
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org /

OWASP Top 10 ï 2010
The Top 10 Most Critical Web
Application Security Risks

Nick Freeman
Security Consultant, S -A.com
OWASP NZ Chapter Leader (Auckland)

nick.freeman@security -assessment.com

nick.freeman@owasp.org

mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@owasp.org

OWASP - 2011

Introduction

<OWASP Top 10 Project

4 ñThe OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.ò

<Why are we covering this?

4Feedback from OWASP day

4What I see day to day during webapp assessments

4Widely applicable to .nz businesses

<These slides are heavily based on the work of others

4See credits at the end

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A1 ï Injection

ÅTricking an application into including unintended
commands in the data sent to an interpreter

Injection meansé

ÅTake strings and interpret them as commands

ÅSQL, OS Shell, LDAP, XPath, Hibernate, etcé

Interpretersé

ÅUsually severe.

ÅEntire database can usually be read or modified

ÅCould allow read/write of local files

ÅMay also allow OS level access

Typical Impact

OWASP - 2011

A1.a ï SQL Injection

ÅTricking a web application into including
unintended commands in the data sent to a
database driver

ÅThe attackerôs injection modifies the applicationôs
SQL query to do his own evil bidding

SQL Injection meansé

ÅUsually severe.

ÅEntire database can usually be read or modified

ÅCould allow read/write of local files

ÅMay also allow OS level access

Typical Impact

OWASP - 2011

SQL Injection ï Illustrated

F
ir
e

w
a

ll

Hardened OS

Web Server

App Server

F
ir
e

w
a

ll

D
a

ta
b

a
s
e

s

L
e

g
a

c
y
 S

y
s
te

m
s

W
e

b
 S

e
rv

ic
e

s

D
ir

e
c
to

ri
e

s

H
u
m

a
n
 R

e
s
rc

s

B
ill

in
g

Custom Code

APPLICATION

ATTACK

N
e

tw
o

rk
 L

a
y
e

r
A

p
p

lic
a

ti
o

n
 L

a
y
e

r

A
c
c
o

u
n
ts

F
in

a
n
c
e

A
d

m
in

is
tr

a
ti
o

n

T
ra

n
s
a

c
ti
o

n
s

C
o

m
m

u
n
ic

a
ti
o

n

K
n
o

w
le

d
g
e

 M
g
m

t

E
-C

o
m

m
e

rc
e

B
u
s
.

F
u
n
c
ti
o

n
s

HTTP

request

M

SQL

query

M

DB Table

ï

>

HTTP

response

ð

>

"SELECT * FROM

accounts WHERE

acct=óô OR 1=1--

ô"

1. Application presents a form to

the attacker

2. Attacker sends an attack in the

form data

3. Application sends modified SQL

query to database

Account Summary

Acct:5424 - 6066 - 2134 - 4334

Acct:4128 - 7574 - 3921 - 0192

Acct:5424 - 9383 - 2039 - 4029

Acct:4128 - 0004 - 1234 - 0293

4. Database runs query containing

attack and sends encrypted results

back to application

5. Application decrypts data as

normal and sends results to the user

Account:

 SKU:

Account:

 SKU:

OWASP - 2011

Demo ï Auth Bypass

7

OWASP - 2011

Demo 1 - Details

<Authentication bypass

4 In this case, $query ends up being modified to be:

$query = óSELECT userid FROM tbl_users WHERE

username = ó + $username + óAND password = ó +

$password ;

$db_handler - >execute($query);

SELECT userid FROM tbl_users WHERE username = óaô

OR 1=1#ô AND password = óô;

OWASP - 2011

Avoiding SQL Injection Flaws

<Recommendations

1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared
statements , or stored procedures),

Á Bind variables allow the interpreter to distinguish between code and
data

Á Most all frameworks have ways to do this. There is NO EXCUSE!

3. Encode all user input before passing it to the interpreter

4 Always perform ówhite listô input validation on all user supplied
input

4 Always minimise database privileges to reduce the impact of a
flaw

<References

4For more details, read the new
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP - 2011

A1.b ï OS Command Injection

ÅThe web application uses your dodgy HTTP
parameters as input to craft a command executed
by the underlying OS.

OS Command Injection meansé

ÅFew people think letting The Internets run
commands on the OS is a good idea

Largely unheard of these days

ÅArbitrary remote command execution.

Typical Impact

OWASP - 2011

Avoiding OS Command Injection Flaws

<Recommendations

1. Donôt trust user input to form arguments to a system command

2. Escape shell meta characters such as pipe (|) semicolons (;) etc.

3. Always perform ówhite listô input validation on all user supplied
input

4. Ensure the web server is running with a user with low privileges

5. Chroot the web server to limit exposure in the event of web
server compromise.

OWASP - 2011

A1.c ï XML Injection

ÅThe web application uses your HTTP parameters as input
to create an XML query

XML Injection meansé

ÅMost XML parsers do sensible input validation, and donôt
allow you to supply extra tags or include external entities

XML injection is not common

ÅCan allow Cross Site Scripting (coming up soon)

ÅCan allow local file read

ÅCan allow port scanning of the local network

Typical Impact

OWASP - 2011

Example

<External Entity Allows Local File Read

4Returns contents of /etc/passwd back to the user

 <?xml version="1.0" encoding="ISO - 8859 - 1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd ">

]>

 <foo>&xxe;</foo >

OWASP - 2011

Avoiding XML Injection Flaws

<Recommendations

4 Use a real XML parser. DONôT roll your own, they always suck

4 Filter for malicious input (get rid of <>?/& etc)

4 XPath queries should not contain any meta characters (such as '
= * ? // or similar)

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A2 ï Cross -Site Scripting (XSS)

ÅRaw data from attacker is sent to an innocent userôs browser

Occurs any timeé

ÅStored in database

ÅReflected from web input (form field, hidden field, URL, etcé)

ÅSent directly into rich JavaScript client

Raw dataé

ÅMany that attempt to fix it donôt apply the fix consistently

Virtually every web application has this problem

ÅSteal userôs session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site, enable XSRF exploitation

ÅMost Severe: Install XSS proxy which allows attacker to observe and direct
all userôs behavior on vulnerable site and force user to other sites

Typical Impact

OWASP - 2011

Cross -Site Scripting Illustrated

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap ï update my profile

Attacker enters a

malicious script into a

web page that stores the

data on the server

1

Victim views page ï sees attacker profile

Script silently sends attacker Victimôs session cookie

Script runs inside

victimôs browser with full

access to the DOM and

cookies

Custom Code

A
c
c
o

u
n
ts

F
in

a
n
c
e

A
d

m
in

is
tr

a
ti
o

n

T
ra

n
s
a

c
ti
o

n
s

C
o

m
m

u
n
ic

a
ti
o

n

K
n
o

w
le

d
g
e

 M
g
m

t

E
-C

o
m

m
e

rc
e

B
u
s
.

F
u
n
c
ti
o

n
s

OWASP - 2011

Demo ï Cookie Leakage & BeEF

18

OWASP - 2011

(AntiSamy)

A2 ï Avoiding XSS Flaws

<Recommendations

4 Eliminate Flaw

Á Donôt include user supplied input in the output page

4 Defend Against the Flaw

Á Primary Recommendation: Output encode all user supplied input
(Use OWASPôs ESAPI to output encode:

 http://www.owasp.org/index.php/ESAPI

Á Perform ówhite listô input validation on all user input to be included in
page

Á For large chunks of user supplied HTML, use OWASPôs AntiSamy to
sanitize this HTML to make it safe

 See: http://www.owasp.org/index.php/AntiSamy

<References

4For how to output encode properly, read the new
http://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP - 2011

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non -alphanumeric < 256 Ą \HH

ESAPI: encodeForCSS()

#3: All non -alphanumeric < 256 Ą \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") Ą &entity; (', /) Ą &# xHH;

ESAPI: encodeForHTML()

#2: All non -alphanumeric < 256 Ą &# xHH

ESAPI: encodeForHTMLAttribute()

#5: All non -alphanumeric < 256 Ą %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more

details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A3 ï Broken Authentication and Session
Management

ÅMeans credentials have to go with every request

ÅShould use SSL for everything requiring authentication

HTTP is a ñstatelessò protocol

ÅSESSION ID used to track state since HTTP doesnôt

Åand it is just as good as credentials to an attacker

ÅSESSION ID is typically exposed on the network, in browser, in logs, é

Session management flaws

ÅChange my password, remember my password, forgot my password, secret
question, logout, email address, etcé

Beware the side-doors

ÅUser accounts compromised or user sessions hijacked

Typical Impact

OWASP - 2011

Broken Authentication Illustrated

Custom Code

A
c
c
o

u
n
ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti
o

n

T
ra

n
s
a

c
ti
o

n
s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e

rc
e

B
u

s
.
F

u
n

c
ti
o

n
s 1 User sends credentials

2
Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to http://www.hacker.com

from somewhere on www.boi.com, sends HTTP

Referer: www.boi.com?JSESSIONID=9FA1DB..

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referer logs on www.hacker.com

and finds userôs JSESSIONID

5

Hacker uses JSESSIONID

and takes over victimôs

account

