
OAuth:		Where	are	we	going?

1

What	is	OAuth?

OAuth	and	CSRF

Redirection

Token	Reuse

OAuth	Grant	Types

OAuth	v1	and	v2

2

"OAuth	2.0	at	the	hand	of	a	developer	with	deep	
understanding	of	web	security	will	likely	result	[in]	a	
secure	implementation.	However,	at	the	hands	of	most	
developers	 ...	2.0	is	likely	to	produce	insecure	
implementations."

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2010/09/29/oauth-bearer-tokens-are-a-terrible-idea/

Eran Hammer,	Original	Founder	of	OAuth

OAuth	History

• Nov	2006:	Blaine	Cook	begins	working	on	OAuth	while	at	Twitter
• 2007:	Ma.gnolia,	Google	and	others	join	the	discussion
• 2007:	Eran Hammer	joins	and	soon	leads	the	specification
• Dec	2007	:	OAuth	1.0	final	draft
• 2008	:	Google	OAuth	1.0	support	begins
• 2010	:	Twitter	forces	all	third	party	apps	to	use	OAuth	1.0
• June	2012:	Eran ragequits the	OAuth	2.0	body	after	the	shift	from	crypto	to	
bearer	tokens
• October	2012:	OAuth	2.0	framework	published

3

OAuth	v1	and	v2:
What	are	the	primary	security	differences?

4

OAuth	v2	is	Transport-Dependent
Most	security	defenses	are	delegated	to	HTTPS/TLS

OAuth	v1	is	Transport-Independent
Security	is	not	delegated	to	HTTPS/TLS

A	typo,	an	improper	 TLS	configuration,	 or	a	failure	to	properly	validate	a	
certificate	can	lead	to	a	man-in-the-middle	attack,	compromising	 all	OAuth	
communications.

OAuth	v1	messages	are	each	individually	cryptographically	 signed.	
If	a	single	message	within	the	communication	 is	constructed	or	
signed	 improperly,	 the	entire	transaction	will	be	invalidated.

OAuth	v1	and	v2:
Signatures	vs	Bearer	Tokens

5

OAuth	v2	Authorizes	Messages	with	Bearer	Tokens

OAuth	v1	Authorizes	Messages	with	Digital	Signatures	

Bearer	Tokens	do	not	provide	 internal	security	mechanisms.	They	
can	be	copied	or	stolen.

A	signed	message	is	tied	to	it's	origin.	 It	cannot	be	tampered	with	
or	copied	to	another	source.

OAuth	v1	and	v2:
Which	should	you	use?

6

• Google	moved	away	from	OAuth	1.0	in	April	
2012.

• Twitter	still	supports	OAuth	1.0.

• It’s	rare	for	new	server	implementations	to	
support	OAuth	1.0.	

• Plenty	of	OAuth	2.0	“add-on”	RFC’s	to	support	
crypto	if	needed.

• So	yea,	2.0	in	almost	all	situations	in	2015.

OAuth	v1	Workflow

7

http://docs.spring.io/spring-social/docs/1.0.0.RC1/reference/html/serviceprovider.html#service-providers-oauth1

OAuth	v2	Workflow

8

http://docs.spring.io/spring-social/docs/1.0.0.RC1/reference/html/serviceprovider.html#service-providers-oauth2

OAuth	Security	in	Products	is	Stabilizing	
(osvdb.org)

9

Sample	OAuth	Workflow

• Using	OAuth,	your	eCommerce	server	can	now	tweet	on	behalf	of	the	user	even	
when	the	user	is	not	logged	on.	How	does	this	happen?
• First,	the	user	logs	into	the	eCommerce	server	with	his	account	and	edits	his	
account	profile.
• Next,	the	eCommerce	server	redirects	the	user	to	Twitter.
• The	user	logs	onto	Twitter	and	authorizes	the	eCommerce	server	to	tweet	on	her	
behalf.
• Then,	whenever	orders	are	complete	the	eCommerce	tweets	a	little	note	about	
how	awesome	the	eCommerce	company	is	- even	when	the	user	is	not	logged	
onto	the	eCommerce	server.

10

High	Level	Concepts

• OAuth	Roles	(Resource	owner,	resource	server,	client	app,	
authorization	server)
• OAuth	Grant	Types (authorization	code, implicit,	resource	owner	
password	credentials,	client	credentials,	extensions)
• Token	Types (refresh	token,	access	token)
• Endpoint	Types (resource	server,	authorization	server,	client	
registration,	client	authorization)

11

Terms
• Resource	Owner	or	End-User: User	and	account	
owner	of	resource	(the	end-user)
• Resource	Server/Service	Provider: Server	hosting	
protected	resources	owned	by	the	end-user. Accepts	
access	tokens	for	protected	resources.
• Authorization	Server/Service	Provider. Server	issuing	
access	tokens	to	provide	other	clients	access	to	
protected	resources.	Often	same	server	as	resource	
server.	One	authorization	server	may	issue	access	
tokens	to	many resource	servers.

12

Terms

• Client/Consumer: Application	requesting	access	to	protected	
resource	on	behalf	of	resource	owner	(typical	clients	are	mobile	
applications, web	browsers, desktop	applications	or	other	web	
applications). Depending	on	the	OAuth	workflow,	the	browser	may	
use	an	access	token	directly	(implicit	grant	type)	or	redirect	the	user	
to	another	web	application	that	acts	as	the	client	of	the	service	
(authorization	code	grant	type).

13

Terms
• Access	Token: OAuth	token	used	to	directly	access	protected	
resources	on	behalf	of	a	user	or	service.
• Refresh	Token: Refresh	tokens,	when	given	to	the	
authorization	server,	will	provide	a	new	active	access	token.	
Refresh	tokens	themselves	cannot	access	resources. While	
access	tokens	should	be	short	lived,	refresh	tokens	are	long	
lived	or	simply	never	expire	until	the	user	revokes	them.	
Refresh	tokens	also	provide	more	scalable	patterns.	
• Client	Identifier:Unique	ID	of	each	client	given	to	client	by	
authorization	server.
• Bearer	Token: "A	security	token	with	the	property	that	any	
party	in	possession	of	the	token	(a	"bearer")	can	use	the	token	
in	any	way	that	any	other	party	in	possession	of	it	can.	Using	a	
bearer	token	does	not	require	a	bearer	to	prove	possession	of	
cryptographic	key	material	(proof-of-possession)." -
https://tools.ietf.org/html/rfc6750#section-1.2

14

Authorization	Server	Security

• TLS	for	everything	(Authenticity,	Confidentiality,	Integrity)
• Authorization	servers	should	not	automatically	process	repeat	
authorizations	to	public	clients	unless	the	client	is	validated	using	a	pre-
registered	redirect	URI	(Section	5.2.3.5).
• Authorization	servers	can	mitigate	the	risks	associated	with	automatic	
processing	by	limiting	the	scope	of	access	tokens	obtained	through	
automated	approvals	(Section	5.1.5.1).
• Explain	the	scope	(resources	and	the	permissions)	the	user	is	about	to	
grant	in	an	understandable	way	(Section	5.2.4.2).
• Narrow	the	scope	as	much	as	possible	(Section	5.1.5.1).
• Don't	redirect	to	a	redirect	URI	if	the	client	identifier	or	redirect	URI	can't	
be	verified	(Section	5.2.3.5).

15

https://tools.ietf.org/html/rfc6819

OAuth	2.0	Grant	Types

• You	can	hide	long	lived	tokens	token	from	the	user	(authorization	code	
grant)
• You	can	only	activate	a	short-lived	token	in	the	browser	when	the	user	is	
currently	logged	on	(implicit	grant)
• You	can	grant	and	expose	a	long-lived	tokens	directly	to	the	user	via	a	
trusted	client	(password	grant).
• You	can	grant	and	expose	a	long-lived	token	directly	to	other	services	that	
need	to	access	data	not	associated	with	a	specific	user	(client	credentials	
grant)

16

OAuth	2.0	Authorization	Code	Grant

17

OAuth	2.0	Authorization	Code	Grant

OAuth	2.0	Authorization	Code	Grant

18

• The	User	(Resource	Owner)	Credentials	are	never	
exposed	to	Client

• The	User	(Resource	Owner)	never	has	access	to	
actual	access	token	

• The	Client	application	can	use	the	access	token	
even	when	the	resource	owner	is	not	present

• Authorization	Code	Refresh	Tokens	are	often	long	
lived	or	permanent	until	the	User	(Resource	
Owner)	revokes	this	access	through	the	Client	UI.

Authorization	Code	Variables	
• The	client	starts	the	"authorization	code"	workflow	by	
redirecting	the	user	to	the	authorization	server	with	the	right	
request	data.	This	initial	client	request	includes:
• response_type :	this	is	required	by	"authorization	code"	grant	
type	and	should	contain	the	value	"code"
• client_id:	this	is	the	client	identifier	assigned	to	the	client	at	
client	registration	time.	This	is	unique	for	every	client	for	
authorization	code	grants.
• scope:	level	of	access	requested,	domain	specific
• redirection	URI:	Where	the	authorization	server	redirects	the	
user	after	access	is	granted	or	denied

19

Authorization	Code	Grant	Security

• 4.4.1.1	Threat:	Eavesdropping	or	Leaking	Authorization	
"codes"	(Referrer	header	leakage,	logs,	open	redirect,	
browser	history)
• Use	TLS,	require	strong	authentication	between	client	and	server,	
expiration	time	for	access	tokens,	only	allow	one	use	per	token,	consider	
revoking	client	sending	lots	of	bad	codes,	reduce	scope	of	tokens,	flush	
browser	cache

• 4.4.1.2	Threat:	Obtaining	Authorization	"codes"	from	
Authorization	Server	Database
• Parameterize	your	F#$KING	QUERIES,	store	access	tokens	with	a	one-way	
methodology,	good	database	security

• 4.4.1.3	Threat:	Online	Guessing	of	Authorization	"codes"
• High	entropy	tokens,	strong	client	authentication,	short	expiration	time

• 4.4.1.5	Threat:	Authorization	"code"	Phishing
• Standard	Phishing	defense.	Good	luck!	One	phish	and	game	over.

20

https://tools.ietf.org/html/rfc6819#section-4.4.1

CSRF	Attacks	against	OAuth	Part	1
1. Attacker assumes	that	Victim	is	currently	logged	in	at	

Consumer site	https://consumer-site.example/ (The	OAuth	Client Application)

2. Attacker goes	through	registration	and	login	workflow	at	
Consumer	Site https://consumer-site.example/login and	uses	that	account	to	trigger	a	Oauth	

workflow	with	the	Provider	Service	(The	OAuth	authorization/resource	server)

1. Consumer	Site	redirects	attacker	to	Provider	Site login	
interface.	This	is	called	the	Authorization	Request.
https://provider-site.example/login

2. Attacker successfully	logs	in	with	Provider	Site
3. Provider Site	responds	with	redirect	URL	which	contains	the	

authorization	code	in	the	code parameter.	this	is	called	the	
Authorization	Grant.																																											http://consumer-

site.example/auth?code=1a2s3d4f5g6h	

21

CSRF	Attacks	against	OAuth	Part	2
3. Instead	of	visiting	or	redirecting	to	the	Authorization	Grant

redirect	URL,	Attacker copies	the	URL	and	places	a	reference	to	
it	in	an	image	tag	on	a	web	page	(<img src="http://consumer-
site.example/auth?code=1a2s3d4f5g6h"	/>)	(https://evil-
page.example/)

4. Attacker gets	Victim	to	visit	https://evil-page.example/.
1. This	in	turn	gets	Victim to	request	the	Authorization	Grant	

URL	(http://consumer-
site.example/auth?code=1a2s34f5g6h)

2. By	visiting	the	Authorization	Grant	URL,	the	Victim has	now	
authorized	the	Attacker to	have	full	authorized	access	to	
Victim's account	on	Consumer Site (https://consumer-
site.example/).

22

OAuth	2	and	avoiding	CSRF

23

1 Consumer generates	unique	random	state	value,	and	stores	it	in	
server	side	session	variable.	JSON	Web	Tokens	are	good	for	state	
values.

2 Consumer sends	"state"	parameter	with	Authorization	Request

3 On	successful	authorization,	Provider Site includes	"state"	parameter	
in	Authorization	Grant	redirect	URI

4
When	Victim visits	redirect	URI,	the	"state"	parameter	is	compared	
against	the	"state"	parameter	stored	in	server	side	session	variable.

Use	the	"state"	parameter!
It	is	essentially	a	CSRF	token

OAuth	2	Authorization	Code	Flow
Open	Redirector:	Attack
1. Victim	goes	through	login	workflow	at	Consumer	Site	

(https://consumer-site.example/login)	using	Provider	Site	for	
authorization.

2. Attacker constructs	an	Authorization	Request	URL	for	Provider	
Site
1. redirect_uri is	set	to	https://evil-site.example/

3. Attacker either	embeds	evil	URL	in	an	image	tag	or	constructs	a	
clickable	link	at	Consumer	Site.

4. When	the	evil	URL	is	loaded,	the	provider	will	302	redirect	back	
to	redirect_uri since	user was	already	logged	in.

5. When	the	redirect	occurs,	the	evil	site	can	read	the	HTTP	
Referrer	to	get	the	Authorization	Code.

6. Using	this	Authorization	Code,	Attacker	can	login	as	user

OAuth	2	Authorization	Code	Flow
Open	Redirector:	Remediation

1. Whitelist	redirect_uri!
2. There	is	no	need	for	a	Provider	to	require	the	redirect_uri param!

OAuth	2	Implicit	Flow
Access	Token	Reuse:	Attack
1. Victim	authorizes	with	Evil	Consumer Site for	Provider	Site using	access_token
2. Acme	Widgets	Consumer	Site	uses	Implicit	Flow	for	authentication.
3. Attacker	authenticates	as	Victim	with	the	Evil	Consumer	Site	access_token using	

https://acme-widgets.example/callback#access_token=access_token

"One	Token	to	Rule	Them	All"

OAuth	2	Implicit	Flow
Access	Token	Reuse:	Remediation

1. OAuth	should	be	used	for	authorization,	not	authentication!
2. Validate	that	access_token belongs	to	your	client_id via	provider	API

OAuth	2.0:		Summary

28

1. Holy	crap	this	is	crazy
2. It	takes	massive	efforts	to	build	secure	OAuth	2	solutions
3. The	core	standard	barely	addresses	security
4. Major	providers	with	PHD's	to	spare	are	overall	doing	a	

reasonable	job	of	build	secure	solutions
5. Clients	are	at	risk	because	they	are	likely	to	build	less	

security	implementations	than	providers
6. Buckle	up,	read	the	threat	model	several	times	and	follow	

it's	many	many	many	recommendations

OAuth:		Summary

29

What	is	OAuth?

OAuth	and	CSRF

Redirection

Token	Reuse

OAuth	Grant	Types

Thank	You!

jim@manicode.com

