OWASP Top 10 - 2010
The Top 10 Most Critical Web
Application Security Risks

Nick Freeman
Security Consultant, S-A.com
OWASP NZ Chapter Leader (Aucklan

nick.freeman@security-assessment.com

nick.freeman@owasp.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.or

mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@owasp.org

Introduction

m OWASP Top 10 Project

» "The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

m Why are we covering this?
» Feedback from OWASP day

» What I see day to day during webapp assessments

» Widely applicable to .nz businesses

B These slides are heavily based on the work of others
» See credits at the end

OWASP - 2011 e

OWASP Top Ten (2010 Edition)

A3: Broken
_ - o AA4: Insecure
A2: Cross-Site Authentication Direct Object

A1l: Injection Scripting (XSS) and Session Referenct .
Management

A5: Cross Site
Request Forgery

A7: Failure to AS8: Insecure
Restrict URL Cryptographic
Access Storage

AG6: Security

(CSRF) Misconfiguration

Al10:
Unvalidated
Redirects and
Forwards

A9: Insufficient
Transport Layer
Protection

OWASP http://www.owasp.org/index.php/Top 10

The Open Web Application Security Project

hep://www.owasp.org

OWASP - 2011

http://www.owasp.org/index.php/Top_10

Al — Injection

Injection means...

e Tricking an application into including unintended
commands in the data sent to an interpreter

Interpreters...

e Take strings and interpret them as commands
e SQL, OS Shell, LDAP, XPath, Hibernate, etc...

Typical Impact

e Usually severe.
e Entire database can usually be read or modified
e Could allow read/write of local files

e May also allow OS level access

OWASP - 2011 e

Al.a — SQL Injection

SQL Injection means...

e Tricking a web application into including
unintended commands in the data sent to a
database driver

e The attacker’s injection modifies the application’s
SQL query to do his own evil bidding

Typical Impact

e Usually severe.
e Entire database can usually be read or modified
e Could allow read/write of local files

e May also allow OS level access

OWASP - 2011 e

Application Layer

Network Layer

SQL Injection — Illustrated

(%]
el @ A

DB Table
request 6

|
1
S ¢ @)
2 2
&\\ ‘

Custom Code

Accounts

‘ 1 3
App Server

Web Server

Hardened ©S

A-

STEE
STENE

Account; | ©OR1=1-—

SKU:

A

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application sends modified SQL
query to database

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the user

OWASP - 2011 e

Demo — Auth Bypass

OWASP - 2011

Demo 1 - Detalls

B Authentication bypass

$query = ‘SELECT userid FROM tbl users WHERE
username = ‘' + Susername + ‘AND password = ‘' +
Spassword;

$db handler->execute ($query) ;

» In this case, $query ends up being modified to be:

SELECT userid FROM tbl_users WHERE username = ‘a’
OR 1=1#’ AND password = ‘’;

OWASP - 2011 e

T
Avoiding SQL Injection Flaws

B Recommendations
1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

= Bind variables allow the interpreter to distinguish between code and
data

= Most all frameworks have ways to do this. There is NO EXCUSE!

3. Encode all user input before passing it to the interpreter

» Always perform ‘white list” input validation on all user supplied
input

» Always minimise database privileges to reduce the impact of a
flaw

B References

» For more details, read the new
http://www.owasp.org/index.php/SQL Injection Prevention Cheat (S)%eAtSP - 2011 e

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Al.b — OS Command Injection

OS Command Injection means...

e The web application uses your dodgy HTTP
parameters as input to craft a command executed
by the underlying OS.

Largely unheard of these days

e Few people think letting The Internets run
commands on the OS is a good idea

Typical Impact

e Arbitrary remote command execution.

OWASP - 2011 e

T
Avoiding OS Command Injection Flaws

B Recommendations

1.
2.
3.

Don't trust user input to form arguments to a system command
Escape shell meta characters such as pipe (|) semicolons (;) etc.
Always perform ‘white list” input validation on all user supplied
input

Ensure the web server is running with a user with low privileges

Chroot the web server to limit exposure in the event of web
server compromise.

OWASP - 2011 e

Al.c — XML Injection

XML Injection means...

e The web application uses your HTTP parameters as input
to create an XML query

XML injection is nhot common

e Most XML parsers do sensible input validation, and don’t
allow you to supply extra tags or include external entities

Typical Impact

e Can allow Cross Site Scripting (coming up soon)
e Can allow local file read
e Can allow port scanning of the local network

OWASP - 2011 e

Example

m External Entity Allows Local File Read

<?xml version="1.0" encoding="IS0O-8859-1"7?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd">
1>
<foo>&xxe;</foo>

» Returns contents of /etc/passwd back to the user

OWASP - 2011

Avoiding XML Injection Flaws

B Recommendations
» Use a real XML parser. DON'T roll your own, they always suck
» Filter for malicious input (get rid of <>?/& etc)

» XPath queries should not contain any meta characters (such as '
= *7? [/ or similar)

OWASP - 2011 e

OWASP Top Ten (2010 Edition)

A3: Broken .
A2: Cross-Site Authentication Q?r'ef:'t‘%aﬁg’é;

Scripting (XSS) and Session References
Management

Al: Injection

A7: Failure to A8: Insecure
Restrict URL Cryptographic
Access Storage

A5: Cross Site

Request Forgery A6: Security

(CSRF) Misconfiguration

Al10:
Unvalidated
Redirects and
Forwards

A9: Insufficient
Transport Layer
Protection

OWASP http://www.owasp.org/index.php/Top 10

The Open Web Application Security Project
hup://www.owasp.org

OWASP - 2011

http://www.owasp.org/index.php/Top_10

A2 — Cross-Site Scripting (XSS)

Occurs any time...

e Raw data from attacker is sent to an innocent user’s browser

Raw data...

e Stored in database
o Reflected from web input (form field, hidden field, URL, etc...)
e Sent directly into rich JavaScript client

Virtually every web application has this problem

e Many that attempt to fix it don’t apply the fix consistently

Typical Impact

¢ Steal user’s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site, enable XSRF exploitation

e Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

OWASP - 2011 e

Cross-Site Scripting Illustrated

@ Attacker sets the trap — update my profile
i cox ﬁﬁr?l

v | B co
Logout @ ~

Application with
stored XSS

Attacker enters a vulnerability
malicious script into a

web page that stores the
2 data on the server -

How to Exploit Hidden Fields

@ V|ct|m V|ews page — sees attacker proflle
ot Elﬁl’?!

=
p=
(b
S
D
=
S
c
X

Accounts
Transactions

_ _Bus. Function

Custom Code

How to Exploit Hidden Fields

Script runs inside

»” victim’s browser with full
“““““ access to the DOM and
cookies =

@ Script silently sends attacker Victim’s session cookie
OWASP - 2011 e

Demo — Cookie Leakage & BeEF

OWASP - 2011

A2 — Avoiding XSS Flaws

B Recommendations

» Eliminate Flaw
= Don't include user supplied input in the output page
» Defend Against the Flaw

= Primary Recommendation: Output encode all user supplied input
(Use OWASP’s ESAPI to output encode:

http://www.owasp.org/index.php/ESAPI

= Perform ‘white list” input validation on all user input to be included in
page

= For large chunks of user supplied HTML, use OWASP’s AntiSamy to
sanitize this HTML to make it safe

See: http://www.owasp.org/index.php/AntiSamy
B References

» For how to output encode properly, read the new -
http://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet (Anti Samy)

OWASP - 2011 e

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

T
Safe Escaping Schemes in Various HTML Execution

é Blank Page - Windows Intemet Explorer { = |8 &
NS, _) | aboutblank - |‘r| x || Google F=as
& dAf | @Blank Page By - B - ® - i Page v Ok Tools >

HTML Element Content

(e.g., <div> some text to display </div>)

HTML Attribute Values

(e.g., <input name='person' type="TEXT"
value='defaultValue')

JavaScript Data

(e.g., <script>some javascript </script>)

HTML Style Property Values

(e.g., .pdiv a:hover {color: red; text-decoration:
underline})

URI Attribute Values

(e.g., <a href="javascript:toggle('lesson’)")

0 Internet | Protected Mode: On R100% ~

ALL other contexts CANNOT include Untrusted Data

#1: (& <,>,")> &entity; (',/) > &#xHH;
ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 > &#xHH
ESAPI: encodeForHTMLAttribute()

#3: All non-alphanumeric < 256 - \xHH
ESAPI: encodeForJavaScript()

#4: All non-alphanumeric < 256 - \HH
ESAPI: encodeForCSS()

#5: All non-alphanumeric < 256 > %HH
ESAPI: encodeForURL()

Recommendation: Only allow #1 and #2 and disallow all others
See: www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet for more

details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

OWASP Top Ten (2010 Edition)

A3: Broken
- > = AA4: Insecure
A2: Cross-Site Authentication Direct Object

Scripting (XSS) and Session References
Management

Al: Injection

A7: Failure to A8: Insecure
Restrict URL Cryptographic
Access Storage

A5: Cross Site

Request Forgery A6: Security

(CSRF) Misconfiguration

Al10:
Unvalidated
Redirects and
Forwards

A9: Insufficient
Transport Layer
Protection

OWASP http://www.owasp.org/index.php/Top 10

The Open Web Application Security Project
hup://www.owasp.org

OWASP - 2011 e

http://www.owasp.org/index.php/Top_10

A3 — Broken Authentication and Session
Management

HTTP is a “stateless” protocol

e Means credentials have to go with every request
e Should use SSL for everything requiring authentication

Session management flaws

e SESSION ID used to track state since HTTP doesn’t
e and it is just as good as credentials to an attacker
e SESSION ID is typically exposed on the network, in browser, in logs, ...

Beware the side-doors

e Change my password, remember my password, forgot my password, secret
question, logout, email address, etc...

Typical Impact

e User accounts compromised or user sessions hijacked

OWASP - 2011 e

Broken Authentication Illustrated

€3) » B hitps//localhost WebGoat/attack?Screen=45hmenu=310

@ User sends credentials

www.boi.com?JSESSIONID=9

How to Hijack a Session

FA1DB9EA...

Transactions

Administration
Communication
nowledge

Site uses URL rewriting @ ———
ustom Coae

Hacker uses JSESSIONID
and takes over victim’s

account

@ User clicks on a link to http://www.hacker.com
from somewhere on www.boi.com, sends HTTP

Referer: www.boi.com?JSESSIONID=9FA1DB..

Hacker checks referer logs on www.hacker.com
and finds user’s JSESSIONID

OWASP - 2011 e

http://www.hacker.com/
http://www.boi.com/
http://www.hacker.com/

T
A3 — Avoiding Broken Authentication and

Session Management

m Verify your architecture
» Authentication should be simple, centralized, and standardized
» Use the standard session id provided by your framework
» Be sure SSL protects both credentials and session id at all times

m Verify the implementation
» Forget automated analysis approaches
» Check your SSL certificate
» Examine all the authentication-related functions
» Verify that logoff actually destroys the session
» Use OWASP’s WebScarab to test the implementation

m Follow the guidance from
» http://www.owasp.org/index.php/Authentication Cheat Sheet

©

http://www.owasp.org/index.php/Authentication_Cheat_Sheet

OWASP Top Ten (2010 Edition)

: A3: Broken .
A2: Cross-Site | Authentication Sf.‘r'ei:%a‘ﬁ;’é;

Scripting (XSS) l and Session References
Management

Al: Injection

A7: Failure to A8: Insecure
Restrict URL Cryptographic
Access Storage

A5: Cross Site

Request Forgery A6: Security

(CSRF) Misconfiguration

Al10:
Unvalidated
Redirects and
Forwards

A9: Insufficient
Transport Layer
Protection

OWASP http://www.owasp.org/index.php/Top 10

The Open Web Application Security Project
hetp://www.owasp.org

OWASP - 2011 e

http://www.owasp.org/index.php/Top_10

T
Summary: How do you address these

problems?

m Develop Secure Code
» Follow the best practices in OWASP’s Guide to Building Secure Web
Applications
= http://www.owasp.org/index.php/Guide
» Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure
= http://www.owasp.org/index.php/ASVS
» Use standard security components that are a fit for your organization
= Use OWASP’s ESAPI as a basis for your standard components
= http://www.owasp.org/index.php/ESAPI

m Review Your Applications
» Have an expert team review your applications

» Review your applications yourselves following OWASP Guidelines

= OWASP Code Review Guide:
http://www.owasp.org/index.php/Code Review Guide

= OWASP Testing Guide:
http://www.owasp.orag/index.php/Testing Guide

OWASP - 2011 e

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP (ESAPI)

Custom Enterprise Web Application }
OWASP Enterprise Security API

Validator
Encoder
HTTPUtilities
Encryptor
Randomizer

t
(@]
wld
S
=
wd
c
()
£
wd
3
<

AccessController
EncryptedProperties
Exception Handling

IntrusionDetector

SecurityConfiguration

AccessReferenceMap

Your Existing Enterprise Services or Libraries ‘

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI
OWASP - 2011

http://www.owasp.org/index.php/ESAPI

-
Acknowledgements ASPECT i

Application Security Experts

m We'd like to thank the Primary Project Contributors

» Aspect Security for sponsoring the project
» Jeff Williams (Author who conceived of and launched Top 10 in 2003)

» Dave Wichers (Author and current project lead)

m Organizations that contributed vulnerability statistics
» Aspect Security
» MITRE
» Softtek
» WhiteHat Security

m A host of reviewers and contributors, including:

» Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden

Chapters OWASP - 2011 e

