
© 2012

Presented by:

Mobile Application Security:
Who, How and Why

Mike Park
Managing Security Consultant

Trustwave SpiderLabs

© 2012

Who Am I
•  Mike Park
•  Managing Consultant, Application Security Services, Trustwave SpiderLabs
•  14+ Years of App development and security experience
•  Java, C\C++, ObjC, python, ruby, javascript
•  x86 and ARM v7 ASM with some exploit development and reverse

engineering

© 2012

Topics
What we’ll cover

•  The Big Picture
•  Attack Points
•  Fun with Android
•  Fun with iOS
•  Developer Guidelines
•  Conclusions

© 2012 © 2012

The Big Picture

© 2012

The Big Picture
•  What are people doing here?

–  Stealing Money and information
–  Embarrassing people
–  Getting famous
–  Breaking out of restrictive application licensing and functionality

–  Breaking out of restrictive platforms
–  For the lulz…

–  People inherently trust new technology – “Its magic”…

© 2012

•  Apps In the Press

http://www.crn.com/news/security/231001820/zeus-
banking-trojan-variant-attacks-android-
smartphones.htm;jsessionid=-
TgAxjI7e80mqk7RCslbcQ**.ecappj01

http://www.informationweek.com/news/231001918

The Big Picture

© 2012

The Big Picture

•  Targets

–  Based on Trustwave 2012 Global Security Report, based on 300 data

breaches in 18 countries
–  Industries targeted – Food and Beverage (43.6%) and Retail (33.7%)

are the largest – 77.3 %.

–  Info targeted – PII and CHD 89%, Credentials – 1%

–  For Mobile most devices platforms are targets of Banking Trojans

© 2012

The Big Picture

•  Why

–  Development is focused on features not security
–  Developers are unaware of the underlying platform
–  Users don’t even have security on their radar
–  Users are easily social engineered

–  New Technology is “magic”, remember?

© 2012

The Big Picture

•  Remember:

–  Today’s smartphone is the same as the Desktop we used in 2000, but

with better graphics, more memory and better connectivity.

Creative Commons:

 Some rights reserved by adria.richards Creative Commons: Some rights reserved by Brandon Stafford

© 2012

The Big Picture
 •  Android Architecture:

From Google via the Google content license - http://developer.android.com/license.html

© 2012

The Big Picture
 •  iOS Architecture:

© 2012

The Big Picture
•  Who:
•  From Trustwave Global Security Report 2012
•  29.6% of attacks come from Russian Federation
•  10.5% from US
•  ~7.6% from EU (especially Eastern Europe)
•  32.5% UNKNOWN
•  Only ~3.5% from China, Japan, Hong Kong, Taiwan and

South Korea combined
•  Mobile malware is simple from Russia and EU, more

complex from Asia (j2me phone vs full smart phone)

© 2012 © 2012

Attack Points

© 2012

Attack Points
•  What do attackers want?

–  Credentials
•  To your device
•  To external services (email, banking, etc)

–  Personal Data
•  Full Name, SIN\SSN
•  Address book data
•  Location data

–  Cardholder Data
•  Card Numbers, Expiration, CVV

–  Access to your device
•  Sniff your connections
•  Use your device (botnets, spamming)
•  Steal trade secrets or other sensitive data

© 2012

Attack Points
•  Data Storage

–  Key stores
–  Application file system
–  Application database
–  Caches
–  Configuration files

© 2012

Attack Points
•  Binary

–  Reverse engineering to understand the binary
–  Find vulnerabilities that may be exploitable
–  Embedded credentials
–  Key generation routines

© 2012

Attack Points
•  Platform

–  Function hooking
–  Malware installation
–  Mobile botnets
–  Application architecture decisions based on platform

© 2012

Attack Points
•  Data Storage, Binary and Platform are not

independent, but interrelated
–  A weakness in one can lead to exploitation of another
–  KNOW WHAT YOU ARE DEPENDING ON

© 2012

Attack Points
•  Threat Model

–  An attacker gains physical access to a device, even temporarily
–  The attacker jailbreaks or roots the device and installs their

code, or copies the disk image
–  The attacker returns the device to the user, surreptitiously
–  ???
–  Profit

–  OR

–  The attacker tricks the user into unknowingly jailbreaking or
rooting and installing their code

–  Same end result

© 2012 © 2012

Fun with Android

© 2012

Fun With Android - Reversing
•  Android apps are written in Java
-  You can use your favorite IDE with a freely

downloadable Android SDK plugin (for Eclipse,
for instance)

-  Like (unobfuscated) Java apps, they can be
easily reversed with the right tools

-  With Android, bytecode can even be altered and
apps repackaged

© 2012

Fun With Android - Reversing
•  Reversing tools:
•  http://code.google.com/p/dex2jar/ Dex2Jar – converts dex (Dalvik

bytecode) to a jar (java bytecode)
•  http://code.google.com/p/android4me/downloads/list AXMLPrinter2 - a tool

for converting Android binary xml format to regular xml.
•  http://java.decompiler.free.fr/ JD – a GUI tool for decompiling Java

bytecode back to java source (see above)
•  http://code.google.com/p/smali/ Smali and baksmali - assembler/

disassembler for the dex format

© 2012

Demo Reversing an Android App
–  See the demo

© 2012

Fun With Android - Reversing
•  Why Reverse?
•  Things to look for

–  Hardcoded credentials
•  Test credentials
•  Bad design
•  Bootstrap credentials

–  Understand the Code
•  Know how things flow
•  Find out what crypto is used
•  How does the app handle input or output

© 2012

Fun With Android
•  Tip 1: Dumping memory

•  It’s possible to dump the memory of a running Android App and

then pull that off the device for examination

•  ./adb shell
•  # chmod 777 /data/misc <- place where the heap dump will go
•  # ps <- get the pid of the app you wish to dump
•  # kill -10 {pid} <- dumps the process memory to /data/misc in a

format like heap-dump-tm1310992312-pid267.hprof
•  (NOTE: This does not always work on every device – but will on the

emulator)

© 2012

Fun With Android
•  Tip 1 (cont): Dumping memory

•  Exit the shell and issue:

$	
 ./adb	
 pull	
 /data/misc/heap-­‐dump-­‐tm1310992312-­‐pid267.hprof.	

	

•  Open up in your favourite hex editor

© 2012

© 2012

Fun With Android
•  Tip 2: Firing Activities and Intents

•  Its possible to force parts of an application to fire without interacting

directly with the UI

#	
 cd	
 /data/misc	
 	
 <- change to a writable directory
#	
 dumpsys	
 package	
 >	
 pkg.txt	
 	
 <- dump the list of packages

•  Look in the file and launch a selected intent of the target app directly:

#	
 am	
 start	
 -­‐n	
 {full	
 path	
 to	
 intent}	

•  This can be used to decrypt files or query SQLLite even if the app is locked.

© 2012

Fun with Android
•  Tip 3: Get the certs and keys

–  Get the cacerts.bks from the device (after su to root):

./adb	
 pull	
 /etc/security/cacerts.bks	

–  View the contents of the keystore:
$	
 keytool	
 -­‐keystore	
 cacerts.bks	
 -­‐storetype	
 BKS	
 -­‐
provider	

org.bouncycastle.jce.provider.BouncyCastleProvider	
 -­‐
storepass	
 changeit	
 –list	
 -­‐v	

•  Hmmm … change the contents?

© 2012

Fun with Android
•  Case Study – What’s in your config files?

–  Rooted an Android device (or used the emulator with
tweaks)

–  Used adb to access the file system and grab our
target application’s config files

–  cat

–  Password was used to encrypt the SQLLite DB…

© 2012

Fun with Android
•  Case Study – Debug logging is off, right?

–  Rooted an Android device (or used the emulator with
tweaks)

–  Used logcat to watch as the application processed
credit card numbers

–  The log is just another file on the file system.
–  This can be snooped live or grabbed by a malicious

app.
–  Not normally visible, so forgotten

© 2012

Fun with Android

© 2012

Fun with Android
•  Case Study – Our Database is safe, right?

–  Rooted an Android device (or used the emulator with
tw

–  Database not even encrypted

© 2012

Fun with Android
•  Case Study – We use encryption, right?

–  Rooted an Android device (or used the emulator with tweaks)
–  Grab the .apk and reverse with dex2jar. Read

–  Blank in encrypt means no salt, no seeding.
–  Build a brute forcer? Find a known value and replace?
–  This is reversed source code.

© 2012 © 2012

Fun with iOS

© 2012

Fun With iOS
•  If Android is the Wild West, iOS is a Frontier Fort

-  iOS strictly enforces application boundaries and sandboxing
-  Apps cannot communicate directly from other apps, or access the

application directories of other apps
-  Written in native ObjectiveC or even C (with the right tools)
-  Based on an ARM version of the same XNU kernel from OSX
-  Reversing is based on same tools and skills we use on desktop

systems
-  Once you breach the walls of the fort, you own the place….

© 2012

Fun With iOS
•  Jail-breaking is just the first step.

-  Involves finding a an exploit in the kernel as well as userland to allow it to

run unsigned code
-  Can be tethered, meaning you have to boot it while connected to a laptop

and running the jailbreak code everytime you restart
-  Or Untethered, meaning once its jailbroken, it will remain so after reboots
-  Use tools like Absinthe, redsn0w limera1n to do the jailbreaking for you

(works on all versions, including A5 based 4s and iPad 2)
-  Can be done via the web – www.jailbreakme.com <- THIS HAS BEEN

WEAPONIZED
-  Jailbreaks can take only a few minutes and can be hidden from the end

user

© 2012

Fun With iOS
•  Reversing iOS Apps

-  Apps are native ARM, unless built for the Simulator (x86).
-  .ipa are ARM and can only run on the device
-  Use IDA Pro or otool, nm, etc to disassemble the code and look for

information.
-  Harder than Android, since you need expensive de-compilers (Hexrays for

instance) or be able to read ARM v7 assembly, but still contains information

© 2012

Fun With iOS
•  Reversing iOS Apps
-  Demo otool and class-dump-z

© 2012

Fun with iOS
•  Case Study – What’s in your binaries?

–  Grabbed from a jailbroken device (or your Trash bin after you
install with iTunes)

–  Reversed with IDA Pro (but strings would have worked too)
–  Username is obscured but PW was ‘demo’ and worked in Prod

© 2012

Fun with iOS
•  Case Study – What’s in your caches?

–  ssh into a jailbroken device
–  Find the target application’s install folder and look for

the Library/caches directory

–  Download the xls file and …

© 2012

Fun with iOS
•  Case Study – What’s in

your caches (part 2)?

–  Open the xls file in Excel
–  Conveniently named…

© 2012

Fun with iOS
•  Case Study – Native code is better, right?

–  Almost all iOS apps are written in ObjectiveC and link to the
ObjectiveC runtime

–  ObjectiveC is a superset of C, with macros to make a Smalltalk-
like syntax

–  Its also a “reflective” language – it can alter itself at runtime
–  Harder to reverse, but WAY easier to hook
–  “Method Swizzling” is a feature of the ObjectiveC runtime
–  Allows you to swap method implementations at runtime
–  What could possibly go wrong?

© 2012

Fun with iOS
•  Case Study – Native code is better, right (part

2)?

–  Set up the hook with a macro

© 2012

Fun with iOS
–  Write the code after picking your target from class-

dump-z

© 2012

Fun with iOS
•  Case Study – Native code is better, right (part

3)?
–  Compile as a dylib and install in /Library/

MobileSubstrate/DynamicLibraries/ with a plist file
like:

–  Your hook code will be loaded and replace the original
method code whenever your app bundle is loaded
and run by the system

© 2012

Fun with iOS
•  Case Study – The Keychain is safe, right?

–  Use a tool called dump_keychain (we have a
customized version):

© 2012

Fun with iOS
•  Case Study – The Keychain is safe, right (Part

2)?
–  And decode:

© 2012 © 2012

Solutions

© 2012

Developer Guidelines
•  What can designers and developers of mobile

applications do?
–  KNOW YOUR PLATFORM

•  Go deeper than the sample code at the vendor’s website or in a
“iOS in 10 days” book.

•  Understand what the OS is doing when you ask it to do something.
•  How does the OS link libraries to your app

–  KNOW YOUR TOOLS
•  What exactly gets included in that compiled program
•  How can an attacker read my compiled program

–  KNOW WHERE EVERTHING IS STORED
•  This includes files you save, configuration info, caches and images

of the screen

© 2012

Solutions
•  Don’t rely on built-in key chains or key stores
•  Avoid storing sensitive data on the device
•  If you have to, encrypt with PBE master key encryption
•  If you handle sensitive data on iOS, use C not ObjectiveC
•  Use anti-debug and anti-reversing measures
•  Clear memory after use
•  Test on a Jailbroken or rooted device – see what the bad

guys will see

© 2012 © 2012

Conclusions

© 2012

Conclusion & Summary
•  Mobile applications and related security breaches

receive a lot of media attention

•  You cannot be 100% safe, but you can make it
hard – Defense in Depth

•  Know your data, know your platform and use
that knowledge to protect your apps

© 2012

Resources

•  Secure iOS coding – “Hacking and Securing iOS
Applications” by Jonathan Zdziarski

•  Secure Android coding – basic secure Java
coding.

© 2012

Resources

•  Download the Global Security Report:
 http://www.trustwave.com/GSR

•  Read our Blog:
 http://blog.spiderlabs.com

•  Follow us on Twitter:
 @SpiderLabs

