
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP Top 10 – 2010
The Top 10 Most Critical Web
Application Security Risks

Nick Freeman
Security Consultant, S-A.com
OWASP NZ Chapter Leader (Auckland)

nick.freeman@security-assessment.com

nick.freeman@owasp.org

mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@security-assessment.com
mailto:nick.freeman@owasp.org

OWASP - 2011

Introduction

OWASP Top 10 Project

 “The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

Why are we covering this?

Feedback from OWASP day

What I see day to day during webapp assessments

Widely applicable to .nz businesses

These slides are heavily based on the work of others

See credits at the end

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A1 – Injection

• Tricking an application into including unintended
commands in the data sent to an interpreter

Injection means…

• Take strings and interpret them as commands

• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Usually severe.

• Entire database can usually be read or modified

• Could allow read/write of local files

• May also allow OS level access

Typical Impact

OWASP - 2011

A1.a – SQL Injection

• Tricking a web application into including
unintended commands in the data sent to a
database driver

• The attacker‟s injection modifies the application‟s
SQL query to do his own evil bidding

SQL Injection means…

• Usually severe.

• Entire database can usually be read or modified

• Could allow read/write of local files

• May also allow OS level access

Typical Impact

OWASP - 2011

SQL Injection – Illustrated

F
ir

ew
al

l

Hardened OS

Web Server

App Server

F
ir

ew
al

l

D
at

ab
as

es

L
eg

ac
y
 S

y
st

em
s

W
eb

 S
er

v
ic

es

D
ir

ec
to

ri
es

H
u
m

an
 R

es
rc

s

B
il

li
n
g

Custom Code

APPLICATION

ATTACK

N
et

w
o

rk
 L

ay
er

A

p
p

li
ca

ti
o

n
 L

ay
er

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

HTTP

request



SQL

query



DB Table





HTTP

response





"SELECT * FROM

accounts WHERE

acct=‘’ OR 1=1--

’"

1. Application presents a form to

the attacker

2. Attacker sends an attack in the

form data

3. Application sends modified SQL

query to database

Account Summary

Acct:5424-6066-2134-4334

Acct:4128-7574-3921-0192

Acct:5424-9383-2039-4029

Acct:4128-0004-1234-0293

4. Database runs query containing

attack and sends encrypted results

back to application

5. Application decrypts data as

normal and sends results to the user

Account:

 SKU:

Account:

 SKU:

OWASP - 2011

Demo – Auth Bypass

7

OWASP - 2011

Demo 1 - Details

Authentication bypass

 In this case, $query ends up being modified to be:

$query = ‘SELECT userid FROM tbl_users WHERE

username = ‘ + $username + ‘AND password = ‘ +

$password;

$db_handler->execute($query);

SELECT userid FROM tbl_users WHERE username = ‘a’

OR 1=1#’ AND password = ‘’;

OWASP - 2011

Avoiding SQL Injection Flaws

Recommendations

1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

 Bind variables allow the interpreter to distinguish between code and
data

 Most all frameworks have ways to do this. There is NO EXCUSE!

3. Encode all user input before passing it to the interpreter

 Always perform „white list‟ input validation on all user supplied
input

 Always minimise database privileges to reduce the impact of a
flaw

References

For more details, read the new
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP - 2011

A1.b – OS Command Injection

• The web application uses your dodgy HTTP
parameters as input to craft a command executed
by the underlying OS.

OS Command Injection means…

• Few people think letting The Internets run
commands on the OS is a good idea

Largely unheard of these days

• Arbitrary remote command execution.

Typical Impact

OWASP - 2011

Avoiding OS Command Injection Flaws

Recommendations

1. Don‟t trust user input to form arguments to a system command

2. Escape shell meta characters such as pipe (|) semicolons (;) etc.

3. Always perform „white list‟ input validation on all user supplied
input

4. Ensure the web server is running with a user with low privileges

5. Chroot the web server to limit exposure in the event of web
server compromise.

OWASP - 2011

A1.c – XML Injection

• The web application uses your HTTP parameters as input
to create an XML query

XML Injection means…

• Most XML parsers do sensible input validation, and don‟t
allow you to supply extra tags or include external entities

XML injection is not common

• Can allow Cross Site Scripting (coming up soon)

• Can allow local file read

• Can allow port scanning of the local network

Typical Impact

OWASP - 2011

Example

External Entity Allows Local File Read

Returns contents of /etc/passwd back to the user

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd">

]>

 <foo>&xxe;</foo>

OWASP - 2011

Avoiding XML Injection Flaws

Recommendations

 Use a real XML parser. DON’T roll your own, they always suck

 Filter for malicious input (get rid of <>?/& etc)

 XPath queries should not contain any meta characters (such as '
= * ? // or similar)

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user‟s browser

Occurs any time…

• Stored in database

• Reflected from web input (form field, hidden field, URL, etc…)

• Sent directly into rich JavaScript client

Raw data…

• Many that attempt to fix it don‟t apply the fix consistently

Virtually every web application has this problem

• Steal user‟s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site, enable XSRF exploitation

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user‟s behavior on vulnerable site and force user to other sites

Typical Impact

OWASP - 2011

Cross-Site Scripting Illustrated

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores the

data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with full

access to the DOM and

cookies

Custom Code

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

OWASP - 2011

Demo – Cookie Leakage & BeEF

18

OWASP - 2011

(AntiSamy)

A2 – Avoiding XSS Flaws

Recommendations

 Eliminate Flaw

 Don‟t include user supplied input in the output page

 Defend Against the Flaw

 Primary Recommendation: Output encode all user supplied input
(Use OWASP‟s ESAPI to output encode:

 http://www.owasp.org/index.php/ESAPI

 Perform „white list‟ input validation on all user input to be included in
page

 For large chunks of user supplied HTML, use OWASP‟s AntiSamy to
sanitize this HTML to make it safe

 See: http://www.owasp.org/index.php/AntiSamy

References

For how to output encode properly, read the new
http://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

OWASP - 2011

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256  \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256  \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ")  &entity; (', /)  &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256  &#xHH

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256  %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more

details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

A3 – Broken Authentication and Session
Management

• Means credentials have to go with every request

• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn‟t

• and it is just as good as credentials to an attacker

• SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

OWASP - 2011

Broken Authentication Illustrated

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s.
 F

u
n

c
ti

o
n

s 1 User sends credentials

2
Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to http://www.hacker.com

from somewhere on www.boi.com, sends HTTP

Referer: www.boi.com?JSESSIONID=9FA1DB..

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referer logs on www.hacker.com

and finds user’s JSESSIONID

5

Hacker uses JSESSIONID

and takes over victim’s

account

http://www.hacker.com/
http://www.boi.com/
http://www.hacker.com/

OWASP - 2011

A3 – Avoiding Broken Authentication and
Session Management

Verify your architecture

Authentication should be simple, centralized, and standardized

Use the standard session id provided by your framework

Be sure SSL protects both credentials and session id at all times

Verify the implementation

Forget automated analysis approaches

Check your SSL certificate

Examine all the authentication-related functions

Verify that logoff actually destroys the session

Use OWASP‟s WebScarab to test the implementation

Follow the guidance from
 http://www.owasp.org/index.php/Authentication_Cheat_Sheet

http://www.owasp.org/index.php/Authentication_Cheat_Sheet

OWASP - 2011

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2011

Summary: How do you address these
problems?

 Develop Secure Code

 Follow the best practices in OWASP‟s Guide to Building Secure Web
Applications

 http://www.owasp.org/index.php/Guide

 Use OWASP‟s Application Security Verification Standard as a guide to
what an application needs to be secure

 http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization

 Use OWASP‟s ESAPI as a basis for your standard components

 http://www.owasp.org/index.php/ESAPI

 Review Your Applications

 Have an expert team review your applications

 Review your applications yourselves following OWASP Guidelines

 OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

 OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP - 2011

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
e

n
ti

c
a

to
r

U
s
e

r

A
c
c
e

s
s
C

o
n

tr
o

ll
e

r

A
c
c
e

s
s
R

e
fe

re
n

c
e

M
a

p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s
io

n
D

e
te

c
to

r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

http://www.owasp.org/index.php/ESAPI

OWASP - 2011

Acknowledgements

 We‟d like to thank the Primary Project Contributors

 Aspect Security for sponsoring the project

 Jeff Williams (Author who conceived of and launched Top 10 in 2003)

 Dave Wichers (Author and current project lead)

 Organizations that contributed vulnerability statistics

 Aspect Security

 MITRE

 Softtek

 WhiteHat Security

 A host of reviewers and contributors, including:

 Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden
Chapters

