
Writing C++ The “C++ Way”

Adhokshaj Mishra



Who am I?

● Security researcher (malware and 
cryptography)

● Spoilt by C++ beyond repair
● Mostly dabbling into fairly low level stuff



Agenda

● Why “modern” C++?

● What is wrong with traditional way of teaching 
C++?

● Hidden gifts of C++: dark corners and pitfalls

● Strings

● I/O



Agenda (contd.)

● Arrays

● Memory

● Pointers

● Function pointer, functor, lambdas and 
std::function



Why modern C++?

● Modern C++: C++11 (ISO/IEC 14882:2011) and above
● Classic C++: C++03 (ISO/IEC 14882:2003) and below
● Modern C++ provides abstractions over many nitty 

gritty details which were most common sources of 
bugs.

● It makes C++ less frustrating (ever had fun with 
segmentation faults?)



What is wrong with current approach?

● Teaching C++ as a set of "deviations" from C is a 
shortcut. C++ is not a superset of C.

● Collection of similar named functions instead of 
classes (strlen, strcmp, strcpy blah blah).

● Makes C++ seem harder than it really is. No 
wonders people tend to hate it (Ugh, C++ is too 
complicated, Java/.NET/Python is fun).



Hidden Gifts of C++

● Buffer related bugs (buffer overflow, off by one 
errors)

● Memory related bugs (memory leakage, double free, 
use after free)

● Pointer magic (dangling pointer)

● Format string vulnerability (data leakage, arbitray 
write) (cruft from C)



Strings: The Classic Way

● Old C++ way: char*

● String operations are not intuitive. Want to append? strlen x 2 + 
malloc + strcpy + strcat. Forgot null terminator? Magic is waiting to 
happen.

● char* strings require you to understand pointers long before you can 
touch strings. It requires whole “name of array is pointer to start of 
array” conversation way too early.

● It forces you to understand, and pay attention to, null terminator in all 
string operations; otherwise somewhere magic is waiting to happen.



Strings: The Modern Way

#include <string>

std::string s1 = “hello ”;

std::string s2 = “world”;

Want to concatenate two strings?

std::string greeting = s1 + s2;

Want to compare strings?

if (s1 == “hello”)

or

std::string::compare



I/O

● Cruft from C: printf, scanf, fprintf, fscanf etc. These generally give 
better performance, but are a constant source of bugs. Also, these 
force you to understand and remember cryptic(?) format specifiers.

● Modern C++ way: Stream I/O (cin, cout, cerr). These will give slightly 
worse performance, but a beginner need not to worry about it.

#include <iostream>

std::cout < < “Total number of apples ” < < no_of_apples;

● Want string formatting? Use StringStream instead of sprintf()

● Readability rules.



Arrays: The Classic Way

Why is it bad?

● Brings pointers into story too soon

● Leads to off by one, bounds checking errors 
(overflows, magic, and segmentation fault)

● Needs hand-rolled loops way too often



Arrays: The Modern Way

● The C++ way: <vector>. It is probably the only class a beginner needs.

#include <vector>

std::vector<int> buffer(size);
● Want to access the element at index i? Use buffer[i], or buffer.at(i).
● Want to add more elements? Use buffer.push_back(), and it will take 

care of it automatically.
● Want to create some more space in buffer? Use buffer.resize()
● Out of range access will result in an exception instead of some "magic". 

No more buffer overflows, and no more resulting exploits.



Memory and Pointers

Raw pointers are bad (read: tricky to get it right)
● Burden of deallocation is on programmer. Forgot to 

delete? Hello memory leakage.
● By extension of first point, how do you know whether a 

pointer is good or bad. Result? Use after free/double 
free bugs.

● No concept of ownership. A memory can be owned by 
none, one, or more “parties”.



Memory and Pointers

Solution: Smart pointers (unique_ptr, shared_ptr)

#include <memory>

... // some code here

{

// dynamic allocation that cannot be copied to another pointer. Deallocation happens as 
soon as it goes out of scope.

std::unique_ptr<int> ptr1 = std::make_unique<int[]>(5);

// deallocation happens when reference count becomes 0.

std::shared_ptr<int> ptr2 = std::make_shared<int[]>(5);

}

// both memory allocations are deallocated automatically



Function Pointer

● Cruft from C
● A literal pointer to location in memory where function is stored
● Cryptic syntax
● Useful for callbacks

Example: void (*(*f[])())() declares f to be array of unspecified size, 
of pointers to functions, which return pointers to functions which 
return void.

By the way, I am uncomfortable with the fact that I am comfortable 
with this statement. Oh well...



Function Pointer

Why are function pointers bad?
● Hard to decode syntax
● Cannot be optimized easily. To be specific, 

there is no easy way to inline calls via 
pointer.

Is there a better way to do it?



Functor

● A functor (also known as function object) is a 
class with () operator overridden so that it can be 
called like a function.

● Syntax is much cleaner.
● It can be optimized easily.
● Functors are more flexible as they can have 

internal state



Functor

Example:

struct add_x

{

add_x(int x) : x(x) {}

int operator()(int y) const { return x + y; }

private:

int x;

};



Functor

Disadvantages of functor:
● Code becomes more complex, as you have to define a class, 

constructor, operator() etc.
● Every functor must have a name, even if it is used only once. 

Naming things correctly is a hard problem, and by naming 
single use functors, we are reducing our “name pool”

What if we could somehow kick the name out of equation, grab 
the functor by its ears, and drop it in the parameter where it 
belongs?



Lambda Expression

● Lambda expressions are basically syntactic 
sugar around functors, allowing one to define a 
functor without a name, right at the place 
where it is needed.

● Reduces the programmer work for using 
std::for_each, std::transform etc.

Example: [](int &n){ n++; }



Issues With Lambda Expression

● Every lambda is of different type, even if 
signature is exactly same. This is because 
every lambda is different class behind the 
curtains.

● By extension of previous point, you cannot 
treat lambda expressions as objects. (wait, 
what?!?)



Issues With Lambda Expression

● You cannot apply a lambda (or a functor 
for that matter, without defining another 
functor) partially (is that a thing?)

● By extension of previous point, there is 
no currying with lambda and/or functor 
(yay, functional programming)



std::function

● std::function implements a type erasure mechanism 
that allows a uniform treatment of different functor 
types (but with same signature).

● std::function can be used as objects (it can be passed 
to, as well as returned from a function, can be put in 
a vector, map, array or some other data structure)

● It allows partial application, and thereby currying.



std::bind

● std::bind allows partial application of 
function.

● Mostly used in combination of 
std::function. Together, these make 
pretty powerful tool.



std::bind

You generally use it when you need to pass a 
functor to some algorithm. You have a function 
or functor that almost does the job you want, 
but is more configurable (i.e. has more 
parameters) than the algorithm uses. So you 
bind arguments to some of the parameters, 
and leave the rest for the algorithm to fill in.



std::bind

// raise every value in vec to the 
power of 7

std::transform(vec.begin(), vec.end(), 
some_output, std::bind(std::pow, _1, 
7));



Got any questions?


	स्लाइड 1
	स्लाइड 2
	स्लाइड 3
	स्लाइड 4
	स्लाइड 5
	स्लाइड 6
	स्लाइड 7
	स्लाइड 8
	स्लाइड 9
	स्लाइड 10
	स्लाइड 11
	स्लाइड 12
	स्लाइड 13
	स्लाइड 14
	स्लाइड 15
	स्लाइड 16
	स्लाइड 17
	स्लाइड 18
	स्लाइड 19
	स्लाइड 20
	स्लाइड 21
	स्लाइड 22
	स्लाइड 23
	स्लाइड 24
	स्लाइड 25
	स्लाइड 26
	स्लाइड 27

