
© 2012

Presented by:

Web Application Defense
with

Bayesian Attack Analysis

Ryan Barnett

Senior Security Researcher

OWASP ModSecurity CRS Leader

© 2012

Ryan Barnett - Background

• Trustwave
–Senior Security Researcher
–Member of SpiderLabs Research
–Surveillance Team Lead

• IDS/IPS
• MailMax
• WAF

–Web Application Defense
–ModSecurity Project Leader

• Author

– “Preventing Web Attacks with Apache”
• Pearson Publishing - 2006

– “The Web Application Defenders’ Cookbook”
• Wiley Publishing – (Due end of 2012)

© 2012

Agenda

• Attack Resistance Testing
– Blacklist Filter Evasions
– ModSecurity SQL Injection Challenge Result Example

• Evasion Analysis
– Time-to-Hack Metrics
– Common Evasion Methodology

• Using Bayesian Analysis for Attack Detection
– OSBF-Lua within ModSecurity
– Ham/SPAM Training
– Attack Detection Examples

• Conclusion
– Development Plans
– Call for participation

© 2012

Target Audience: Defender Community

https://www.owasp.org/index.php/Defenders

© 2012

Defending Live Web Applications

http://www.swsec.com/resources/touchpoints/

© 2012

© 2012 © 2012

Attack Resistance Testing:
Blacklist Filter Evasions

© 2012

OWASP ModSecurity Core Rule Set Project

http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

© 2012

http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html

© 2012

DB

DB

DB

DB

SQL Injection Challenge Architecture

IBM

Cenzic

HP

HTTP/HTTPS

Acunetix

ModSecurity

site

© 2012

Two Challenge Levels

• Level I – Speed Hacking

– Find an SQLi attack vector

– Exploit the SQLi vulnerability

– Enumerate the required DB data

– Submit the data to us for review

• Level II – Blacklist Filter Evasion

– Same as Level I, however you must evade the OWASP
ModSecurity CRS Blacklist Filters

© 2012

Level II – Filter Evasions

© 2012

Challenge Participation

• More than 650 participants (in 18 Countries)

http://www.modsecurity.org/demo/challenge.html

© 2012

Challenge Winners

• Winners received the following:
– Recognition - Name(s) listed on the Challenge

website
– Shwag - ModSecurity t-shirt

• Everyone is Happy 

• Well, almost everyone…

© 2012 © 2012

Level II Filter Evasion:
Example

© 2012

Attacking the RegEx Logic

SecRule REQUEST_FILENAME|ARGS_NAMES|ARGS|XML:/* \

"\bunion\b.{1,100}?\bselect\b" \

"phase:2,rev:'2.2.0',capture,t:none,t:urlDecodeUni,t:html

EntityDecode,t:lowercase,

t:replaceComments,t:compressWhiteSpace,ctl:auditLogParts=

+E,block,msg:'SQL Injection

Attack',id:'959047',tag:'WEB_ATTACK/SQL_INJECTION',tag:'W

ASCTC/WASC-

19',tag:'OWASP_TOP_10/A1',tag:'OWASP_AppSensor/CIE1',tag:

'PCI/6.5.2',logdata:'%{TX.0}',severity:'2',setvar:'tx.msg

=%{rule.msg}',setvar:tx.sql_injection_score=+%{tx.critica

l_anomaly_score},setvar:tx.anomaly_score=+%{tx.critical_a

nomaly_score},setvar:tx.%{rule.id}-

WEB_ATTACK/SQL_INJECTION-%{matched_var_name}=%{tx.0}"

Regex allows up to 100
characters between “union”
and “select”

© 2012

http://dev.mysql.com/doc/refman/4.1/en/comments.html

© 2012

Excessive Comment Text
• %40%40new%20union%23sqlmapsqlmapsqlmaps

qlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlm

apsqlmapsqlmapsqlmapsqlmapsqlmapsqlmaps

ql%0Aselect%201,2,database%23sqlmap%0A%

28%29

• URL Decoded

• @@new

union#sqlmapsqlmapsqlmapsqlmapsqlmapsql

mapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmap

sqlmapsqlmapsqlmapsqlmapsql\nselect

1,2,database#sqlmap\n()

103 chars of random text
bypasses the regex rule logic

© 2012 © 2012

Evasion Analysis

© 2012

Common Methodology

• Automation to identify injection points
– NetSparker
– Arachni
– Sqlmap
– Havij

• Manual testing to develop working SQLi payloads
– An iterative process of trial and error

1. Send initial payloads and observe DB responses
2. Use obfuscation tactics (comments, encodings, etc…)
3. Send payload and observe DB response
4. Repeat steps 2 - 3

© 2012

Iterative Testing Example

div 1 union%23%0Aselect 1,2,current_user

div 1 union%23foo*/*bar%0Aselect 1,2,current_user

div 1 union%23foofoofoofoo*/*bar%0Aselect
1,2,current_user

div 1
union%23foofoofoofoofoofoofoofoofoofoo*/*bar%0Asel
ect 1,2,current_user

…

div 1
union%23foofoofoofoofoofoofoofoofoofoofoofoof
oofoofoofoofoofoofoofoofoofoofoofoofoofoofoofo
ofoofoofoofoofoo*/*bar%0Aselect 1,2,current_user

© 2012

Time-to-Hack Metrics

Time-to-Hack Metric Speed
Hacking

Filter
Evasion

Avg. # of Requests 170 433

Avg. Duration (Time) 5 hrs 23 mins 72 hrs

Shortest # of Requests 36 118

Shortest Duration (Time) 46 mins 10 hrs

© 2012

Filter Evasion Conclusions

• Blacklist filtering will only slow down determined
attackers

• Attackers need to try many permutations to
identify a working filter evasion

• The OWASP ModSecurity Core Rules Set’s blacklists
SQLi signatures caught several hundred attempts
before an evasion was found

Questions
• How can we use this methodology to our advantage?
• What detection technique can we use other than

regular expressions?

© 2012

Application Intrusion Detection

• Positive/Whitelist Security Model Input Validation

– Allowed characters

– Length

– WAF Traffic Profiling

• Response Time Latency Tracking

– Deviations of response data due to blind SQLi queries
(waitfor delay, benchmark() or pg_sleep)

• Response Page Fingerprint Deviations

– Changes to the page construction (title, size, etc…)

– Deviation in the amount of sensitive records returned

 https://www.owasp.org/index.php/Category:OWASP_AppSensor_Project

© 2012 © 2012

Using Bayesian Analysis
for Attack Detection

© 2012

Bayesian Analysis for HTTP

• RegEx detection is binary
– The operator either matched or it didn’t
– Need a method of detecting attack probability

• Bayesian analysis has achieved great results in Anti-SPAM
efforts for email

• Can’t we use the same detection logic for HTTP data?
– Data Source

• Email – OS level text files
• HTTP – text taken directly from HTTP transaction

– Data Format
• Email – Mime headers + Email body
• HTTP – URI + Request Headers + Parameters

– Data Classification
• Non-malicious HTTP request = HAM
• HTTP Attack payloads = SPAM

© 2012

OSBF-Lua

• OSBF-Lua by Fidelis Assis

– Orthogonal Sparse Bigrams with Confidence Factor (OSBF)

– Uses space characters for tokenization (which means that it
factors in meta-characters)

– Very fast

– Accurate classifiers

– http://osbf-lua.luaforge.net/

• Moonfilter by Christian Siefkes

– Wrapper script for OSBF

– http://www.siefkes.net/software/moonfilter/

• Integrate with ModSecurity’s Lua API

© 2012

Training the OSBF Classifiers

Attack Detected?
(Using the OWASP
ModSecurity CRS)

No Train as HAM

Yes Train as SPAM

© 2012

Theory of Operation - HAM

1. Non-malicious user data does not trigger any blacklist rules
2. Lua script trains OSBF classifier that payloads are HAM

Lua: Executing script: /etc/httpd/modsecurity.d/bayes_train_ham.lua
 Arg Name: ARGS:txtFirstName and Arg Value: Bob.
 Arg Name: ARGS:txtLastName and Arg Value: Smith.
 Arg Name: ARGS:txtSocialScurityNo and Arg Value: 123-12-9045.
 Arg Name: ARGS:txtDOB and Arg Value: 1958-12-12.
 Arg Name: ARGS:txtAddress and Arg Value: 123 Someplace Dr..
 Arg Name: ARGS:txtCity and Arg Value: Fairfax.
 Arg Name: ARGS:drpState and Arg Value: VA.
 Arg Name: ARGS:txtTelephoneNo and Arg Value: 703-794-2222.
 Arg Name: ARGS:txtEmail and Arg Value: bob.smith@mail.com.
 Arg Name: ARGS:txtAnnualIncome and Arg Value: $90,000.
 Arg Name: ARGS:drpLoanType and Arg Value: Car.
 Arg Name: ARGS:sendbutton1 and Arg Value: Submit.
 Low Bayesian Score: . Training payloads as non-malicious.

© 2012

Theory of Operation - SPAM

1. Attacker sends malicious payloads during initial testing phase
2. Payloads are caught by our blacklist rules
3. Lua script trains OSBF classifier that payloads are SPAM

[Thu Nov 03 15:21:08 2011] [error] [client
72.192.214.223] ModSecurity: Warning. Pattern match
".*" at TX:981231-WEB_ATTACK/SQL_INJECTION-
ARGS:artist. [file
"/etc/httpd/modsecurity.d/crs/base_rules/modsecurity_c
rs_48_bayes_analysis.conf"] [line "1"] [data
"Completed Bayesian Training on SQLi Payload: @@new
union#sqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmap
sqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsql\\x
0aselect 1,2,database#sqlmap\\x0a()."] [hostname
"www.modsecurity.org"] [uri
"/testphp.vulnweb.com/artists.php"] [unique_id
"VCqlxsCo8AoAADYJV3kAAAAH"]

© 2012

Theory of Operation - Unknown

• Previous evasion payload is now caught

[Thu Nov 03 15:28:18 2011] [error] [client 72.192.214.223]
ModSecurity: Warning. Bayesian Analysis Alert for
ARGS:artist with payload: "@@new
union#sqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmap
sqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsqlmapsql\nselect
1,2,database#sqlmap\n()" [file
"/etc/httpd/modsecurity.d/crs/base_rules/modsecurity_crs_48_
bayes_analysis.conf"] [line "3"] [msg "Bayesian Analysis
Detects Probable SQLi Attack."] [data "Score:
{prob=0.99999999965698,probs={0.99999999965698,3.43018986145
48e-
10},class=\\x22/var/log/httpd/spam\\x22,pR=5.5841622861233,r
einforce=true}"] [severity "CRITICAL"] [tag
"WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/WASC-19"] [tag
"OWASP_TOP_10/A1"] [tag "OWASP_AppSensor/CIE1"] [tag
"PCI/6.5.2"] [hostname "www.modsecurity.org"] [uri
"/testphp.vulnweb.com/artists.php"] [unique_id
"bcjElMCo8AoAADYlSXMAAAAI"]

© 2012

Bayesian Alert for Evasion Payload

© 2012 © 2012

Conclusion

© 2012

Development Plans/Call for Assistance

• This proof of concept will eventually be put into
the OWASP ModSecurity CRS
– Other projects may consider using it too (AppSensor,

ESAPI, etc…)

• Need to include HTTP Header data in training
– For accurate Bayesian classification, more data is

better.

– Including HTTP Header data may also help to identify
non-browser/tool attacks

• Need more testing
– If you would like to help with testing, please contact

me and I will provide you access to the Lua scripts.

© 2012

ModSecurity T-Shirt Giveaway

• What was the shortest “Time-to-Evasion” from
Level II?

• 10 hrs.

© 2012

Contact/Resources

• Email
– OWASP: ryan.barnett@owasp.org
– Trustwave: rbarnett@trustwave.com

• Twitter

– @ryancbarnett
– @ModSecurity
– @SpiderLabs

• Blog

– http://tacticalwebappsec.blogspot.com
– http://blog.spiderlabs.com

mailto:ryan.barnett@owasp.org
mailto:rbarnett@trustwave.com
http://tacticalwebappsec.blogspot.com
http://blog.spiderlabs.com
http://blog.spiderlabs.com
http://blog.spiderlabs.com

