclusion

- Managing the security of inherited applications can present the most severe headaches for someone building a software security program
- A risk-based approach is really the only economically feasible approach given the size/complexity of the problem
- Understanding certain attributes of inherited applications is critical to applying a risk-based management approach

Resources

- "Web Application Security Portfolios, ISSA Journal, May 2009, Coblentz, Nick.
- Open Web Application Security Project Open Software Assurance Maturity Model, www.owasp.org
- Open Web Application Security Project Application Security Verification Standard, <u>www.owasp.org</u>
- "How-to-Guide for Software Security Vulnerability Remediation," Dan Cornell, Denim Group, October 2010
- Cloud Security Alliance
- "Securing your Applications," Aberdeen Group, Brink, Derek, August 2010

Contact

Dan Cornell
dan@denimgroup.com
(210) 572-4400

www.denimgroup.com

blog.denimgroup.com

Twitter: @danielcornell

Email me for a copy of the example Excel spreadsheet