
Advanced Software Protection:
Integration, Research, Exploitation

Bjorn De Sutter
bjorn.desutter@ugent.be

Belgian OWASP Chapter Meeting18 Oct 2016

SafeNet'use'case'

Gemalto'use'case'

Nagravision'use'case'

Protected'SafeNet'use'case'

Protected'Gemalto'use'case'

Protected'Nagravision'use'case'

So#ware(Protec,on(Tool(Flow(

in a nutshell
2

: Advanced Software Protection: Integration, Research and Exploitation

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

Man-At-The-End (MATE) Attacks

: Advanced Software Protection: Integration, Research and Exploitation

3

Man-At-The-End (MATE) Attacks

oscilloscope

developer boards JTAG debugger

software analysis tools
4

: Advanced Software Protection: Integration, Research and Exploitation

screwdriver

Economics of MATE attacks

engineering
a.k.a. identification

exploitation

pr
ot

ec
tio

n
€/day

time

5

: Advanced Software Protection: Integration, Research and Exploitation

Economics of MATE attacks

€/day

timeengineering
a.k.a. identification

exploitation

protection

diversity

6

: Advanced Software Protection: Integration, Research and Exploitation

Economics of MATE attacks

€/day

timeengineering
a.k.a. identification

exploitation

protection

diversity

7

: Advanced Software Protection: Integration, Research and Exploitation

renewability

Assets and security requirements

: Advanced Software Protection: Integration, Research and Exploitation

8

Asset category Security
Requirements Examples of threats

Private data
(keys, credentials, tokens,
private info)

Confidentiality
Privacy
Integrity

Impersonation, illegitimate authorization
Leaking sensitive data
Forging licenses

Public data
(keys, service info) Integrity Forging licenses

Unique data
(tokens, keys, used IDs)

Confidentiality
Integrity

Impersonation
Service disruption, illegitimate access

Global data (crypto & app
bootstrap keys)

Confidentiality
Integrity

Build emulators
Circumvent authentication verification

Traceable data/code
(Watermarks, finger-prints,
traceable keys)

Non-repudiation Make identification impossible

Code (algorithms, protocols,
security libs) Confidentiality Reverse engineering

Application execution
(license checks & limitations,
authentication & integrity
verification, protocols)

Execution correctness
Integrity

Circumvent security features (DRM)
Out-of-context use, violating license terms

SafeNet'use'case'

Gemalto'use'case'

Nagravision'use'case'

Protected'SafeNet'use'case'

Protected'Gemalto'use'case'

Protected'Nagravision'use'case'

So#ware(Protec,on(Tool(Flow(

in a nutshell
9

SafeNet'use'case'

Gemalto'use'case'

Nagravision'use'case'

Protected'SafeNet'use'case'

Protected'Gemalto'use'case'

Protected'Nagravision'use'case'

ASPIRE'Framework'
'
'
'
'
'
'

Decision'Support'System'

So9ware'Protec:on'Tool'Chain'

: Advanced Software Protection: Integration, Research and Exploitation

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

Goals
10

2.	Software	protection	techniques	and	integrated	plugin-based	tool	flow

1.	Reference	architecture	for	protected	mobile	services

server	(trusted)wireless/mobile	network	
(untrusted,	MITM	attack)mobile	device	(untrusted,	MATE	attack)

client-side	app server-side	logic

secure	channel

ASPIRE	protected	program

remote verifier
bytecode	provider

renewability	protection	
engine

hidden	data renewability-supporting	
virtual	machinehidden	algorithms

anti-tampering
mechanisms remote	attestator

annotated
source	code

ASPIRE
source
level

protection

data	hiding

algorithm	hiding

anti-tampering

partially	protected	source	code

standard	compiler

object	code

ASPIRE
binary
level

protection

remote	attestation

renewability

data	hiding

algorithm	hiding

anti-tampering security	libraries

ASPIRE	protected	program

client-side	app server-side	logic

Goals
11

2.	Software	protection	techniques	and	integrated	plugin-based	tool	flow

annotated
source	code

ASPIRE
source
level

protection

data	hiding

algorithm	hiding

anti-tampering

partially	protected	source	code

standard	compiler

object	code

ASPIRE
binary
level

protection

remote	attestation

renewability

data	hiding

algorithm	hiding

anti-tampering security	libraries

ASPIRE	protected	program

client-side	app server-side	logic

!input!
provided!by!
the!user!

pla2orm!descrip5on!

annota5ons!

assets!

ASPIRE'Decision'Support'System'

ASPIRE!Knowledge!Base!

tool!chain!
instruc5ons!

3.	Decision	Support	System

- attack	models	&	evaluation	methodology
- security	metrics
- experiments	with	human	subjects
- public	challenge

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

12

¨ Cookbook for combining protections
¨ Why?

final goal

sub-goal

attack steps

start of the attack

programs which were protected by software tamper resistant
transformations they proposed is a NP-complete problem. S.
Chow et al. [18] did a similar work.

B. Evaluation based on Attack
Researches in this group measure or proof the effectiveness

of protection techniques from the view of attack.

M. Ceccato et al. [9] proposed two manual experiments to
empirically measure the effectiveness of identifier renaming,
which is an instance of layout obfuscation. I. Sutherland et al.
[10] did a similar work, but focused on the reverse engineering
process for binary code. Both M. Ceccato and I. Sutherland
analyzed factors affecting attack process, for example,
attacker’s ability, but none specific metric was proposed.

As well as manually assessment, several anti-protection
technologies were used too. C. Linn and S. Debray[19] used
three different disassemblers to evaluate the code obfuscation
techniques they proposed, and S. Udupa[11] proposed
deobfuscation approaches to evaluate control flow flattening
obfuscation. J. Hamilton and S. Danicic [22] evaluated Java
static watermarking algorithms by obfuscating, which can be
treated as a technique for distortive attacks. Except theoretical
analysis, C. Wang et al. [17] also proved the effectiveness of
the transformation they proposed with a control-flow analysis
tool.

Technically, the evaluation approach in this paper belongs
to the second group, but acts differently: firstly, we believe all
software (a program which is made up of a sequence of code)
are the same to attackers, therefore, the approach we proposed
does not aim at a specific protection technology; secondly, we
propose a metric and a method for counting the metric; thirdly,
rather than doing manual attacks or developing specific attack
tools, we use an attack model to describe software attacks.
Note that H. Goto et al. [21] applied parse tree to evaluate the
difficulty of reading tamper-resistant software, however,
instead of attacks, they used the model to describe software.

III. ATTACK MODELING BASED ON PETRI NET
Attack model has been widely used in information security.

Most time it focuses on how to document attacks in a
structured and reusable form [12]. J. Steffan and M.
Schumacher [13] compared attack models with programming
guidelines, pattern languages, evaluation criteria, and
vulnerability databases, and proved that attack model to be the
most suitable way to support discovery and avoidance of
security vulnerabilities.

In this section, we make a list of the key information
included in one software attack process, define the attack
model based on Marked Petri Net, and instantiate Token in it.

A. Key Information in Software Attack
[13] listed six types of information contained in an informal

attack description. Based on this list, we made a new list for
software attack description. (Fig. 1, Table I).

Software
Attack

Goal

Method 1

Method 2
……

State 1
State 2

……

Technique

Sub-goal

Action
Precondition

Influence

Figure 1. Key information and their relationship

TABLE I. KEY INFORMATION IN ONE SOFTWARE ATTACK PROCESS

Name Meaning

Goal
Goal is the purpose of one software attack process, and
normally stands for getting or modifying assets
contained in software.

Method
A Method stands for one possible way to achieve Goal.
Usually, more than one Method will be included in one
software attack process.

State
The sequence of States stands for the detailed process
of software attack. Sometimes, State can be treated as
step in software attack process.

Technique Technique stands for the attack technique which may be
used in the software attack process.

Sub-goal A Sub-goal stands for the goal of a attack technique.

Action Action is the dynamic information in software attack,
and stands for performing an attack technique.

Precondition Precondition is the condition of performing an attack
technique.

Influence Influence is the consequence of performing an attack
technique.

“What’s the condition of attack?”, “If attack can be
executed or not?”, and “What will happen after the execution?”
are some of the essential questions in the effectiveness
evaluation of software protection. Thus, precondition, action,
and influence are important elements needing to be described.

One of the most popular attack models is Attack Tree [14].
It is a tree structure to describe the security of systems, with the
Goal as the root node and different Methods as leaf nodes.
State and Sub-goal are the other nodes in the tree, and there are
two kinds of interdependencies of States: AND node and OR
node [14]. But Attack Tree cannot describe Precondition,
Action, and Influence precisely.

In this paper, we prefer Petri Net (C. A. Petri, 1962), which
is a net-like graph and carries more information than Attack
Tree.

B. Software Attack Model based on Marked Petri Net
Petri Net describes four aspects of a system: states, events,

conditions, and the relationships among them. When condition
was satisfied, related event would occur; the occurrence of
event would change the states in the system and cause some
other conditions to be satisfied [15]. A basic Petri Net is a tuple
PN= (P, T, F) where:

x P is a finite set of states, represented by circles.

x T is a finite set of events, represented by rectangles.

x F⊆ {T×P}∪{P×T} , is a multiset of directed arcs.

x P∪T≠Ø, P∩T＝Ø.

Fig. 2 is an example of Petri Net. P={p0, p1, p2, p3, p4}is a
set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input
of t0, and p1 is output of t0; at the same time, t0 is the output of
p0, and the input of p1. Besides, p0’s next Place is p1.

0p 1p

2p

3p 4p
0t

1t

2t 5t

4t

Figure 2. Example of Petri Net

P, T, F are static properties of Petri Net, and fit well with
Goal, State, Technique, Sub-goal, and Method in Table I. If we
treat Fig. 2 as a process of software attack, then the key

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

13

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

14

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

D1.04 – Reference Architecture v2.1

ASPIRE D1.04 v2.1 PUBLIC Page 22 of 99

Original	application	logic

VM

Bytecode	1

Bytecode	2

Stub	1 Stub	2

1

2

3

4

5

Figure 6 – Client-side code splitting run-time behaviour

A detailed description of each step depicted in Figure 6 is presented below.

Seq# Operation description

1 The original application transfers control to the stub.

Details: Currently this is implemented as an unconditional jump into the first part of the stub 1
code. Conceptually but not yet implemented this jump could be removed by Diablo by means
of branch forwarding, so, that the stub is inlined in the application code.

2 The stub sets up state for VM and transfers control.

Details: The stub collects the contents of the physical ARM processor registers and calls the
VM, passing the address of the corresponding bytecode (VM-image) as argument.

When different stubs have different entry points into the VM, those entry points can be inlined
in the stubs as well.

3 The VM fetches the Bytecode and interprets it.

Details: In case the bytecode is stored in encrypted form, the VM will need to decrypt it during
this process.

4 After interpretation is finished, control is transferred to second part of the stub.

Details: The bytecode comprises code to calculate the address where the native execution
should continue. This address and the updated register values are returned to the stub.

5 The stub cleans up and transfers control back to the application.

Details: The stub updates the physical ARM registers with the values the VM returned and
jumps to the continuation address, transferring control back to the application.

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

15

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

D1.04 – Reference Architecture v2.1

ASPIRE D1.04 v2.1 PUBLIC Page 30 of 99

• Message Label: a label that identifies the point in the code that originated the current
message. Messages originated by different parts of the application have different
labels, while messages produced within loops by the same origin carry the same label.

• Variable Label identifies a variable for which a value request has been originated by
either the client or the server.

• Message Size represents the total size of the message.
• Payload contains variable values when requested.

Figure 9 – Structure of a message

3.3.7 Client/server code splitting splitting sequence diagram
Figure 10 comprises the sequence diagram of the protection technique, followed by a detailed
description of each step depicted. The figure depicts a prototypical execution of the protected
application, where client:Client represents the client, while backendDispatcher:Server
represents the slice manager that handles connections and messages, and
slicedCode:Server is the sliced code at the server side.

Figure 10 – Sequence Diagram for Code Splitting

Seq# Operation description

1 The protected client starts and sends a bootstrap message to the server.

Details: The client (labelled client:Client in Figure 10 starts its execution and sends a

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

16

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

n data obfuscations
n white box cryptography (static keys, dynamic keys, time-limited)
n diversified crypto libraries

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

17

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

n control flow obfuscations
n multithreaded crypto
n instruction set virtualization
n code mobility
n self-debugging
n client-server code splitting

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

18

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

n code guards
n static and dynamic remote attestation
n reaction mechanisms
n client-server code splitting

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

19

¨ How to combine multiple protections?
¤ How do the individual protections actually work?

n code guards
n static and dynamic remote attestation
n reaction mechanisms
n client-server code splitting
n dfdfsdf

native code diversification
bytecode diversification

renewable white-box crypto
mobile code diversification

renewable remote attestation

Part 1: Reference Architecture

: Advanced Software Protection: Integration, Research and Exploitation

20

¨ How to combine multiple protections?
¤ How do the individual protections actually work?
¤ How do the protections compose?
¤ Do the protections share components?
¤ If protections compose, are there phase-ordering issues?
¤ Which protections/components need to be combined and how?
¤ Where is 1 + 1 > 2 in terms of protection strength?
¤ What is the combined impact on software development life cycle?

Part 2: ASPIRE Compiler Tool Chain

: Advanced Software Protection: Integration, Research and Exploitation

21

annotated
source	code

ASPIRE
source
level

protection

data	hiding

algorithm	hiding

anti-tampering

partially	protected	source	code

standard	compiler

object	code

ASPIRE
binary
level

protection

remote	attestation

renewability

data	hiding

algorithm	hiding

anti-tampering security	libraries

ASPIRE	protected	program

client-side	app server-side	logic

2.	Software	protection	techniques	and	integrated	plugin-based tool	flow

n Python – DoIt compiler flow
n JSON configuration scripts
n invokes chain of +/- independent tools

n TXL source code rewriting
n Diablo link-time binary rewriting

Source code annotations

: Advanced Software Protection: Integration, Research and Exploitation

22

static const char ciphertext[] __attribute__
((ASPIRE("protection(wbc,label(ExampleFixed),role(input),size(16))")))
= { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };

static const char key[] __attribute__
((ASPIRE("protection(wbc,label(ExampleFixed),role(key),size(16))")))
= { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,

0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };

char plaintext[16] __attribute__
((ASPIRE("protection(wbc,label(ExampleFixed),role(output),size(16))")))
;

_Pragma ("ASPIRE begin protection(wbc,label(ExampleFixed),algorithm(aes),mode(ECB),operation(decrypt)")")
decrypt_aes_128(ciphertext, plaintext, key);
_Pragma("ASPIRE end");

Source Code rewriting

: Advanced Software Protection: Integration, Research and Exploitation

23
D5.01 — Framework Architecture, Tool Flow, and APIs
of the ASPIRE Compiler Tool Chain and Decision Support System

D05.01

analysis results
(aliasing, slices, ...)

SLP05.02

data obfuscation
TXL

SC05

.i

SLP05.01

source code analysis
CodeSurfer

SC06

.i

Figure 9: Detailed flow chart of the data hiding components in the ACTC

mation, data hiding transformations are not so local.

When a decision is made to hide the value stored in some variable by encoding it using a special
encoding not know to attackers, encoding operations need to be inserted wherever a non-encoded
(or a differently encoded) value is to be stored in the variable, and a decoding operation needs to
be inserted wherever the variable is read and its value is to be used in non-encoded form. This
will be explained in more detail in D2.01.

A data flow analysis is needed to decide where to insert these operations, and also to check
whether it is possible at all to apply a data hiding protection to a variable: when alias analysis
cannot guarantee that a variable will only be accessed by a limited set of read and write opera-
tions that can all be rewritten, it is not safe to apply a transformation. GrammaTech’s CodeSurfer
provides a framework on top of which custom data flow analyses can be implemented. For the
data hiding protections, and later also for the client-server code splitting, custom analyses will be
developed that compute the required data flow information in SLP05.01.

The data hiding source code rewriter will then rewrite the software as requested by the source
code annotations (see Section A) and to the extent allowed by the data flow analysis results.

In later versions of the tool flow, the analyses will be extended to analyze to what extent data
hiding annotations can be propagated throughout the program. For a simple example, suppose
there is a function int add(int x, int y) that simply adds the values of x and y and returns
the sum. Then consider a code fragment

int x __attribute__((ASPIRE("protection(xor,mask(constant(12)))"))) a = 5;
int x __attribute__((ASPIRE("protection(xor,mask(constant(12)))"))) b = 6;
int x __attribute__((ASPIRE("protection(xor,mask(constant(12)))"))) c = add(a,b);

Ideally, this fragment should not be rewritten into

int a = 5ˆ12;
int b = 6ˆ12;
int c = add(aˆ12,bˆ12)ˆ12;

but instead it should become something along the following lines:

ASPIRE D5.01 CONFIDENTIAL 25

Binary Code Rewriting

: Advanced Software Protection: Integration, Research and Exploitation

24

D5.01 — Framework Architecture, Tool Flow, and APIs
of the ASPIRE Compiler Tool Chain and Decision Support System

9.3 Client-Side Code Splitting

Client-Side code splitting (D1.04 Section 3.1) is one of the protections that will be implemented
in the three first steps as discussed in Section 9.1. In its initial implementation, a fixed SoftVM,
which requires no customization, will be embedded in the code to protect,

9.3.1 BLP01: Native Code Extraction

As indicated in Figure 13, in BLP01.01 a Diablo rewriter will collect the code fragments that need
to be translated from native code to bytecode. It does so on the basis of the annotation facts D01
assembled by the source-level component SLP04, and based on its usual inputs, which in this
case correspond to the application BC02 to be rewritten, the corresponding map file (D02) and the
object code (BC08) that was linked into the original application by the standard linker.

BC08

object code
.o

BLP01

bytecode chunk identifier
diablo

BC02

binary | library
a.out | liba.so

D02

map file
a.out.map | liba.so.map

linker script

D01

annotation facts

BLC02

extractable chunks
JSON

BLP02

X-translator
...

BC03

bytecode + stubs
.o

BLP01.01

bytecode chunk identifier
diablo

BLP01.02

instruction selector
.so

Figure 13: Tool flow components for chunk extraction and bytecode generation

Diablo produces a description of the native code chunks in the form of JSON files (BLC02). The
specification for this interface is presented in Appendix D.

To select the native code fragments to be translated to bytecode, the Diablo tool will consider
procedures marked as such in the annotation facts D01. Within these fragments, all possible frag-
ments will be selected, i.e., all fragments of which the instruction selector indicates that the in-
structions in them are supported by the X-translator and the SoftVM.

9.3.2 BLP02: Bytecode Generation

The second tool BLP02 in support of client-side code splitting is the X-translator. Based on the
JSON files of BLC02 it generates bytecode, as well as stubs that will replace the selected native
code fragments. The responsability of the stub is to invoke the SoftVM that will be embedded in

ASPIRE D5.01 CONFIDENTIAL 34

Part 3: Decision Support

: Advanced Software Protection: Integration, Research and Exploitation

25

¨ Knowledge Base
¨ Complexity & Resilience Metrics
¨ Protection Strength Evaluation Methodology
¨ Optimization strategies

programs which were protected by software tamper resistant
transformations they proposed is a NP-complete problem. S.
Chow et al. [18] did a similar work.

B. Evaluation based on Attack
Researches in this group measure or proof the effectiveness

of protection techniques from the view of attack.

M. Ceccato et al. [9] proposed two manual experiments to
empirically measure the effectiveness of identifier renaming,
which is an instance of layout obfuscation. I. Sutherland et al.
[10] did a similar work, but focused on the reverse engineering
process for binary code. Both M. Ceccato and I. Sutherland
analyzed factors affecting attack process, for example,
attacker’s ability, but none specific metric was proposed.

As well as manually assessment, several anti-protection
technologies were used too. C. Linn and S. Debray[19] used
three different disassemblers to evaluate the code obfuscation
techniques they proposed, and S. Udupa[11] proposed
deobfuscation approaches to evaluate control flow flattening
obfuscation. J. Hamilton and S. Danicic [22] evaluated Java
static watermarking algorithms by obfuscating, which can be
treated as a technique for distortive attacks. Except theoretical
analysis, C. Wang et al. [17] also proved the effectiveness of
the transformation they proposed with a control-flow analysis
tool.

Technically, the evaluation approach in this paper belongs
to the second group, but acts differently: firstly, we believe all
software (a program which is made up of a sequence of code)
are the same to attackers, therefore, the approach we proposed
does not aim at a specific protection technology; secondly, we
propose a metric and a method for counting the metric; thirdly,
rather than doing manual attacks or developing specific attack
tools, we use an attack model to describe software attacks.
Note that H. Goto et al. [21] applied parse tree to evaluate the
difficulty of reading tamper-resistant software, however,
instead of attacks, they used the model to describe software.

III. ATTACK MODELING BASED ON PETRI NET
Attack model has been widely used in information security.

Most time it focuses on how to document attacks in a
structured and reusable form [12]. J. Steffan and M.
Schumacher [13] compared attack models with programming
guidelines, pattern languages, evaluation criteria, and
vulnerability databases, and proved that attack model to be the
most suitable way to support discovery and avoidance of
security vulnerabilities.

In this section, we make a list of the key information
included in one software attack process, define the attack
model based on Marked Petri Net, and instantiate Token in it.

A. Key Information in Software Attack
[13] listed six types of information contained in an informal

attack description. Based on this list, we made a new list for
software attack description. (Fig. 1, Table I).

Software
Attack

Goal

Method 1

Method 2
……

State 1
State 2

……

Technique

Sub-goal

Action
Precondition

Influence

Figure 1. Key information and their relationship

TABLE I. KEY INFORMATION IN ONE SOFTWARE ATTACK PROCESS

Name Meaning

Goal
Goal is the purpose of one software attack process, and
normally stands for getting or modifying assets
contained in software.

Method
A Method stands for one possible way to achieve Goal.
Usually, more than one Method will be included in one
software attack process.

State
The sequence of States stands for the detailed process
of software attack. Sometimes, State can be treated as
step in software attack process.

Technique Technique stands for the attack technique which may be
used in the software attack process.

Sub-goal A Sub-goal stands for the goal of a attack technique.

Action Action is the dynamic information in software attack,
and stands for performing an attack technique.

Precondition Precondition is the condition of performing an attack
technique.

Influence Influence is the consequence of performing an attack
technique.

“What’s the condition of attack?”, “If attack can be
executed or not?”, and “What will happen after the execution?”
are some of the essential questions in the effectiveness
evaluation of software protection. Thus, precondition, action,
and influence are important elements needing to be described.

One of the most popular attack models is Attack Tree [14].
It is a tree structure to describe the security of systems, with the
Goal as the root node and different Methods as leaf nodes.
State and Sub-goal are the other nodes in the tree, and there are
two kinds of interdependencies of States: AND node and OR
node [14]. But Attack Tree cannot describe Precondition,
Action, and Influence precisely.

In this paper, we prefer Petri Net (C. A. Petri, 1962), which
is a net-like graph and carries more information than Attack
Tree.

B. Software Attack Model based on Marked Petri Net
Petri Net describes four aspects of a system: states, events,

conditions, and the relationships among them. When condition
was satisfied, related event would occur; the occurrence of
event would change the states in the system and cause some
other conditions to be satisfied [15]. A basic Petri Net is a tuple
PN= (P, T, F) where:

x P is a finite set of states, represented by circles.

x T is a finite set of events, represented by rectangles.

x F⊆ {T×P}∪{P×T} , is a multiset of directed arcs.

x P∪T≠Ø, P∩T＝Ø.

Fig. 2 is an example of Petri Net. P={p0, p1, p2, p3, p4}is a
set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input
of t0, and p1 is output of t0; at the same time, t0 is the output of
p0, and the input of p1. Besides, p0’s next Place is p1.

0p 1p

2p

3p 4p
0t

1t

2t 5t

4t

Figure 2. Example of Petri Net

P, T, F are static properties of Petri Net, and fit well with
Goal, State, Technique, Sub-goal, and Method in Table I. If we
treat Fig. 2 as a process of software attack, then the key

Validation & Demonstration

: Advanced Software Protection: Integration, Research and Exploitation

26

¨ three real-world use cases
¤ software license manager
¤ one-time password generator
¤ DRM protection

¨ security requirements from industry
¤ functional requirements
¤ non-functional requirements
¤ assurance requirements

¨ dynamically linked Android 4.4 – ARMv7 libraries

¨ penetration tests by professional pen testers

Validation & Demonstration

: Advanced Software Protection: Integration, Research and Exploitation

27

¨ controlled experiments with academic hackers
¨ public challenge and bounties

More resources

: Advanced Software Protection: Integration, Research and Exploitation

28

¨ https://www.aspire-fp7.eu
¤ papers
¤ public reports
¤ contact info

¨ https://github.com/aspire-fp7
¨ https://github.com/diablo-rewriter

¨ Youtube channel: ASPIRE-FP7 Software Protection Demonstration

Grant Agreement No 609734

: Advanced Software Protection: Integration, Research and Exploitation

29

The project has received funding from the
European Union Seventh Framework Programme (FP7/2007-

2013) under grant agreement number 609734.

If you need further information, please contact the coordinator:
Bjorn De Sutter, Ghent University

Technologiepark-Zwijnaarde 15, B-9052 Gent, Belgium
Tel: +32 9 264 33 67 Fax: +32 9 264 35 94

Email: coordinator@aspire-fp7.eu
Website: https://www.aspire-fp7.eu

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

