
Secure Development
Things the OWASP Guide Didn‟t Tell You

 OWASP NZ Day 2011

Who am I?

 I‟m Blair Strang

 @ Security-Assessment.com

 Security Consultant

 Developer at large

 Third-party code reviews

The Goal

 To show the difference between “strong” and “outstanding” web

applications (from a security point of view)

 Explain what‟s missing from the OWASP Secure Development Guide

to help you make your project more secure

 In particular, explain that not all the controls you might want are

covered by OWASP (Yet, anyway)

Not Covered In This Talk

 Policy Framework

 Security Buy-in from

Management

 Methodology & SDLC

 Coding Standards

From a developer’s point of view,

These Are Life Support

Definition: Point Fix

 Something you have to always remember to do (usually add) to your

code to avoid a security problem

 XSS Example

 Response.Write(anything_untrusted)  Needs HtmlEncode

 LDAP Example

 ldapObj.DN = "ou=people,dc=spilab,dc=com“

 ldapObj.SearchFilter = filter  Needs LDAP Escaping

Juggling Chainsaws

 One time, I watched a

dwarf juggle a chainsaw

and a bowling ball while

standing on a Swiss ball

 Point fixes everywhere

remind me of this

 There‟s got to be an easier

way to make a living…

Juggling Chainsaws

 Demo

 Code search is great for this

 Let‟s watch people drop the

chainsaw

Point Fixes

 What happened here?

 Someone handed the

developer a crap sandwich

(of an API)

 They ate it

 WHY?????

Metaphor switch

in progress

Developers!

 The super powers of

software developers are

automation and abstraction

 Don‟t eat the crap sandwich

(more than you have to)

 If you have to apply a point

fix more than a dozen times,

STOP DOING THAT

Developers!

 Choose a better library, API

or framework

 Wrap the API yourself

Developers!

 Choose a better library, API or framework

 Choose templates that output encode by default

 For example, see RoR

 Choose parameterised anything (separates metadata

from data)

 You know this one

Developers!

 Wrap the API yourself

 Encapsulate LDAP calls into:

 xSafeLDAPQuery() / xUnsafeLDAPQuery()

 Accept e.g, key/value pairs, filter or encode by

default

Developers!

 Input Validation (the oddest point-fix)

 Choose a framework which /forces/ you to

specify an input validation expression or

function before you can access input

 safeVal = SafeInput.xQueryString(phone_no,

my_phone_no_regex, INVALID_PHONE_NO)

Developers!

 Fix The Problem

 Go up a level, and fix the problem that causes

the problem

 Often, the problem that causes the problem is

unsafe APIs

Strong vs Outstanding Projects

Strong Outstanding

During the course of code reviews…

Strong Projects

 Used their framework well

 Addressed the OWASP top 10

 Had conventions for input

validation

 Applied point fixes consistently

Strong Projects

 Used their framework well

 Addressed the OWASP top 10

 Had conventions for input

validation

 Applied point fixes consistently

This is enough to get your project past pen-testing

But it’s not enough to ensure a truly resilient solution

Outstanding Projects

 Were strategic as well:

 Minimised point-fixes

 Thought about their

security requirements

 Implemented appropriate

controls, based on

requirements
Designed to handle failure, too

(Unknown Unknowns)

Example A

One project, concerned mainly about

transaction integrity:

 Made the web application a client of a

transaction service

 Implemented extra logging, access

controls, and did those well

 Fraud could still happen, but goal was

a strong audit trail

Once upon a time I would

have said this was obvious

and easy.

That would be before I saw

so many other projects get

this wrong

Example B

One project, concerned mainly about

privacy of user information:

 Public-key encrypted user data

submissions

 Kept the key offline

 Bit of a special case, not perfect, but

compared to the norm, it was

Outstanding

Sure, everyone claims to

care about your privacy.

Just not enough to spend

budget or design effort on

it….

Outstanding Projects

 Designed to handle failures

 Which could be reasonably

anticipated

 Didn‟t solve all the

problems – spent effort on

the most important

Why try to be Outstanding ?

 Isn‟t that more work?

 Not sure if we have the

budget for that…

 You still have to make the

cost/benefit trade-off

 Have to sell it to team

 But …

(Pic Unrelated)

Why try to be Outstanding ?

 Let‟s just step back

for a minute

Obligatory logo montage!

The Problem (server side)

• Most web developers are using at least 3 languages at the same time

• While trying not to drop the chainsaw

• Perched on top of a rickety stack of APIs, with unknown bugs

• Not to mention bugs or incorrect configuration of your server software

• Also, the server is likely in an outsourced datacentre, shared hosting, cloud

The Problem (protocols/network)

• HTTP was not really designed for your AJAX Web 3.0 cat social network

• Most of your traffic might as well be written on back of postcard (oh geez, Wi-Fi?)

• Your crypto certs are issued by the lowest bidder

• Even though the support line is in Outer Elbonia

• For all you know, the Tubes might be routing your users’ traffic through China

The Problem (client)

• Your user interface is running in a process you don’t control

• Which has multiple unpatched software vulnerabilities

• You’re probably hot loading third-party JavaScript into your page context

• On a host OS which, statistically speaking, is definitely owned (for some %users)

The Problem (users)

But it gets worse!

 Most of your users can’t even tell if they’re using

your site or not

 They’ll click on anything

 They’ll type their password into anything

 Notice I said ‘password’, singular (they also use

that password for Internet banking, and cat

forums)

The Problem (You and Me)

 This is BEFORE:

 You’ve had a chance to screw up the

business logic - or drop the chainsaw

 You‟re telling me you want to deal with:

 Money? Something convertible to money?

 Personal information? Medical records?

 Intellectual property? Business intelligence?

 With *that* stack?

 Do you really value that stuff, or just say you do?

Reality

 Something will go wrong,

eventually

 Maybe more than one thing

 Outstanding projects actively plan for that

 You can buy off a lot of risk

 But sometimes the technical fix is cheaper

Outstanding Projects

 Did three extra things:

 Minimised point-fixes

 Thought about their security

requirements

 Implemented appropriate

controls, based on requirements

Would be nice to have more guidance

available on useful security controls

Where OWASP Could Use Help

Attacks – 62

Vulnerabilities – 164

Controls – 43

Where OWASP Could Use Help

Where OWASP Could Use Help

Of the controls:

• 28 are stub pages

• 3 are not controls

• 72% are not useful

• 12 useful pages in total

OWASP Conclusion

 OWASP Development Guide has:

 Good coverage of web application vulnerabilities, attacks

 Good explanations of how to ‘point fix’ flaws

 Reasonable discussion of threat/risk modelling

 OWASP Development Guide does not have:

 Useful information on controls

 Discussion of higher level security design patterns

 This is what OWASP isn’t telling you (yet)

Examples of Controls

Let me give you some examples of what I consider

to be security controls, some common, some not

 Compartments / Tiers

 Honey Tokens

 Encrypted Object References

 User Visible Account History

Compartments / Sandboxing

Motivation:

 You want to isolate high-risk areas of your application.

Examples:

 IE9 puts rendering in a low-integrity process

Pros:

 Failure is contained, two things have to go wrong

Cons:

 More overheads, isolation is never complete

Note: When applied to web applications, the „site‟ is high risk ;)

Compartments: Stored Procs

Motivation:

 You want to compartmentalize; this is an implementation pattern

Description:

 All database access through stored procs

 Procs implement access controls and auditing

Pros:

 Low overhead compared with many solutions

 Relatively simple

Cons:

 Works better with staff DBA

 Doesn‟t play nicely with many frameworks (e.g, ROR)

Compartments: Service Layer

Motivation:

 You want to compartmentalize; this is an implementation pattern

Examples:

 Your web-site is effectively a rendering front end for a web service

Pros:

 Can provide very strong isolation, arbitrary API

Cons:

 Now you have two problems ;) (more tractable though)

 Heavyweight, performance, more code

Honey Tokens

Motivation:

 Detect data loss or disclosure

Description:

 Put magic strings in source code, plant interestingly named files, have

 „sentinel‟ database rows

Pros:

 You get early warning of intrusions

 You can make that expensive IDS do something useful for once

Cons:

 Requires a potentially expensive IDS

User Visible Account History

Motivation:

 Improve security experience for users. Allow users to know if their

 account has been subject to unauthorised access.

Description:

 Allow users to access details of their account history (password

 changes, last login times and IP addresses) from the UI

Pros:

 Users are more likely to notice inconsistencies

 Can act as an early warning system for something you missed

Cons:

 It‟s another feature you could get wrong, extra effort

 Potential support issues

Some Conclusions

 Avoiding point-fixes will help you A LOT

 Implementing appropriate controls in your application

can make it much stronger. There‟s room to be creative

here.

 Work BOTH tactically AND strategically.

 If you really value that data, work to make

your application security Outstanding.

