
Sandboxing JavaScript

Lieven Desmet

Nick Nikiforakis

Steven Van Acker

About myself

• Lieven Desmet

• Research manager of the iMinds-DistriNet
Research Group (KU Leuven, Belgium)
– Software security lab with 80+ researchers

– Dedicated team on Web App Sec

• Active participation in OWASP:
– Board member of the OWASP Belgium Chapter

2

@lieven_desmet

Sandboxing JavaScript:
Outline

• Integrating JavaScript

• Large-scale analysis of script inclusions

• Overview of mitigation techniques

– HTML5 Sandbox/CSP-enabled security
architecture

– JSand: Server-driven sandboxing of JavaScript

• Conclusion

3

INTEGRATING JAVASCRIPT

4

JavaScript inclusion: security
model

<html><body>

…

<script src=“http://3rdparty.com/script.js”></script>

…

</body></html>

3rd party

Security model:

Third-party JavaScript is
everywhere

• Advertisements
– Adhese ad network

• Social web
– Facebook Connect
– Google+
– Twitter
– Feedsburner

• Tracking
– Scorecardresearch

• Web Analytics
– Yahoo! Web Analytics
– Google Analytics

• …

6

“88.45% of the Alexa top 10,000 web
sites included at least one remote

JavaScript library”
CCS 2012

7

Malicious third-party scripts can ...

8

And it happens in practice…

9

32 days…

LARGE-SCALE ANALYSIS OF SCRIPT
INCLUSIONS

Nick Nikiforaki et. al. You are what you include: Large-scale evaluation of
remote JavaScript inclusions. In Proceedings of the ACM Conference on
Computer and Communications Security. 2012.

10

Data Collection Experiment

• Crawled over 3,300,000 pages belonging to
the Alexa top 10,000

• Discovered:

– 8,439,799 remote inclusions

– 301,968 unique JS files

– 20,225 uniquely-addressed remote hosts

11

How many remote hosts?

12

Popular JavaScript libraries and
APIs

13

New Attacks?

• 8.5 million records of remote inclusions

• Are there new attack vectors to exploit the
script-inclusion pattern?

• 4 new attack vectors
– Cross-user & Cross-network Scripting

– Stale domain-based inclusions

– Stale IP-based inclusions

– Typo-squatting Cross-Site Scripting

14

Stale domain-based inclusions

• What happens when you trust a remote site
and the domain of that site expires?

– Anyone can register it, and start serving malicious
JS

– Equal in power to stored XSS

• 56 domains found, used in 47 sites

15

Shopping spree!

• Registered some of the stale domains:

– blogtools.us -> goldprice.org (4,779th in Alexa)

– hbotapadmin.us -> hbo.com

16

Blogtools.us Hbotapadmin.com

Visits 80,466 4,615

Including domains 24 4

Including pages 84 41

Typo-squatting XSS

• Typo-squatting

– registering domains that are mistypes of popular
domains

– Serve ads, phishing, drive-by downloads etc. to
users that mistype the domain

• Unfortunately… developers are also humans

– <script src=http://googlesyndicatio.com/...>

17

http://googlesyndicatio.com/...

Examples found…

18

Googlesyndicatio.com

Unique visitors 163,188

Including domains 1185

Including pages 21,830

OVERVIEW OF MITIGATION
TECHNIQUES

19

Existing mitigation techniques?

• Limit third-party code to safe subset of JavaScript
– Facebook JS, ADSafe, ADSafety, ...

• Browser-based sandboxing solutions
– ConScript, WebJail, Contego, ...

• Server-side transformations of scripts to be included
– Google Caja, Jacaranda, BrowserShield, ...

20

No compatibility with existing scripts

Browser modifications imply short-term
deployment issues

No direct script delivery to browser

Changes architecture of the web

Emerging solutions:
Client-side security architectures

• JavaScript security architecture on top of
mainstream browsers
– Sandboxing/isolation of untrusted JavaScript code

– Policy-controlled mediation to the actual DOM

• HTML5 sandbox/CSP-enabled security
architecture

• TreeHouse: web workers sandbox architecture

• JSand: SES-enabled sandbox architecture

21

HTML5 SANDBOX/CSP-ENABLED
SECURITY ARCHITECTURE

Based on the talk of Mike West at Devoxx 2012

Securing the Client-Side: Building safe web applications with HTML5

https://mikewest.org/2013/02/securing-the-client-side-devoxx-2012

22

Content Security Policy (CSP)

• Issued as HTTP response header

– Content-Security-Policy: script-src 'self'; object-src
'none'

• Specifies which resources are allowed to be
loaded as part of your page

• Extremely promising as an additional layer of
defense against script injection

23

Example of sandboxing unsafe
JavaScript

24

Main site
Sandboxed JS

execution

environment
Secured with CSP

Delegates insecure executions
to the sandboxed iframe

Web Messaging

Sandboxed iframe

Runs in unique origin

Allowed to run JS

“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

“Used in office document

reader on Chrome OS”

Main page (index.html)

25
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

Content-Security-Policy: script-src 'self'

<html><head>

 <script src="main.js"></script>

</head>

<body>

 Click here

 <iframe id="sandboxFrame" sandbox="allow-scripts"
src="sandbox.html">

 </iframe>

 <div ="#content"></div>

</body></html>

25

Sandboxed frame
(sandbox.html)

26
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

<html><head>

 <script>

 window.EventListener('message', function(event) {

 var command = event.data.command;

 var context = event.data.context;

 var result = callUnsafeFunction(command, context);

 event.source.postMessage({

 html: result}, event.origin);

 });

 </script>

</head></html>

26

Main script (main.js)

27
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

document.querySelector('#click').addEventListener('click',

 function(){

 var iframe = document.querySelector('#sandboxFrame');

 var message = { command = 'render‘; context = {thing: 'world‘}};

 iframe.contentWindow.postMessage(message, '*');

});

window.addEventListener('message', function(event){

 //Would be dangerous without the CSP policy!

 var content = document.querySelector('#content');

 content.innerHTML = event.data.html;

});

27

JSAND: SERVER-DRIVEN
SANDBOXING OF JAVASCRIPT

Pieter Agten et. al. JSand: Complete Client-Side Sandboxing of Third-
Party JavaScript without Browser Modifications. In proceedings of the
Annual Computer Security Applications Conference (ACSAC 2012).

28

JSand: Server-driven sandboxing of
JavaScript

29

Browser

Jsand: under the hood

30

3rd party

JavaScript

Embedding page

JS
an

d

1

2

D
O

M

3

SES, Proxies, and membranes

• Secure ECMAScript library (SES)
– Developed by Google CAJA Team

– Provides object-capability functionality within
JavaScript

• JS Proxy API
– Provides transparent proxy capabilities in wrapping

native functionality

• Membrane pattern
– Guarantees that no object capabilities (i.e.

References) leak through the sandbox perimeter

31

Sa
n

d
b

o
xi

n
g/

is
o

la
ti

o
n

P
o

lic
y-

co
n

tr
o

lle
d

D
O

M
 m

e
d

ia
ti

o
n

Server-driven policy enforcement
(1)

32

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 <jsand:initialize/>

 <jsand:sandbox policy="my embedded script">

 <jsand:code>alert("inline code on the page");</jsand:code>

 </jsand:sandbox>

 </head>

 <body>

 <h1>Hello World!</h1>

 </body>

</html>

Server-driven policy enforcement
(2)

33

<jsand:sandbox policy="googlemapsNoGeolocation">

 <jsand:code>

 canvasID = "map_canvas2";

 failcity = "New York";

 failpos = new google.maps.LatLng(40.69, -73.95);

 </jsand:code>

 <jsand:script src="googlemaps-geolocation.js"/>

 </jsand:sandbox>

Evaluation on legacy scripts

• Google Analytics

– Needs 1 client-side JS AST transformation

• Google Maps

– Needs support for dynamic script loading

– Needs 3 client-side JS AST transformation

• JQuery

35

Demo available at http://demo-jsand.websand.eu/ DEMO







CONCLUSION

37

JavaScript inclusion

• Most common way of integrating 3rd party
JavaScript

– More than 88% of websites integrate 3rd party scripts

– Google is the absolute #1 script provider

• Malicious or compromised script providers obtain
full control over websites on which they are
integrated

– E.g. qTip2, googlesyndycatio.com, blogtoos.us, …

38

Existing mitigation techniques

• None of them can be integrated seamlessly

– Require browser modifications

– Require server-side processing

– Require re-architecting the application

– Have restrictions on JS the language features

• Showed some insights in 2 promising directions

– iFrame/CSP based sandboxing

– Server-driven sandboxing with JSand

39

Acknowledgements

• The work is partially funded by the European FP7 projects
WebSand, STREWS and NESSoS.

• With the financial support from the Prevention of and Fight
against Crime Programme of the European Union.

40

http://www.b-ccentre.be/
https://www.websand.eu/
http://cordis.europa.eu/fp7/home_en.html
http://www.nessos-project.eu/
http://www.strews.eu/

