
Compression Bombs Strike Back

Giancarlo Pellegrino
gpellegrino@mmci.uni-saarland.de

BeNeLux OWASP Day 2016
November 25th, Leuven, Belgium

November 28, 2016 2

About Me

 Post doctoral researcher of the System Security group at
CISPA, Saarland University, Germany

 Research focus:
● Web application security / security protocols
● Vulnerability detection (logic vulns, Server-Side Requests Abuses,

CSRF)

 Former member of S3 group at EURECOM, Sophia-Antipolis,
France

 Former research associate in the Security & Trust research
group at SAP SE

November 28, 2016 3

Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

HTTP, json, XML, SOAP

XMPP

IMAP, POP3, SMTP

November 28, 2016 4

Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness

November 28, 2016 5

Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness
● Avg web page size as Doom ~2.3MB [1]

[1] HTTP Archive: http://www.httparchive.org/interesting.php?a=All&l=Apr%201%202016

November 28, 2016 6

Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness

 Solution 1: buy more bandwidth!

November 28, 2016 7

Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness

 Solution 1: buy more bandwidth!
➔ Bandwidth costs

November 28, 2016 8

Introduction

 Modern applications rely on (core) network services, e.g., Web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness

 Solution 1: buy more bandwidth!
➔ Bandwidth costs

 Another solution is ...

November 28, 2016 9

Introduction

 Modern applications rely on (core) network services, e.g., web, email, and IM services

 Amount of exchanged data continues to increase steadily
● More data → more transfer time → unresponsiveness → user unhappiness

 Solution 1: buy more bandwidth!
➔ Bandwidth costs

 Another solution is ...

Data compression!Data compression!

November 28, 2016 10

Data Compression

 Reduces # of bits of a string by removing redundancy
● lossless if decompr(compr(d)) = d or lossy if decompr(compr(d)) ~= d

 Lots of algorithms (See [1])
 Among the most popular: Deflate [RFC 1951]

● Implemented in libraries, e.g., zlib, or as a tool, e.g., gzip, and zip archive tool
● Available in most of the programming languages

100KB 15KB

[1] SALOMON, D. Data Compression: The Complete Reference. Springer-Verlang, 2007.

November 28, 2016 11

Compression in Protocols

 Compression used by network protocols to reduce message size
 Mandated by protocol specifications

● e.g., HTTP (response!) compression, IMAP, XMPP, SSH, PPP, and others
 Or implemented as custom feature

● e.g., HTTP request compression

XMPP Compression [XEP-0138]

IMAP Compression [RFC 4978]
HTTP Compression [RFC 7230]

November 28, 2016 12

Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
[...]

HTTP Request

November 28, 2016 13

Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 82170
Content­Type: text/html; charset=UTF­8

<!DOCTYPE html><html
[...]

Retrieve default
HTML page

~80Kb of page

HTTP Request

HTTP Response

November 28, 2016 14

Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
Accept­Encoding: gzip, deflate
[...]

HTTP Request

November 28, 2016 15

Compression in HTTP (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 18879
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

�%O 5 * #�� � ��� �Ԟ
[...]

Select algorithm

Response size -70%

Compressed response body
Decompress

HTTP Request

HTTP Response

November 28, 2016 16

The Problem of Data Compression
 If not properly implemented, it can make application vulnerable to DoS
 Risks:

1)Intensive task
● Computationally intensive
● If abused, it can stall an application

2)Data Amplification
● Decompression increases the data to be processed (compression rate of zlib ~1:1024)
● Internal components may not be designed to handle high volume of data

3)Unbalanced Client-Server Scenario
● One party pre-compute compressed messages
● The other one decompresses messages each time

 Popular examples from the past...

November 28, 2016 17

The Past: Zip Bombs (1996)

 42 KB zip file → 4.5 PB uncompressed data

 5 layers of nested zip files in blocks of 16, last layer with
text files of 4.3 GB each

 Cause Disk/Memory exhaustion

 Sent as attachment to crash anti-virus
software

0.dll 1.dll 15.dll...

page0.zip

doc0.zip

chapter0.zip

book0.zip

lib0.zip

page1.zip page15.zip

42.zip

lib1.zip lib15.zip...

doc1.zip doc15.zip...

...

chapter1.zip chapter15.zip...

book1.zip book15.zip...

4.3GB

AAAAAAAAAA ... A

0.dll 1.dll 15.dll...

4.5 PB

November 28, 2016 18

The Past: Billion Laughs (2003)
 Resource exhaustion in libxml2 when processing nested XML entity definitions

 810 bytes of XML document expanded to 3GB

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

November 28, 2016 19

The Past: Zip Bombs and Billion Laughs

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ELEMENT lolz (#PCDATA)>
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

0.dll 1.dll 16.dll...

page0.zip

doc0.zip

chapter0.zip

book0.zip

lib0.zip

page1.zip page16.zip

42.zip

lib1.zip lib16.zip...

doc1.zip doc16.zip...

...

chapter2.zip chapter16.zip...

book2.zip book16.zip...

4.3GB

AAAAAAAAAA ... A

0.dll 1.dll 16.dll...

This was 1996-2003!
Now we know better, right?

This was 1996-2003!
Now we know better, right?

November 28, 2016 20

The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading

November 28, 2016 21

The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading

1. Protocol specifications:
➔ No data compression handling issues, redirects to SSL/TLS (concerned with leakage and packet limits, but

unexplained how they apply to other protocols)

November 28, 2016 22

The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading

1. Protocol specifications:
➔ No data compression handling issues, redirects to SSL/TLS (concerned with leakage and packet limits, but

unexplained how they apply to other protocols)

2. Secure Design Patterns:
● Patterns to solve vulns. during design phase : DoS Safety, Compartmentalization, and Small Process
➔ However, lack of the details to address implementation-level concerns

November 28, 2016 23

The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading

1. Protocol specifications:
➔ No data compression handling issues, redirects to SSL/TLS (concerned with leakage and packet limits, but

unexplained how they apply to other protocols)

2. Secure Design Patterns:
● Patterns to solve vulns. during design phase : DoS Safety, Compartmentalization, and Small Process
➔ However, lack of the details to address implementation-level concerns

3. Secure Coding Rules
● Only one, i.e., Anti-Zip Bomb coding rule
➔ Sadly, incorrect

November 28, 2016 24

The Present

 Reviewed protocol specs, design patterns, and coding rules
Unawareness of the risks, guidelines on handling data compression are missing or misleading

1. Protocol specifications:
➔ No data compression handling issues, redirects to SSL/TLS (concerned with leakage and packet limits, but

unexplained how they apply to other protocols)

2. Secure Design Patterns:
● Patterns to solve vulns. During design phase : DoS Safety, Compartmentalization, and Small Process
➔ However, lack of the details to address implementation-level concerns

3. Secure Coding Rules
● Only one, i.e., Anti-Zip Bomb coding rule
➔ Sadly, incorrect

How does this lack of common knowledge and
understanding affect implementations?

How does this lack of common knowledge and
understanding affect implementations?

November 28, 2016 25

Impact on Implementations

November 28, 2016 26

HTTP (Response) Compression (RFC 7230)

GET / HTTP/1.1
Host: wikipedia.org
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 18879
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

�%O 5 * #�� � ��� �Ԟ
[...]

Select algoritm

Response size -70%

Compressed response body
Decompress

HTTP Request

HTTP Response

November 28, 2016 27

Compression Bombs against Web Browsers #1

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

HTTP Request

HTTP Response

4 GB of
white spaces

Compression rate ~1:1000

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html

November 28, 2016 28

Compression Bombs against Web Browsers #1

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip

Decompress

HTTP Request

HTTP Response

4 GB of
white spaces

Compression rate ~1:1000

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html

November 28, 2016 29

Compression Bombs against Web Browsers #2

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip, gzip

HTTP Request

HTTP Response

4 GB of
white spaces

2 layers of compression!

x1000 smaller

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html

November 28, 2016 30

Compression Bombs against Web Browsers #2

GET / HTTP/1.1
Host: attacker.foo
Accept­Encoding: gzip, deflate
[...]

HTTP/1.1 200 OK
[...]
Content­Length: 4000
Content­Type: text/html; charset=UTF­8
Content­Encoding: gzip, gzip

HTTP Request

HTTP Response

4 GB of
white spaces

2 layers of compression!

Decompress

x1000 smaller

See: Geoff Jones http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html

November 28, 2016 31

HTTP (Response) Compression Bombs

“Vulnerabilities that just won't die - Compression Bombs”
by Geoff Jones

http://blog.cyberis.co.uk/2013/08/vulnerabilities-that-just-wont-die.html

Most are stillvulnerable!

Most are stillvulnerable!

November 28, 2016 32

How about servers?

??

November 28, 2016 33

Experiments

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs

November 28, 2016 34

HTTP (request) Compression Bomb (SOAP)

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
~4 MB, ~1:1000 compr. ratio

POST /index.html HTTP/1.1
Content­Encoding: gzip
\r\n
<soapenv:Envelope>

<soapenv:Body>[...]</soapenv:Body>
</soapenv:Envelope>
\r\n

4 GB of
white spaces

compressed

Same for JSON

Same for JSON

November 28, 2016 35

XMPP Compression Bomb

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
~4 MB, ~1:1000 compr. ratio

<?xml version='1.0' ?>
<stream:stream to='server'

xmlns='jabber:client' Version='1.0'>

4 GB of
white spaces

compressed

November 28, 2016 36

IMAP Compression Bomb

 Case studies:
● HTTP, XMPP, and IMAP servers

 Testbed:

Internal
Monitor

Implementation

Linux 3.8 Kernel

/proc

External monitor

Attackers

Compression bombs
~4 MB, ~1:1000 compr. ratio

From: sender@foo
To: receiver@foo
Subject : I am a bomb!

4 GB of
white spaces

compressed

November 28, 2016 37

Compression Bombs Everywhere

Protocol Network Service
XMPP OpenFire

Prosody

Tigase

Ejabberd, jabberd2
HTTP Apache HTTPD + mod_deflate

+ mod-php, CSJRPC, mod-gsoap, mod-dav

Apache Tomcat + 2Way/Webutilities filter
+ Apache CXF

+ json-rpc, lib-json-rpc

+ Axis2/ +jsonrpc4j

Axis 2 standalone

gSOAP standalone
IMAP Dovecot, Cyrus

November 28, 2016 38

Compression Bombs Everywhere

Protocol Network Service
XMPP OpenFire

Prosody

Tigase

Ejabberd, jabberd2
HTTP Apache HTTPD + mod_deflate

+ mod-php, CSJRPC, mod-gsoap, mod-dav

Apache Tomcat + 2Way/Webutilities filter
+ Apache CXF

+ json-rpc, lib-json-rpc

+ Axis2/ +jsonrpc4j

Axis 2 standalone

gSOAP standalone
IMAP Dovecot, Cyrus

CVE-2014-2741

CVE-2014-2746

CVE-2014-0118

Notif. devel

Notif. devels

CVE-2014-2744/ -2745

CVE-2014-0109/ -0110

Notif. devel

November 28, 2016 39

Pitfalls

November 28, 2016 40

Pitfalls

1. Implementation

2. Specification

3. Configuration

November 28, 2016 41

Pitfalls

1. Implementation

2. Specification

3. Configuration

● Use of Compression before Authentication
● Improper Input Validation during Decompression
● Logging Decompressed Messages
● Improper Inter-Units Communication
● Unbounded Resource Usage (CPU and Memory)

● Erroneous Best Practice
● Misleading Documentation
● API Specs Inconsistency

● Insufficient Configuration Options
● Insecure Default Values
● Decentralized Configuration Parameters

November 28, 2016 42

1. Implementation

2. Specification

3. Configuration

Pitfalls

● Use of Compression before Authentication
● Improper Input Validation during Decompression
● Logging Decompressed Messages
● Improper Inter-Units Communication
● Unbounded Resource Usage (CPU and Memory)

● Erroneous Best Practice
● Misleading Documentation
● API Specs Inconsistency

● Insufficient Configuration Options
● Insecure Default Values
● Decentralized Configuration Parameters

November 28, 2016 43

1. Implementation

2. Specification

3. Configuration

Pitfalls

● Use of Compression before Authentication
● Improper Input Validation during Decompression
● Logging Decompressed Messages
● Improper Inter-Units Communication
● Unbounded Resource Usage (CPU and Memory)

● Erroneous Best Practice
● Misleading Documentation
● API Specs Inconsistency

● Insufficient Configuration Options
● Insecure Default Values
● Decentralized Configuration Parameters

Check out our paper!

http://trouge.net/gp/papers/compr_usenix15.pdf

Check out our paper!

http://trouge.net/gp/papers/compr_usenix15.pdf

November 28, 2016 44

Pitfalls at Implementation level

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

 Abstract message processing pipeline extracted from our case studies

November 28, 2016 45

Compression before Authentication

 Inconsistent best practice
● Mandatory in SSL/TLS, recommended in XMPP, and undefined in IMAP and HTTP
● Implementation may diverge from the specs, i.e., OpenSSH

 Developers may underestimate the risk or overlook recommendations
 Prosody accepted compressed messages before user authentication

➔ DoS by unauthenticated attackers

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-2744

November 28, 2016 46

Improper Input Validation during Decompression

 3 ways to validate a message:
● Compressed message size

● mod-deflate: If (compr. size > LimitRequestBody) → Reject
➔ However, hard to assess message size from its compressed form (1 MB compr → 1 GB decompr.)

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-0118

mistake

November 28, 2016 47

Improper Input Validation during Decompression

 3 ways to validate a message:
● Compressed message size

● mod-deflate: If (compr. size > LimitRequestBody) → Reject
➔ However, hard to assess message size from its compressed form (1 MB compr → 1 GB decompr.)

● Decompression ratio
● Patched mod-deflate: if (decompr ratio > threshold) → Reject
➔ Problem of ratio selection

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

mistake

risky

CVE-2014-0118

November 28, 2016 48

Improper Input Validation during Decompression

 3 ways to validate a message:
● Compressed message size

● mod-deflate: If (compr. size > LimitRequestBody) → Reject
➔ However, hard to assess message size from its compressed form (1 MB compr → 1 GB decompr.)

● Decompression ratio
● Patched mod-deflate: if (decompr ratio > threshold) → Reject
➔ Problem of ratio selection

● Decompressed message size
● mod-deflate + mod-dav: If (decompr. size > LimitXMLRequestBody) → Reject

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

mistake

correct

risky

CVE-2014-0118

November 28, 2016 49

Improper Inter-Units Communication

 Upon exception, the pipeline halts and rejects message
 mod-php and mod-gsoap limit the size of incoming (decompressed) message
 … but had no means to halt mod-deflate

➔ mod-deflate keeps on decompressing data
● Problem addressed in

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-0118

November 28, 2016 50

Logging Decompressed Messages

 Frequency and verbosity of log events can cause DoS
 If exception is caused by compressed data, the needed resources may be underestimated
 Upon invalid requests, Apache CXF logs first 100KB of incoming message

● However, first it decompresses the entire message on a file, then logs the first 100KB
➔ DoS due to disk space exhaustion

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt

Authn.

evt

CVE-2014-0109/ -0110

November 28, 2016 51

Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

November 28, 2016 52

Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

// Write the files to the disk, but
// only if the file is not insanely big
if (zipfile.getSize() > TOOBIG) {
 throw new IllegalStateException("File to be unzipped is huge.");
}

November 28, 2016 53

Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

 .getSize() returns ZIP file header with uncompressed size

// Write the files to the disk, but
// only if the file is not insanely big
if (zipfile.getSize() > TOOBIG) {
 throw new IllegalStateException("File to be unzipped is huge.");
}

November 28, 2016 54

Erroneous Best Practices (Spec. level)
 Only one code pattern specific for data compression

● Rule: “IDS04-J. Safely extract files from ZipInputStream”

 .getSize() returns ZIP file header with uncompressed size

 but ZIP headers not integrity protected!
➔ DoS countermeasure bypass

// Write the files to the disk, but
// only if the file is not insanely big
if (zipfile.getSize() > TOOBIG) {
 throw new IllegalStateException("File to be unzipped is huge.");
}

Notif. Authors

November 28, 2016 55

Conclusion

November 28, 2016 56

Conclusion/Takeaway

 Compression bombs are back
➔ New vulnerabilities in popular network services

 ~20 years after the zip bombs, developers still unaware of the
risks of handling data compression
➔ 12 pitfalls which can be used by developers to build more

secure services

