P2 Irustwave:

Web Application Defense
with
Bayesian Attack Analysis

Presented by:

Ryan Barnett
Senior Security Researcher
OWASP ModSecurity CRS Leader

\

Ryan Barnett - Background

 Trustwave
—Senior Security Researcher
—Member of SpiderLabs Research

—Surveillance Team Lead
. IDS/IPS
« MailMax
- WAF

—Web Application Defense
—ModSecurity Project Leader

° AuthOI‘ PREVENTING

WEB ATTACKS

—"Preventing Web Attacks with Apache” WITH APACHE

 Pearson Publishing - 2006
—"“The Web Application Defenders’ Cookbook”
« Wiley Publishing — (Due end of 2012) VAN €. BARNETT

7 Irustwave: %2 Trustwave
SpiderLabs © 2012

e

Agenda

Attack Resistance Testing
— Blacklist Filter Evasions
— ModSecurity SQL Injection Challenge Result Example

Evasion Analysis
— Time-to-Hack Metrics
— Common Evasion Methodology

Using Bayesian Analysis for Attack Detection
— OSBF-Lua within ModSecurity

— Ham/SPAM Training

— Attack Detection Examples

Conclusion
— Development Plans
— Call for participation

Trustwave: P2 Trustwave:
SpiderLabs © 2012

ﬂ

Target Audience: Defender Community -

A Vision for OWASP

Outreach

Projects

StakeHolders
Focus

Support

Platform

Trustwave https://www.owasp.org/index.php/Defenders P2 Trustwave:
SpiderLabs © 2010

—_—

Defending Live Web Applications

"

SECURITY EXTERMNAL
REQUIREMEMNTS REVIEW PE P-J.-Eﬁﬂf”

RISK-BASED
ABLUSE RISK SECURITY RISK SECURITY
CASES ANALYSIS TESTS #.N.-“-.LT!EIE DPE RATIONS

2R T, |

REQUIREMENTS ARCHITECTURE TEST PLANS TESTS AND FEEDBACK FROM
AND USE CASES AND DESIGN TEST RESULTS THE FIELD

= F '
0000
[ITTTT]

Defenders

-Sl-l'leStL\h;"JHVG‘ http://www.swsec.com/resources/touchpoints/ ']Trustwave®
piaerLaos © 2012

—_—

Tuesday, April 3, 2012

OWASP Security Blitz - April : Injection Attacks

OWASP is starting a monthly security blitz where we will rally the security community around a
particular topic. The topic may be a vulnerability, defensive design approach, technology or even a
methodology. All members of the security community are encouraged to write blog posts, articles,
patches to tools, videos etc in the spirit of the current monthly topic. Our goal is to show a variety of
perspectives on the topic from the different perspectives of builders, breakers and defenders.

Today I'm happy to kick off our first month of the OWASP Security Blitz with the topic of:
Injection Attacks - SQL Injection

Please tweet your contributions with hashtag #OWASP and also add a comment to this post with a
link to the material.

At the end of the month we will gather the new articles and include a summary in an upcoming
OWASP newsletter. We may even hold a small vote to determine the best contribution of the month.

Let's start the rally!

Trustwave: P2 Trustwave:
SpiderLabs

© 2012

Attack Resistance Testing:
Blacklist Filter Evasions

%2 Trustwave’

OWASP ModSecurity Core Rule Set Project

ODWASP This project is part of the OWASP Defenders community.

Defenders Feel| free to browse other projects within the Defenders, Builders, and Breakers communities.

Download | Bug Tracker | Demo | Installation | Documentation | Presentations and Whitepapers | Related Projects
Latest Mews and Mail List | Contributors, Users and Adopters | Project About

Overview

ModSecurity ™ is a web application firewall engine that provides very little protection on its own. In order to become
useful, ModSecurity ™ must be configured with rules. In order to enable users to take full advantage of ModSecurity ™
out of the box, Trustwave's SpiderLabs is providing a free certified rule set for ModSecurity ™ 2.x. Unlike intrusion
detection and prevention systems, which rely on signatures specific to known vulnerabilities, the Core Rules provide
generic protection from unknown vulnerabilities often found in web applications, which are in most cases custom
coded. The Core Rules are heavily commented to allow it to be used as a step-by-step deployment guide for
ModSecurity ™.

Core Rules Content
In order to provide generic web applications protection, the Core Rules use the following techniques:

u HTTP Protection - detecting violations of the HTTP protocol and a locally defined usage policy.

= Real-time Blacklist Lookups - utilizes 3rd Party IP Reputation

= Web-based Malware Detection - identifies malicious web content by check against the Google Safe Browsing APL.
= HTTP Denial of Service Protections - defense against HTTP Flooding and Slow HTTP DoS Attacks.

= Common Web Attacks Protection - detecting common web application security attack.

= Automation Detection - Detecting bots, crawlers, scanners and other surface malicious activity.

= Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application.
= Tracking Sensitive Data - Tracks Credit Card usage and blocks leakages.

= Trojan Protection - Detecting access to Trojans horses.

» Identification of Application Defects - alerts on application misconfigurations.

= Error Detection and Hiding - Disguising error messages sent by the server.

Trustwave

Spider

% -SI-EHEJEE]UB http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project '] Trustwave®

© 2012

Official Blog of Trustwave's SpiderLabs -
i SpiderLabs is an elite team of ethical

TrUStwave"' | !.r'ﬁ\,l P ‘g e e hackers, investigators and researchers at
Spider._ab: P ITqr O]

Trustwave advancing the security
capabilities of leading businesses and
organizations throughout the world.

O'I'HE !! ES !Eg 5 !EE! !E HG E

« ModSecurity Advanced Topic of the Week: Application Logout Response Actions | Main | Announcing Release of
ModSecurity v2.6.1-RC1 »

nnouncing the ModSecurity SQL Injection Challenge

The ModSecurity Project Team is happy to announce our first community hacking challenge!

Globa This is a SQL Injection and Filter Evasion Challenge. We have setup ModSecurity to proxy to the
Secu rity following 4 commercial vuln scanner demo sites:
Report _ .
. IBEM (AppScan) - demo.testfire.net site
b?'—':KHEHEmD”W”LD""D"m"! Cenzic (HailStorm) - CrackMe Bank site
HF (Weblnspect) - Free Bank site
SpiderLabs Services Acunetix (Acunetix) - Acuart site

360 Application Security M
App Code Review Challenge Details
App PenTesting
Incident Response
Met PenTesting

To successfully complete the challenge, participants must do the following:
ModSecurity Rules
Physical Security 1. Identify a SQL Injection vector within one of the demo websites listed above.
Resources 2. Successfully enumerate the following information about the database:
f::g::# DB User(s) - provide request data.
Projects DB Mame(s) - provide request data.
Security Tools Table Name(s) - provide request data.
Column Name(s) - provide request data.
Ca ies .
Challenge Submission

[Honeypot Aler] Advisories
Application Security

Conferances Global Sacurty

%!g}dg}g?\je http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html '] Trustwave®

Please send challenge submissions to security @modsecurity.org with the details from above.

© 2012

WSS e —

e —

SQL Injection Challenge Architecture

’

Trustwave:
SpiderLabs

* HTTP/HTTPS

’ IBM !
| : (]

Cenzic '
| d
| i I
| d
| Acunetix '

2012

e

Two Challenge Levels

» Level I — Speed Hacking
— Find an SQLi attack vector
— Exploit the SQLi vulnerability
— Enumerate the required DB data
— Submit the data to us for review

e Level IT — Blacklist Filter Evasion

— Same as Level I, however you must evade the OWASP
ModSecurity CRS Blacklist Filters

A ‘ ®
#Irustwave 2\ Trustwa;{g

——A_

\
Level II — Filter Evasions

800 Altoro Mutual: Server Error

E Altoro Mutual: Server Error +

OE @ g L‘] E‘ E www.modsecurity.org/bank/login.aspx 77w | (M~ Google

ModSecurity Alert Message:
Inbound Alert: 981243-Detects classic SQL injection probings 2/2
Outbound Alert: The application is not available
TX ID: hCVXc8Co8A0AABq52dMAAAAA

Sign In | Contact Us | Feedback | Search

AltoroMutual » _* 7 IR 7

An Error Has Occurred

Summary:

Syntax error in date in query expression 'username =" or '1'="1'#' AND password = 'assda".

Error Message:

System.Data.OleDb.OleDbException: Syntax error in date in query expression 'username =" or "1'="1"#"' AND password = 'assda". at
System.Data.OleDb.OleDbCommand.ExecuteCommandTextErrorHandling(OleDbHResult hr) at
System.Data.OleDb.OleDbCommand.ExecuteCommandTextForSingleResult(tagDBPARAMS dbParams, Object& executeResult) at
System.Data.OleDb.OleDbCommand.ExecuteCommandText(Object& executeResult) at
System.Data.OleDb.OleDbCommand.ExecuteCommand(CommandBehavior behavior, Object& executeResult) at

' Trustwave: P2 lrustwave:
piderLabs © 2012

I ——-_\;
Challenge Participation
« More than 650 participants (in 18 Countries)

=
i
i ; : 1 5 N y
L ik o .
" [/ -t (] - . L}

L= . - Mt . £ =l . /
X d k. !‘. .-'_l" . : " 3 . . Y 1 .
e . - r g o . 3 o
. 5 .\
= |
& ® CLL
.
!
’ 1

%TFUS‘:WEIVE‘ http://www.modsecurity.org/demo/challenge.html '1 TI‘UStwave
SpiderLabs © 2012

Challenge Winners

« Winners received the following:
— Recognition - Name(s) listed on the Challenge

website

— Shwag - ModSecurity t-shirt
Evervone is Habppv ©

I participated
in a WAF bypass
contest...

The wvendor learned
everyvthing about
how I attack and

bypass their
product. ..

Tn}é{ﬁ!bv@l most everyone...

[]
/K SpiderLabs

He will earn
millions from
selling the

improved product.

And all I got
was a f ing
T-Shirt !!!

Level 1 Winners

IBM Testfire:

+ PT Research
Cenzic CrackMe Bank:

« Ahmad Maulana
HP Free Bank:

« Alexander Zaitsev
Acunetix Acuart:

+ Travis Lee

Level 2 Winners

« Johannes Dahse

« Vladimir Vorontsov
¢ PT Research

« Ahmad Maulana

e Travis Lee

« Roberto Salgado

« S0QLMap Developers
« HackPlayers

+ Georgi Geshev
« TBD

« TED
« TBD

Pa Trustwave:

© 2012

Level II Filter Evasion:
Example

%2 Trustwave’

© 2012

Attacking the RegEx Logic

//;;;Rule REQUEST_FILENAMEIARGS_NAMESIARGSIXML:/* \
"\bunion\b.{1,00}?\bselect\b" \

"phase:2, rev:'2\ ~',capture, t:none, t:urlDecodeUni, t:html
EntityDecode *+-1 e

t:replaceCon e,ctl:auditLogParts=
+E,block, msc

Attack',id:" QL_INJECTION',tag:'W

ASCTC/WASC- Y,
19',tag: "OWASP TOP 10/Al"',tag:'OWASP AppSensor/CIEl',tag:
'"PCI/6.5.2",logdata:"'${TX.0}',severity:'2"',setvar:'tx.msg
=%{rule.msg}',setvar:tx.sql injection score=+%{tx.critica
1 anomaly score},setvar:tx.anomaly score=+%{tx.critical a
nomaly score},setvar:tx.s{rule.id}-

\\Tﬁf_ATTACK/SQL_INJECTION—%{matched_var_name}=%{tx.O}"

K Irustwave P2 Trustwave:
SpiderLabs © 2012

— 4 ——— T ———

~ 8.6. Comment Syntax

MySQL Server supports three comment styles:

& From a“#" character to the end of the line.

From a “-- " sequence to the end of the line. In MySQL, the “-- " (double-dash) comment style requires the
second dash to be followed by at least one whitespace or control character (such as a space, tab, newline, and so0

on). This syntax differs slightly from standard SQL comment syntax, as discussed in Section 1.8.5.5, "'--" as the
Start of a Comment”.

From a /* sequence to the following */ sequence, as in the C programming language. This syntax enables a

comment to extend over multiple lines because the beginning and closing sequences need not be on the same
line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysgl> SELECT 1+41; -- This comment continues to the end of line
mysgl> SELECT 1 f* this is an in-line comment */ + 1;

mysgl> SELECT 1+

‘ll't

this is a

muiltiple-line comment

*/

1;

Nested comments are not supported. (Under some conditions, nested comments might be permitted, but usually
are not, and users should avoid them.)

%-Srrlalstﬁ,ave" http://dev.mysql.com/doc/refman/4.1/en/comments.html '1-|—|“ustwa\/e®
piderLabs

© 2012

‘_—\\

Excessive Comment Text
o %40%40new%ZOunion%ZBSqlmapsqlmapsqlmaps“
glmapsglmapsglmapsglmapsglmapsglmapsglm
apsglmapsglmapsglmapsglmapsglmapsglmaps
qgls0Aselect%201, 2,database%23sglmaps0A%s

28%29

URL Decoded
103 chars of random text

@@new bypasses the regex rule logic

union#sglmapsglmapsgeme
mapsglmapsglmapsglmapsgiamapsglmapsglmap
sglmapsglmapsglmapsglmapsgl\nselect

1,2,database#sglmap\n ()

Trustwave: P2 Trustwave:
SpiderLabs © 2012

Evasion Analysis

%2 Trustwave’

© 2012

B

Common Methodology

« Automation to identify injection points
— NetSparker
— Arachni
— Sqglmap
— Havij

« Manual testing to develop working SQLi payloads
— An iterative process of trial and error

1. Send initial payloads and observe DB responses

2. Use obfuscation tactics (comments, encodings, etc...)
3. Send payload and observe DB response

4. Repeat steps 2 - 3

Trustwave: P2 Trustwave:
SpiderLabs © 2012

[terative Testing Example

IV 1 union%?23%0Aselect 1,2,current_user
Iv 1 union%?23foo*/*bar%0Aselect 1,2,current_user

div 1 union%23foofoofoofoo*/*bar%0Aselect
1,2,current_user

div 1
union%23foofoofoofoofoofoofoofoofoofoo™*/*bar%0Asel
ect 1,2,current_user

C
C

div 1
union%o23foofoofoofoofoofoofoofoofoofoofoofoof
oofoofoofoofoofoofoofoofoofoofoofoofoofoofoofo

ofoofoofoofoofoo* / *bar%0Aselect 1,2,current user

K Irustwave: » Trustwave:
SpiderLabs ©

Time-to-Hack Metrics

Time-to-Hack Metric Speed Filter
Hacking ATE]y

Avg. # of Requests 170 433
Avg. Duration (Time) 5 hrs 23 mins 72 hrs
Shortest # of Requests 36 118
Shortest Duration (Time) 46 mins 10 hrs

K lrustwave % Trustwave

I —

Filter Evasion Conclusions

» Blacklist filtering will only slow down determined
attackers

 Attackers need to tr?/ many permutations to
identify a working filter evasion

« The OWASP ModSecurity Core Rules Set’s blacklists
SQLi signatures caught several hundred attempts
before an evasion was found

Questions
« How can we use this methodology to our advantage?

« What detection technique can we use other than
regular expressions?

%Trustwave“
SpiderLabs

e ———

e —

—_—

Application Intrusion Detection

 Positive/Whitelist Security Model Input Validation
— Allowed characters
— Length
— WAF Traffic Profiling

» Response Time Latency Tracking

— Deviations of response data due to blind SQLi queries
(waitfor delay, benchmark() or pg_sleep)

* Response Page Fingerprint Deviations
— Changes to the page construction (title, size, etc...)
— Deviation in the amount of sensitive records returned

%'Sl'rﬂstﬂave" https://www.owasp.org/index.php/Category:OWASP_AppSensor_Project '] Trustwave®
piaerLaos © 2012

Using Bayesian Analysis
for Attack Detection

%2 Trustwave’

© 2012

—_—

Bayesian Analysis for HTTP

« RegEx detection is binary
— The operator either matched or it didn't
— Need a method of detecting attack probability

« Bayesian analysis has achieved great results in Anti-SPAM
efforts for email

« Can’t we use the same detection logic for HTTP data?

— Data Source
« Email — OS level text files
« HTTP — text taken directly from HTTP transaction

— Data Format
« Email — Mime headers + Email body
« HTTP — URI + Request Headers + Parameters

— Data Classification
« Non-malicious HTTP request = HAM
« HTTP Attack payloads = SPAM

Iustwave: % Trustwave
SpiderLabs © 2012

OSBF-Lua

« OSBF-Lua by Fidelis Assis

— Orthogonal Sparse Bigrams with Confidence Factor (OSBF)

— Uses space characters for tokenization (which means that it
factors in meta-characters)

— Very fast @ﬁﬁ: — .

. O
— Accurate classifiers

— http://osbf-lua.luaforge.net/
« Moonfilter by Christian Siefkes
— Wrapper script for OSBF
— http://www.siefkes.net/software/moonfilter/

 Integrate with ModSecurity’s Lua API

K Tustwave: % Trustwave
SpiderLabs © 2012

- — \

Training the OSBF Classifiers

Attack Detected?
(Using the OWASP
ModSecurity CRS)

\

Train as SPAM

K Irustwave % Trustwave’
SpiderLabs © 2012

\
Theory of Operation - HAM

1. Non-malicious user data does not trigger any blacklist rules
2. Lua script trains OSBF classifier that payloads are HAM

Lua: Executing script: /etc/httpd/modsecurity.d/bayes_train_ham.lua

Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:
Arg Name:

ARGS:txtFirstName and Arg Value: Bob.
ARGS:txtLastName and Arg Value: Smith.
ARGS:txtSocialScurityNo and Arg Value: 123-12-9045.
ARGS:txtDOB and Arg Value: 1958-12-12.
ARGS:txtAddress and Arg Value: 123 Someplace Dr..
ARGS:txtCity and Arg Value: Fairfax.

ARGS:drpState and Arg Value: VA.
ARGS:txtTelephoneNo and Arg Value: 703-794-2222.
ARGS:txtEmail and Arg Value: bob.smith@mail.com.
ARGS:txtAnnuallncome and Arg Value: $90,000.
ARGS:drpLoanType and Arg Value: Car.
ARGS:sendbutton1 and Arg Value: Submit.

Low Bayesian Score: . Training payloads as non-malicious.

%Trustwave“
SpiderLabs

Pa Trustwave:

© 2012

\
Theory of Operation - SPAM

1. Attacker sends malicious payloads during initial testing phase
2. Payloads are caught by our blacklist rules
3. Lua script trains OSBF classifier that payloads are SPAM

[Thu Nov 03 15:21:08 2011] [error] [client
72.192.214.223] ModSecurity: Warning. Pattern match
".E" at TX:981231-WEB ATTACK/SQL INJECTION-
ARGS:artist. [file N
"/etc/httpd/modsecurity.d/crs/base rules/modsecurity c
rs 48 bayes analysis.conf"] [line "1"] [data
"Completed Bayesian Training on SQLi Payload: QR@new
union#sqlmapsglmapsqlmapsqlmapsqglmapsqlmapsglmapsqlmap
sqlmapsqlmapsglmapsqlmapsqglmapsqglmapsqlmapsglmapsql\\x
Oaselect 1,2,database#sqlmap\\x0a()."] [hostname
"www.modsecurity.org"] [uri
"/testphp.vulnweb.com/artists.php"] [unique id
"VCglxsCo8AOAADYJV3IkAAAAH"] N

75 Irustwave: %2 Trustwave
SpiderLabs

© 2012

—_—

Theory of Operation - Unknown

« Previous evasion payload is now caught

[Thu Nov 03 15:28:18 2011] [error] [client 72.192.214.223]
ModSecurity: Warning. Bayesilian Analysis Alert for
ARGS:artist with payload: "@@new
union#fsglmapsglmapsglmapsglmapsglmapsglmapsglmapsglmapsglmap
sqlmapsglmapsglmapsglmapsglmapsglmapsglmapsgl\nselect
1,2,database#sglmap\n ()" [file
"/etc/httpd/modsecurity.d/crs/base rules/modsecurity crs 48
bayes analysis.conf"] [line "3"] [msg "Bayesian Analysis
Detects Probable SQLi Attack."] [data "Score:
{prob=0.99999999965698 ,probs={0.99999999965698,3.43018986145
48e-

10},class=\\x22/var/log/httpd/spam\\x22 ,pR=5.5841622861233,r
einforce=true}"] [severity "CRITICAL"] [tag
"WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/WASC-19"] [tag
"OWASP TOP 10/A1"] [tag "OWASP AppSensor/CIE1"] [tag
"PCI/6.5.2"] [hostname "www.modsecurity.org"] [uri
"/testphp.vulnweb.com/artists.php"] [unique id
"bcjEIMCO8AOAADY1SXMAAAATI"] N

Trustwave: P2 Trustwave:
SpiderLabs

© 2012

www.modsecurity.org/testphp.vulnweb.com/artists. phpZartist=%40%40new ',‘ﬂ‘,‘ b4

ModSecurity Alert Message:
Inbound Alert: Bayesian Analysis Detects Probable SQLi Attack.
Outbound Alert: Bayesian Analysis Detects Probable SQLi Attack.
TX ID: Z6sARsCo8A0AADYdGfgAAAAA

MNacunetix fe e el d

home | categories | artists | disclaimer | your cart | guestbook | AJAX Demo

search art artist: 2

[1[e]

Browse categories acuart

Browse artists

Your cart view pictures of the artist
Signup

Your profile

Our guestbook

AJAX Demo

Links
Security art
Fractal Explorer

comment on this artist

%-Srg}derLabgve' ‘ rUS Wave®

© 2012

Conclusion

%2 Trustwave’

© 2012

I —_—

Development Plans/Call for Assistance

* This proof of concept will eventually be put into
the OWASP ModSecurity CRS

— Other projects may consider using it too (AppSensor,
ESAPI, etc...)

* Need to include HTTP Header data in training

— For accurate Bayesian classification, more data is
better.

— Including HTTP Header data may also help to identify
non-browser/tool attacks

* Need more testing

— If you would like to help with testing, please contact

me and I will provide you access to the Lua scripts.

Iustwave: % Trustwave
SpiderLabs © 2012

e
e ‘——.—-_-—%

ModSecurity T-Shirt Giveaway

 What was the shortest "Time-to-Evasion” from
Level II7?

e 10 hrs.

GEIRVIOD

%Trustwave'
SpiderLabs

——

Contact/Resources

 Email
— OWASP: ryan.barnett@owasp.org
— Trustwave: rbarnett@trustwave.com

o Twitter
— @ryancbarnett
— @ModSecurity
— @SpiderLabs

« Blog
— http://tacticalwebappsec.blogspot.com
— http://blog.spiderlabs.com

Iustwave: % Trustwave
SpiderLabs © 2012

mailto:ryan.barnett@owasp.org
mailto:rbarnett@trustwave.com
http://tacticalwebappsec.blogspot.com
http://blog.spiderlabs.com
http://blog.spiderlabs.com
http://blog.spiderlabs.com

