o

SEVENTH FRAMEWORK
PROGRAMME

Advanced Software Protection:
Integration, Research, Exploitation

UNIVERSITEIT :
GENT Bjorn De Sutter

bjorn.desutter@ugent.be

fﬂspire in a nutshell

BEN D NAGRA I (SafeNet I gemalto” s

security to be free

= e 3 e

SafeNet use case

Protected SafeNet use case

Gemalto use case Software Protection Tool Flow Protected Gemalto use case

111

11

Nagravision use case Protected Nagravision use case

Data Hiding Algorithm Hiding Anti-Tampering Renewability

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

Man-At-The-End (MATE) Attacks

-
<
I &

Hsp|re Advanced Software Protection: Integration, Research and Exploitation

Man-At-The-End (MATE) Attacks

software analysis tools oscilloscope

developer boards screwdriver JTAG debugger

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

Economics of MATE attacks
=N

€/day

protection

engineering exploitation time
a.k.a. identification

rﬁspire : Advanced Software Protection: Integration, Research and Exploitation

Economics of MATE attacks
"6

€/day

engineering exploitation time
a.k.a. identification

rqupire : Advanced Software Protection: Integration, Research and Exploitation

Economics of MATE attacks

€/day A

JISJOAIP

A

<renewabi|ity
>

engineering exploitation time
a.k.a. identification

rf’-\spire : Advanced Software Protection: Integration, Research and Exploitation

Assets and security requirements

Asset category

Security
Requirements

Examples of threats

(keys, credentials, tokens,
private info)

(keys, service info)

(tokens, keys, used IDs)

(crypto & app
bootstrap keys)

(Watermarks, finger-prints,
traceable keys)

(algorithms, protocols,
security libs)

(license checks & limitations,
authentication & integrity
verification, protocols)

Confidentiality
Privacy
Integrity

Integrity

Confidentiality
Integrity

Confidentiality
Integrity

Non-repudiation

Confidentiality

Execution correctness
Integrity

Impersonation, illegitimate authorization
Leaking sensitive data
Forging licenses

Forging licenses

Impersonation
Service disruption, illegitimate access

Build emulators
Circumvent authentication verification

Make identification impossible

Reverse engineering

Circumvent security features (DRM)

Out-of-context use, violating license terms

fﬂspire in a nutshell

BEN D NAGRA I (SafeNet I gemalto” s

security to be free

= e 3 e

ASPIRE Framework

SafeNet use case Protected SafeNet use case

Decision Support System

1

Nagravision use case S s Tl €I - Protected Nagravision use case

!
!

Gemalto use case Protected Gemalto use case

Data Hiding Algorithm Hiding Anti-Tampering Renewability

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

fﬂ

spire Goals

1. Reference architecture for protected mobile services

Vs

mobile device (untrusted, MATE attack)

Y4

:[client-side app

wireless/mobile network
(untrusted, MITM attack)

server (trusted)

" server-side logic

hidden data | renewability-supporting /\ [\ remote verifier
hidden algorithms virtual machine \’ secure channel l/ bytecode provider
anti-tampering remote attestator renewa biIitY protection
:|_L__mechanisms | ASPIRE protected program | cneine ,
\ II ;\l IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ;l\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

2. Software protection techniques and integrated plugin-based tool flow

annotated

ASPIRE data hiding

source algorithm hiding

level

protection anti-tampering

¥

partially protected source code

¥

standard compiler

L4

object code

--

ASPIRE protected program

client-side app m

-
.
YssmsmsmEnsm

S SE——— §od

ASPIRE data hiding remote attestation
bll:\?ezy algorithm hiding renewability
=) | protection | anti-tampering security libraries

fﬂ

spire Goals

3. Decision Support System

[platform description]

annotations] -

input
provided by [
the user [

assets]

e

ASPIRE Decision Support System tool chain

- instructions

ASPIRE Knowledge Base

- attack models & evaluation methodology
- security metrics

- experiments with human subjects

- public challenge

2. Software protection techniques and integrated plugin-based tool flow

annotated

ASPIRE data hiding ST EEEEEENEEEEEEEEEEEEsEEEEEEEEEssEEsEEEEEEEEEsEEsEEEEEEy ‘:

source . 1 : ASPIRE protected program .

level algorithm hiding : :

protection anti-tampering client-side app m

partia”y protected source code [ﬂ ﬂ K
. ASPIRE data hiding remote attestation

standard compiler bina
3 Ieverly algorithm hiding renewability

object code

=) | protection | anti-tampering security libraries

Part 1: Reference Architecture

|12 |/ E .
n Cookbook for combining protections

o Why?

sub-goal

start of the attack
final goal

t5 p4

Ps

t, attack steps

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

o How to combine multiple protections?
o How do the individual protections actually work?

Protected Application

Application server « /\V/\ » Application logic
T / 'Di“ | Protection technique A E
> S |
- I
i Protection service B i , Protection technique B
« w [1 [

ASPIRE portal
ACCL

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

o How to combine multiple protections?
o How do the individual protections actually work?

Original application logic

— 3
1 T
5
v
Stub 1 Stub 2
2 T 4
\ 4
] > Bytecode 1
VM
Bytecode 2

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

7 How to combine multiple protections?
How do the individual protections actually work?

| client:Client | | mainThread:Server |

1: bootstrap

—

2: loadSlice

n_5: send

n_3: propagateSynch

n_7: ask

n_6: storelnputValue | |;

n_8: saveOutputValue

n_9: waitForValue
n_10: sendValue

11: exit

I slicedThread:Server |

n_1:checkSynch

n_4: waitForValue

[lteration]

fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

o How to combine multiple protections?
o How do the individual protections actually work?

Data Hiding Algorithm Hiding Anti-Tampering Renewability

= data obfuscations
= white box cryptography (static keys, dynamic keys, time-limited)
= diversified crypto libraries

rf’-\spir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

e 000
o How to combine multiple protections?
o How do the individual protections actually work?

Data Hiding Algorithm Hiding Anti-Tampering Renewability

control flow obfuscations
multithreaded crypto
instruction set virtualization
code mobility
self-debugging
client-server code splitting

rf’-\spir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

o How to combine multiple protections?
o How do the individual protections actually work?

Data Hiding Algorithm Hiding Anti-Tampering Renewability

m code guards

m static and dynamic remote attestation
= reaction mechanisms

m client-server code splitting

rf’-\spir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

o How to combine multiple protections?
o How do the individual protections actually work?

Data Hiding Algorithm Hiding Anti-Tampering Renewability

native code diversification =
bytecode diversification

[
renewable white-box crypto =
mobile code diversification =
[

renewable remote attestation

rf’-\spir e : Advanced Software Protection: Integration, Research and Exploitation

Part 1: Reference Architecture

How to combine multiple protections?
How do the individual protections actually work?
How do the protections compose?
Do the protections share components?
If protections compose, are there phase-ordering issues?
Which protections/components need to be combined and how?
Where is 1 + 1 > 2 in terms of protection strength?
What is the combined impact on software development life cycle?

'fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

Part 2: ASPIRE Compiler Tool Chain

2. Software protection techniques and integrated plugin-based tool flow

annotated

ASPIRE data hiding

source

level algorithm hiding

protection anti-tampering

A4

partially protected source code

¥

ASPIRE protected program

client-side app M

.
.

standard compiler

L4

object code

= Python — Dolt compiler flow

= JSON configuration scripts

= invokes chain of +/- independent tools

ASPIRE
binary
level
protection

data hiding remote attestation
algorithm hiding renewability
anti-tampering security libraries

= TXL source code rewriting

= Diablo link-time binary rewriting

fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

Source code annotations
L

static const char ciphertext[] _ attribute
((ASPIRE("protection(wbc,label(ExampleFixed),role(input),size(16))")))
= { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, OxOf };

static const char key[] attribute
((ASPIRE("protection(wbc,label(ExampleFixed),role(key),size(16))")))
= { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, Oxaa, Oxbb, Oxcc, Oxdd, Oxee, Oxff };

char plaintext[16] _ attribute
((ASPIRE("protection(wbc,label(ExampleFixed),role(output),size(16))")))

_Pragma ("ASPIRE begin protection(wbc,label(ExampleFixed),algorithm(aes),mode(ECB),operation(decrypt)")")
decrypt_aes 128(ciphertext, plaintext, key);
_Pragma("ASPIRE end");

fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

Source Code rewriting
I

rﬁspir e : Advanced Software Protection: Integration, Research and Exploitation

Binary Code Rewriting

D01 D02 BCO02 BCO08
. map file binary | library object code
SHEIEH RS a.out.map | liba.so.map a.out | liba.so .0

BLP01.02 BLP01.01
instruction selector ------ bytecode chunk identifier
.SO diablo

v

BLCO02

extractable chunks "'“\\
JSON X t’
N 14
PIASIL O .
BLPO02 h

X-translator

BCO03
bytecode + stubs
.0

fﬁspire : Advanced Software Protection: Integration, Research and Exploitation

Part 3: Decision Support

W

0 0

Knowledge Base

Complexity & Resilience Metrics

Protection Strength Evaluation Methodology
Optimization strategies

fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

Validation & Demonstration

three real-world use cases
software license manager
one-time password generator
DRM protection

security requirements from industry
functional requirements
non-functional requirements
assurance requirements

dynamically linked Android 4.4 — ARMv7 libraries

penetration tests by professional pen testers

fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

Validation & Demonstration
A

o controlled experiments with academic hackers
o public challenge and bounties

oo ASPIRE Public Challenge x\+

) (0@ @ | https://bounty.aspire-fp7.eu @ Q search 4 A ﬁ|e A W

Il

Home Terms Rankings Contact

ASPIRE Public Challenge fﬂspire

The ASPIRE Public Challenge invites everyone to
break some of the software protections developed
and implemented in the ASPIRE Project. There are in
total eight different challenges for the ARM platform Username* Login
(both GNU/Linux and Android), each of which contain

a key check. It is your goal to extract this key. For

every one of these challenges, the first successful Required. 30 characters or fewer. Letters, digits

attack is eligible for a prize of €200 (see the terms and @/./+/-/_ only.

and conditions for more information).

Join the challenge! Already have an account?

Email*

First name*

More resources
El

0 https://www.aspire-fp7.eu
o papers

o public reports
o contact info

o https://github.com/aspire-fp7

o https://github.com/diablo-rewriter

= Youtube channel: ASPIRE-FP7 Software Protection Demonstration

fﬂspir e : Advanced Software Protection: Integration, Research and Exploitation

fﬂspire Grant Agreement No 609734

The fﬂspire project has received funding from the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 609734.

If you need further information, please contact the coordinator:
Bjorn De Sutter, Ghent University
Technologiepark-Zwijnaarde 15, B-9052 Gent, Belgium
Tel: +32 9 264 33 67 Fax: +32 9 264 35 94
Email: coordinator@aspire-fp7.eu
Website: hitps://www.aspire-fp/7.eu

%

&

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

fﬂspire : Advanced Software Protection: Integration, Research and Exploitation

