
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP Top 10 – 2010
The Top 10 Most Critical Web
Application Security Risks

Nick Freeman
Security Consultant, S-A.com
OWASP NZ Chapter Leader (Auckland)

nick.freeman@security-assessment.com

nick.freeman@owasp.org

mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@owasp.org

OWASP - 2011

Introduction

OWASP Top 10 Project

 “The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

Why are we covering this?

Feedback from OWASP day

What I see day to day during webapp assessments

Widely applicable to .nz businesses

These slides are heavily based on the work of others

See credits at the end

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A1 – Injection

• Tricking an application into including unintended
commands in the data sent to an interpreter

Injection means…

• Take strings and interpret them as commands

• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Usually severe.

• Entire database can usually be read or modified

• Could allow read/write of local files

• May also allow OS level access

Typical Impact

OWASP - 2011

A1.a – SQL Injection

• Tricking a web application into including
unintended commands in the data sent to a
database driver

• The attacker‟s injection modifies the application‟s
SQL query to do his own evil bidding

SQL Injection means…

• Usually severe.

• Entire database can usually be read or modified

• Could allow read/write of local files

• May also allow OS level access

Typical Impact

OWASP - 2011

SQL Injection – Illustrated

F
ir

ew
al

l

Hardened OS

Web Server

App Server

F
ir

ew
al

l

D
at

ab
as

es

L
eg

ac
y
 S

y
st

em
s

W
eb

 S
er

v
ic

es

D
ir

ec
to

ri
es

H
u
m

an
 R

es
rc

s

B
il

li
n
g

Custom Code

APPLICATION

ATTACK

N
et

w
o

rk
 L

ay
er

A

p
p

li
ca

ti
o

n
 L

ay
er

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

HTTP

request

SQL

query

DB Table

HTTP

response

"SELECT * FROM

accounts WHERE

acct=‘’ OR 1=1--

’"

1. Application presents a form to

the attacker

2. Attacker sends an attack in the

form data

3. Application sends modified SQL

query to database

Account Summary

Acct:5424-6066-2134-4334

Acct:4128-7574-3921-0192

Acct:5424-9383-2039-4029

Acct:4128-0004-1234-0293

4. Database runs query containing

attack and sends encrypted results

back to application

5. Application decrypts data as

normal and sends results to the user

Account:

 SKU:

Account:

 SKU:

OWASP - 2011

Demo – Auth Bypass

7

OWASP - 2011

Demo 1 - Details

Authentication bypass

 In this case, $query ends up being modified to be:

$query = ‘SELECT userid FROM tbl_users WHERE

username = ‘ + $username + ‘AND password = ‘ +

$password;

$db_handler->execute($query);

SELECT userid FROM tbl_users WHERE username = ‘a’

OR 1=1#’ AND password = ‘’;

OWASP - 2011

Avoiding SQL Injection Flaws

Recommendations

1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

 Bind variables allow the interpreter to distinguish between code and
data

 Most all frameworks have ways to do this. There is NO EXCUSE!

3. Encode all user input before passing it to the interpreter

 Always perform „white list‟ input validation on all user supplied
input

 Always minimise database privileges to reduce the impact of a
flaw

References

For more details, read the new
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP - 2011

A1.b – OS Command Injection

• The web application uses your dodgy HTTP
parameters as input to craft a command executed
by the underlying OS.

OS Command Injection means…

• Few people think letting The Internets run
commands on the OS is a good idea

Largely unheard of these days

• Arbitrary remote command execution.

Typical Impact

OWASP - 2011

Avoiding OS Command Injection Flaws

Recommendations

1. Don‟t trust user input to form arguments to a system command

2. Escape shell meta characters such as pipe (|) semicolons (;) etc.

3. Always perform „white list‟ input validation on all user supplied
input

4. Ensure the web server is running with a user with low privileges

5. Chroot the web server to limit exposure in the event of web
server compromise.

OWASP - 2011

A1.c – XML Injection

• The web application uses your HTTP parameters as input
to create an XML query

XML Injection means…

• Most XML parsers do sensible input validation, and don‟t
allow you to supply extra tags or include external entities

XML injection is not common

• Can allow Cross Site Scripting (coming up soon)

• Can allow local file read

• Can allow port scanning of the local network

Typical Impact

OWASP - 2011

Example

External Entity Allows Local File Read

Returns contents of /etc/passwd back to the user

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd">

]>

 <foo>&xxe;</foo>

OWASP - 2011

Avoiding XML Injection Flaws

Recommendations

 Use a real XML parser. DON’T roll your own, they always suck

 Filter for malicious input (get rid of <>?/& etc)

 XPath queries should not contain any meta characters (such as '
= * ? // or similar)

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user‟s browser

Occurs any time…

• Stored in database

• Reflected from web input (form field, hidden field, URL, etc…)

• Sent directly into rich JavaScript client

Raw data…

• Many that attempt to fix it don‟t apply the fix consistently

Virtually every web application has this problem

• Steal user‟s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site, enable XSRF exploitation

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user‟s behavior on vulnerable site and force user to other sites

Typical Impact

OWASP - 2011

Cross-Site Scripting Illustrated

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores the

data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with full

access to the DOM and

cookies

Custom Code

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

OWASP - 2011

Demo – Cookie Leakage & BeEF

18

OWASP - 2011

(AntiSamy)

A2 – Avoiding XSS Flaws

Recommendations

 Eliminate Flaw

 Don‟t include user supplied input in the output page

 Defend Against the Flaw

 Primary Recommendation: Output encode all user supplied input
(Use OWASP‟s ESAPI to output encode:

 http://www.owasp.org/index.php/ESAPI

 Perform „white list‟ input validation on all user input to be included in
page

 For large chunks of user supplied HTML, use OWASP‟s AntiSamy to
sanitize this HTML to make it safe

 See: http://www.owasp.org/index.php/AntiSamy

References

For how to output encode properly, read the new
http://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP - 2011

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256 \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") &entity; (', /) &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 &#xHH

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more

details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A3 – Broken Authentication and Session
Management

• Means credentials have to go with every request

• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn‟t

• and it is just as good as credentials to an attacker

• SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

OWASP - 2011

Broken Authentication Illustrated

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s.
 F

u
n

c
ti

o
n

s 1 User sends credentials

2
Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to http://www.hacker.com

from somewhere on www.boi.com, sends HTTP

Referer: www.boi.com?JSESSIONID=9FA1DB..

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referer logs on www.hacker.com

and finds user’s JSESSIONID

5

Hacker uses JSESSIONID

and takes over victim’s

account

http://www.hacker.com/
http://www.boi.com/
http://www.hacker.com/

OWASP - 2011

A3 – Avoiding Broken Authentication and
Session Management

Verify your architecture

Authentication should be simple, centralized, and standardized

Use the standard session id provided by your framework

Be sure SSL protects both credentials and session id at all times

Verify the implementation

Forget automated analysis approaches

Check your SSL certificate

Examine all the authentication-related functions

Verify that logoff actually destroys the session

Use OWASP‟s WebScarab to test the implementation

Follow the guidance from
 http://www.owasp.org/index.php/Authentication_Cheat_Sheet

http://www.owasp.org/index.php/Authentication_Cheat_Sheet

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

Summary: How do you address these
problems?

 Develop Secure Code

 Follow the best practices in OWASP‟s Guide to Building Secure Web
Applications

 http://www.owasp.org/index.php/Guide

 Use OWASP‟s Application Security Verification Standard as a guide to
what an application needs to be secure

 http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization

 Use OWASP‟s ESAPI as a basis for your standard components

 http://www.owasp.org/index.php/ESAPI

 Review Your Applications

 Have an expert team review your applications

 Review your applications yourselves following OWASP Guidelines

 OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

 OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP - 2011

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
e

n
ti

c
a

to
r

U
s
e

r

A
c
c
e

s
s
C

o
n

tr
o

ll
e

r

A
c
c
e

s
s
R

e
fe

re
n

c
e

M
a

p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s
io

n
D

e
te

c
to

r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

http://www.owasp.org/index.php/ESAPI

OWASP - 2011

Acknowledgements

 We‟d like to thank the Primary Project Contributors

 Aspect Security for sponsoring the project

 Jeff Williams (Author who conceived of and launched Top 10 in 2003)

 Dave Wichers (Author and current project lead)

 Organizations that contributed vulnerability statistics

 Aspect Security

 MITRE

 Softtek

 WhiteHat Security

 A host of reviewers and contributors, including:

 Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden
Chapters

