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About Me

 Post doctoral researcher of the System Security group at 
CISPA, Saarland University, Germany
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Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

HTTP, json, XML, SOAP

XMPP

IMAP, POP3, SMTP
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Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness
● Avg web page size as Doom ~2.3MB [1]

[1] HTTP Archive: http://www.httparchive.org/interesting.php?a=All&l=Apr%201%202016
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Introduction

 Modern applications rely on (core) network services, e.g., web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness

 Solution 1: buy more bandwidth!
➔ Bandwidth costs

 Another solution is ...

Data compression!Data compression!
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Data Compression

 Reduces # of bits of a string by removing redundancy
● lossless  if decompr(compr(d)) = d   or lossy if decompr(compr(d)) ~= d

 Lots of algorithms (See [1])
 Among the most popular: Deflate [RFC 1951]

● Implemented in libraries, e.g., zlib, or as a tool, e.g., gzip, and zip archive tool
● Available in most of the programming languages

100KB 15KB

[1] SALOMON, D. Data Compression: The Complete  Reference. Springer-Verlang, 2007.
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Compression in Protocols

 Compression used by network protocols to reduce message size
 Mandated by protocol specifications

● e.g., HTTP (response!) compression, IMAP, XMPP, SSH, PPP, and others
 Or implemented as custom feature

● e.g., HTTP request compression

XMPP Compression [XEP-0138]

IMAP Compression [RFC 4978]
HTTP Compression [RFC 7230]
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Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
[...]

HTTP Request
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Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 82170
Content­Type: text/html; charset=UTF­8

<!DOCTYPE html><html 
[...]

Retrieve default
HTML page

~80Kb of page

HTTP Request

HTTP Response
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Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
Accept­Encoding: gzip, deflate
[...]

HTTP Request
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Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 18879
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

�%O 5 * #�� � ��� �Ԟ
[...]

Select algorithm

Response size -70% 

Compressed response body
Decompress

HTTP Request

HTTP Response
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The Problem of Data Compression
 If not properly implemented, it can make application vulnerable to DoS
 Risks:

1)Intensive task 
● Computationally intensive
● If abused, it can stall an application

2)Data Amplification
● Decompression increases the data to be processed (compression rate of zlib ~1:1024)
● Internal components may not be designed to handle high volume of data

3)Unbalanced Client-Server Scenario
● One party pre-compute compressed messages
● The other one decompresses messages each time

 Popular examples from the past...
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The Past: Zip Bombs (1996)

 42 KB zip file → 4.5 PB uncompressed data

 5 layers of nested zip files in blocks of 16, last layer with 
text files of 4.3 GB each

 Cause Disk/Memory exhaustion

 Sent as attachment to crash anti-virus 
software

0.dll 1.dll 15.dll...

page0.zip

doc0.zip

chapter0.zip

book0.zip

lib0.zip

page1.zip page15.zip

42.zip

lib1.zip lib15.zip...

doc1.zip doc15.zip...

...

chapter1.zip chapter15.zip...

book1.zip book15.zip...

4.3GB

AAAAAAAAAA ... A

0.dll 1.dll 15.dll...

4.5 PB
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The Past: Billion Laughs (2003)
 Resource exhaustion in libxml2 when processing nested XML entity definitions

 810 bytes of XML document expanded to 3GB

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>
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The Past: Zip Bombs and Billion Laughs

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

0.dll 1.dll 16.dll...

page0.zip

doc0.zip

chapter0.zip

book0.zip

lib0.zip

page1.zip page16.zip

42.zip

lib1.zip lib16.zip...

doc1.zip doc16.zip...

...

chapter2.zip chapter16.zip...

book2.zip book16.zip...

4.3GB

AAAAAAAAAA ... A

0.dll 1.dll 16.dll...

This was 1996-2003!
Now we know better, right?

This was 1996-2003!
Now we know better, right?
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The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading
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The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading

1. Protocol specifications:  
➔ No data compression handling issues, redirects to SSL/TLS (concerned with leakage and packet limits, but 

unexplained how they apply to other protocols)

2. Secure Design Patterns: 
● Patterns to solve vulns. During design phase : DoS Safety, Compartmentalization, and Small Process
➔ However, lack of the details to address implementation-level concerns

3. Secure Coding Rules 
● Only one, i.e., Anti-Zip Bomb coding rule
➔ Sadly, incorrect

How does this lack of common knowledge and
understanding affect implementations?

How does this lack of common knowledge and
understanding affect implementations?
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Impact on Implementations
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HTTP (Response) Compression (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 18879
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

�%O 5 * #�� � ��� �Ԟ
[...]

Select algoritm

Response size -70% 

Compressed response body
Decompress

HTTP Request

HTTP Response



November 28, 2016 27

Compression Bombs against Web Browsers #1

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

HTTP Request

HTTP Response

4 GB of 
white spaces

Compression rate ~1:1000

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html
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Compression Bombs against Web Browsers #1

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

Decompress

HTTP Request

HTTP Response

4 GB of 
white spaces

Compression rate ~1:1000

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html
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Compression Bombs against Web Browsers #2

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip, gzip

HTTP Request

HTTP Response

4 GB of 
white spaces

2 layers of compression!

x1000 smaller

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html
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Compression Bombs against Web Browsers #2

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip, gzip

HTTP Request

HTTP Response

4 GB of 
white spaces

2 layers of compression!

Decompress

x1000 smaller

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html
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HTTP (Response) Compression Bombs

“Vulnerabilities that just won't die - Compression Bombs”
by Geoff Jones

http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html

Most are stillvulnerable!

Most are stillvulnerable!
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How about servers?

??
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Experiments

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
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HTTP (request) Compression Bomb (SOAP)

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
~4 MB, ~1:1000 compr. ratio

POST /index.html HTTP/1.1
Content­Encoding: gzip
\r\n
<soapenv:Envelope>

<soapenv:Body>[...]</soapenv:Body>
</soapenv:Envelope>
\r\n

4 GB of 
white spaces

compressed

Same for JSON

Same for JSON
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XMPP Compression Bomb

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
~4 MB, ~1:1000 compr. ratio

<?xml version='1.0' ?>
<stream:stream to='server'
      

xmlns='jabber:client' Version='1.0'>

4 GB of 
white spaces

compressed
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IMAP Compression Bomb

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
~4 MB, ~1:1000 compr. ratio

From: sender@foo
To: receiver@foo
Subject : I am a bomb!

4 GB of 
white spaces

compressed
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Compression Bombs Everywhere

Protocol Network Service
XMPP OpenFire

Prosody

Tigase

Ejabberd, jabberd2
HTTP Apache HTTPD + mod_deflate

+ mod-php, CSJRPC, mod-gsoap, mod-dav

Apache Tomcat + 2Way/Webutilities filter
+ Apache CXF

+ json-rpc, lib-json-rpc

+ Axis2/ +jsonrpc4j

Axis 2 standalone

gSOAP standalone
IMAP Dovecot, Cyrus
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Compression Bombs Everywhere

Protocol Network Service
XMPP OpenFire

Prosody

Tigase

Ejabberd, jabberd2
HTTP Apache HTTPD + mod_deflate

+ mod-php, CSJRPC, mod-gsoap, mod-dav

Apache Tomcat + 2Way/Webutilities filter
+ Apache CXF

+ json-rpc, lib-json-rpc

+ Axis2/ +jsonrpc4j

Axis 2 standalone

gSOAP standalone
IMAP Dovecot, Cyrus

CVE-2014-2741

CVE-2014-2746

CVE-2014-0118

Notif. devel

Notif. devels

CVE-2014-2744/ -2745

CVE-2014-0109/ -0110

Notif. devel
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Pitfalls
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2. Specification

3. Configuration
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Pitfalls

1. Implementation

2. Specification

3. Configuration

● Use of Compression before Authentication
● Improper Input Validation during Decompression
● Logging Decompressed Messages
● Improper Inter-Units Communication
● Unbounded Resource Usage (CPU and Memory)

● Erroneous Best Practice
● Misleading Documentation
● API Specs Inconsistency

● Insufficient Configuration Options
● Insecure Default Values
● Decentralized Configuration Parameters
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1. Implementation

2. Specification

3. Configuration

Pitfalls

● Use of Compression before Authentication
● Improper Input Validation during Decompression
● Logging Decompressed Messages
● Improper Inter-Units Communication
● Unbounded Resource Usage (CPU and Memory)

● Erroneous Best Practice
● Misleading Documentation
● API Specs Inconsistency

● Insufficient Configuration Options
● Insecure Default Values
● Decentralized Configuration Parameters

Check out our paper!

http://trouge.net/gp/papers/compr_usenix15.pdf

Check out our paper!

http://trouge.net/gp/papers/compr_usenix15.pdf
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Pitfalls at Implementation level

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

 Abstract message processing pipeline extracted from our case studies
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Compression before Authentication

 Inconsistent best practice
● Mandatory in SSL/TLS, recommended in XMPP, and undefined in IMAP and HTTP
● Implementation may diverge from the specs, i.e., OpenSSH

 Developers may underestimate the risk or overlook recommendations
 Prosody accepted compressed messages before user authentication

➔ DoS by unauthenticated attackers 

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-2744
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Improper Input Validation during Decompression

 3 ways to validate a message:
● Compressed message size

● mod-deflate: If (compr. size > LimitRequestBody) → Reject
➔ However, hard to assess message size from its compressed form (1 MB compr → 1 GB decompr.)

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-0118

mistake
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Improper Input Validation during Decompression

 3 ways to validate a message:
● Compressed message size

● mod-deflate: If (compr. size > LimitRequestBody) → Reject
➔ However, hard to assess message size from its compressed form (1 MB compr → 1 GB decompr.)

● Decompression ratio
● Patched mod-deflate: if (decompr ratio > threshold) → Reject
➔ Problem of ratio selection

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

mistake

risky

CVE-2014-0118
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Improper Input Validation during Decompression

 3 ways to validate a message:
● Compressed message size

● mod-deflate: If (compr. size > LimitRequestBody) → Reject
➔ However, hard to assess message size from its compressed form (1 MB compr → 1 GB decompr.)

● Decompression ratio
● Patched mod-deflate: if (decompr ratio > threshold) → Reject
➔ Problem of ratio selection

● Decompressed message size
● mod-deflate + mod-dav: If (decompr. size > LimitXMLRequestBody) → Reject

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

mistake

correct

risky

CVE-2014-0118
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Improper Inter-Units Communication

 Upon exception, the pipeline halts and rejects message
 mod-php and mod-gsoap limit the size of incoming (decompressed) message
 … but had no means to halt mod-deflate

➔ mod-deflate keeps on decompressing data
● Problem addressed in 

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-0118
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Logging Decompressed Messages

 Frequency and verbosity of log events can cause DoS
 If exception is caused by compressed data, the needed resources may be underestimated
 Upon invalid requests, Apache CXF logs first 100KB of incoming message

● However, first it decompresses the entire message on a file, then logs the first 100KB
➔ DoS due to disk space exhaustion 

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-0109/ -0110
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Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”
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Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

// Write the files to the disk, but
// only if the file is not insanely big
if (zipfile.getSize() > TOOBIG ) {
   throw new IllegalStateException("File to be unzipped is huge.");
}



November 28, 2016 53

Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

 .getSize() returns ZIP file header with uncompressed size

// Write the files to the disk, but
// only if the file is not insanely big
if (zipfile.getSize() > TOOBIG ) {
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}
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Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

 .getSize() returns ZIP file header with uncompressed size

 but ZIP headers not integrity protected!
➔ DoS countermeasure bypass

// Write the files to the disk, but
// only if the file is not insanely big
if (zipfile.getSize() > TOOBIG ) {
   throw new IllegalStateException("File to be unzipped is huge.");
}

Notif. Authors
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Conclusion
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Conclusion/Takeaway

 Compression bombs are back
➔ New vulnerabilities in popular network services

 ~20 years after the zip bombs, developers still unaware of the 
risks of handling data compression
➔ 12 pitfalls which can be used by developers to build more 

secure services 


