
App security in current
era

Ajit Dhumale

Director of Engineering, Qualys

OWASP Pune Chapter Meet - 8 June 2019

Browser Network Internet Infra Web Server/App

Web App Access Eco System

CDN

CA

Under user’s control Under app owner’s controlHostile

Images for various sources from the internet

Changes over time : technology

Mainframe Client-Server Web Virtualization Hosted/cloud Micro Services Containers Serverless

Dedicated resources
Static/rigid/manual provisioning

Shared resources
Automated/elastic provisioning

Change over time : app availability

9 to 5

Maintain Downtime

Upgrade Downtime

Long release cycles

Always On (24/7)

No Downtime

Rolling Upgrades

Frequent Releases

Orchestration: Dynamic, auto, elastic provisioning

Logical resource pool:
Compute, storage, IO, network, …

Physical shared resource pool:
Compute, storage, IO, network, …

App 1 App 2App 5 App 3 App 4

Changes over time: service model

Pets vs Cattles

Changes over time : people/roles

DevOpSec

DevOps

Engineering Operations

Security

Security

Changes over time: app composition

App
Business Logic/Custom

code

Dependencies

OS

App
Business Logic/Custom

code

Dependencies
Mostly open source

OS

Changes over time: app packaging

Writable layer

Web App

Spring

Tomcat

Apache

Base layer: Alpine

Changes over time: Security

Develop Check-in Build Test Deploy Monitor

Firewall/IDS/IPS
Pentesting

DAST
Old way:

Bolt-on Security

New way:
Built-in/continuous

Security

Build time static assessment
Post build automated DAST
Built complete app (e.g.
containers)

Secure coding,
secure libraries
(static assessment in IDE)

Declarative
request/response
specification

Secure coding,
secure libraries
Pre-post commit static
assessment

App centric firewall
Access Token Rotation
Minimal privileges
RASP
Log monitoring
Declarative access control
Declarative resource usage limits
Shared resources with micro
segmentation

Automated/repeated DAST

Bolt-on vs built-in/continuous

Pre-requisites for shiftleft and continuous security

Automation Speed

Accuracy Declarative specification

Built-in/Continuous/DevOpSec
• IDE

• Continuous source code scanning (may be as you type)
• Monitor 3rd party components at inclusion time

• CI/CD
• Continuous monitoring of vetted/approved dependencies
• Commit time static scanning
• Build time security

• Static assessment
• SCA
• Dynamic scanning

• Runtime
• Dynamic secrete management
• App centric firewall
• RASP
• Runtime instrumentation

• Monitoring
• Profiling

SCA: Software Composition
Analysis

• Why its important lately

• More then 90% of the code in modern apps is 3rd party open source
libraries/frameworks

• Securities issues in 3rd party open source components are known to
the world

• Exploitation often does not need app specific knowledge

• Exploits become available on internet

• Easy to launch attack on large number of targets

• Explosion in CVEs declaration in widely used software components

• STRUTS RCEs

• Wordpress RCEs

• WebLogic RCEs

• …

SCA: Software Composition Analysis

• Create inventory/BoM of all 3rd party components used by the app

• Check which components have known vulnerability

• Issues/concerns

• Coverage: Not all vulnerability have CVEs

• Noise/FPs: App may be using vulnerable library but may never be calling vulnerable function

• Shiftleft: Integrate SCA in IDE, Artifactory, CI/CD

• Continuous: Detect production apps affected by new vulns

RASP: Runtime Security

• Runtime Instrumentation

• Agent

• Built-in the app

• Instrumented runtime

• Monitor code flow, function calls, system access

• Log/block undesired behavior

• App specific tuning

• Concerns: Performance overhead, undesired side effects (DoS by FP)

Dynamic secret management

• In pets era:

• Manual provision of secrets

• In cattle era:

• Challenge:

• How to securely make secretes (DB password, API tokens, private key, …) to dynamically provisioned ephemeral app
processes/containers/micro services

• Risk

• Secrets sprawl

• Secrets leakage (via github, …)

• Solution

• Vault, secure introduction (SI) and dynamic tokens

Declarative security 🡪 automated security

• Declarative network topology
• Auto generate network access rules

• Declarative request/response
• Auto generate app firewall rules/filters

• Declarative quota limits
• Prevent resource exhaustion

• Micro compartments
• Containment in case of compromise (warrants minimal privileges)

We are hiring

https://www.qualys.com/careers/

Dev, QA, Support, Ops, Security

https://www.qualys.com/careers/

