DefectDojo

The Good, the Bad and the Ugly

OWASP Stammtisch Hamburg
Tilmann Haak

Manuel Schneider
2018-05-31

PREFACE

ClIO: ,What is the security posture of our
applications?“

How do you handle and communicate
vulnerabilities of (web-)applications?

ecurity-

Test
-intern
-extern

Dependency-

Scanner
- Dependency Check

SAST

-ZAP
- Burp

ulnerability-

Scanner
- Nessus
- OpenVAS

Security Engineer

SN

Developer Operations

Application Security Pipeline

Rugged Devops - AppSec Pipeline Template

®

Threat Model \’anual Assessments AppSac Analyst
False PCS-I'IVE Removal
—p Security Tool #1 ﬁ
O
i — ——————P Socurity Tool 12 ——p Yoy __y ﬁ — @
AppSec Service & Serv Security ’ Defoct Developar
e R::qu:;:l = Reﬁst Reoo?n:q Orchestration _’ secuﬁty Tool #3 Tr:oker Remediation
v -,
@ﬁb Reporting &
Matncs
Provisi
Securtty Services L% GRC Tool
Pipeline Position Pipeline Position Pipeline Position Pipeline Position
Intake Triage Test Deliver

Continuous Feedback and Optimization

[:J Partial Automation
D Future Automation
C) Automation

Agron Weavar, CC SharaAlike 3.0

Application Vulnerability Corelation
(AVC)

— “application security workflow and process
management tools that aim to streamline SDLC
application vulnerability remediation by
incorporating findings from a variety of security-
testing data sources into a centralized tool.”

— New tool category defined by Gartner
— Commercial tools

— Open source -> DefectDojo

DEFECTDOIJO

What is the Promise of DefectDojo?

— Vulnerability Management Tool

— Security Program-/Test- Management Tool
— Importers for many scanners

— De-duplication

— REST API

— Free and Open Source (BSD 3-Clause)

— Uses Python Django, which makes it to integrate
various plugins

DefectDojo Data Model

IPro-duct Type \

Product

|

) [
Test \
M

f l h
Test
i 3

Engagement Engagement Engagement
F ™ ' 4 ™ r B
Test Test Test
w g

1
~[m
ol

y

Docker

Seems to be easy!
Get it:

$ docker pull appsecpipeline/django-defectdo’jo

Run it;

$ docker run -it -p 8000:8000 \
appsecpipeline/django-defectdojo

Web interface:
$ open http://localhost:8000/

Livedemo

* High Level Walkthrough DefectDojo
— Typical workflows
— Manual creation of a finding
— Upload of report
— De-duplication
— Reporting
 Data needed/Products, etc.
— DB-Export MySQL

* manage.py / Django Data export/import
* DB Tools

DEFECTDOJO @REAL LIVE

DefectDojo at Company A

— Existing inventory of platform applications
— Existing inventory of internal software
— Existing inventory of Micro-Sites

— OWASP Dependency Check for all known software
projects
— Automated with Jenkins CI

* Jenkins jobs (XML) generated with ERB (embedded
ruby) templates

* and uploaded via Jenkins API
— Central issue tracking with JIRA

Too much Software at Company A

— Many subsidiaries

— More than 100 own software applications
— Many engineering teams writing code

— 50+ Micro-Sites (esp. marketing)

* Maintained by 17 external agencies
— 7+ mobile apps (Android, i0S, Windows)

— 2500+ hosts in two data centres (500+ physical,
2000+ VMs)

— A growing number of Docker containers (800+)

AppSec Pipeline at Company A

Static Application
Security Testing (SAST)

Source Code

Vulnerable Software
Repositories > Manual Tests

Dependencies

Static Code Reports
Analysis

Vulnerability

d—p»| Issue Trackin
Management v

Dynamic Application
Security Testing (DAST)

Domain Names f~———p Dashboard
as| s

Web Application
Scanners

IP Addresses o

Port Scans

Docker Registry [~

Vulnerability
Scanners

URIs >
(Endpoints)
A

Crawlers & Spiders

Company A’s AppSec Pipeline

DefectDojo @Company B

— Motivation -> Security Assurance
* Application Security Pipeline

— Large amount of Internet facing applications
worldwide

— Baseline security scanning for Internet facing
applications

— Push of vulnerabilities to JIRA
 Distribution to devs/ ops via Jira

— Status planning/pilot

— Focus vulnerability documentation/ consolidation
* Not test-management/ intake

AppSec Pipeline @Company B

D

ZAP Baseline Scan

= RUNDECK —1— —TDEFECTdojo— ¥ JIRA

—

OWASP Dependency Check for all
projects @Company A

— Own software inventory

— Docker image with OWASP Dependency Check
(and Ruby’s bundler-audit)

— Generate Jenkins jobs for every software project
to scan source code repository

— Push findings to DefectDojo
— De-duplicate + review with DefectDojo

— Push to JIRA (and get status changes via
Webhook)

Dynamic Scanning @Company A
Scan all endpoints e.g. with Arachni

— Configure endpoints for all DefectDojo products
based on our own software inventory

— Jenkins job pulls all endpoints from DefectDojo
— Scan all endpoints

And from here on, you know the drill:
— Push findings to DefectDojo
— De-duplicate + review with DefectDojo

— Push to JIRA (and get status changes via
Webhook)

Dynamic Scanning @Company B
Scan all endpoints e.g. with ZAP

— Rundeck-Jobs for each application
e Perform ZAP Baseline Scan
* Upload to DefectDojo
* Review results

e Push to Jira

Distribute to dev/ops

Manual findings @Company B

How to handle findings from internal audits,
external pen-tests

— Upload burp report to DefectDojo

— Enter findings for affected product in DefectDojo

* Templates
— Push to JIRA vunerability project
— Clone and move to dev/ops teams

Manual findings @Company A

How to handle findings from internal audits,
external pen-tests, and security researchers?

— Enter findings for affected product in DefectDojo

— Push to JIRA (and get status changes via
Webhook)

Easy!

FEATURES

APl examples

ApiKey root:eaeddd6627ace7f20b5e025600819366b3f05¢cc6 Explore
app_analysis
build_details
endpoints
engagements
finding_templates
findings
importscan
jira_configurations
jira_finding_mappings
jira_product_configurations
language_types
languages
pI'OdUCtS Show/Hide | List Operations = Expand Operations = Raw
/api/v1/products/ Retrieve a list of products
/api/v1/products/ Create a new product

/api/v1/products/{id}/ Refrieve a single product by ID

e):]:

/api/v1/products/{id}/ Update an existing product

https://github.com/aaronweaver/defectdojo _api - Python wrapper

https://github.com/aaronweaver/defectdojo_api

Docker

Although the project claims to provide Docker
Images...

— Everything is cramped into a single container
(bad!)

— My first try to split it up ended with approximately
1234 Docker images

— A high-availabilty Docker setup still requires some
work

However: The docker images are a good starting
point.

Supported Scanner

Arachni Scanner * Nmap

AppSpider (Rapid7) * Node Security Platform
Bandit OpenVAS CSV

Burp XML * Qualys

Contrast Scanner * Retire.js

Checkmarx * SKF Scan

Dependency Check * Snyk

Generic Findings Import - * SSLLabs

CSV format * Trufflehog

Nessus (Tenable) e Visual Code Grepper (VCG)
Nexpose XML 2.0 (Rapid7) * Veracode

Nikto * Zed Attack Proxy

https://defectdojo.readthedocs.io/en/latest/integrations.html

WRAP UP

Lessons learned 1/2

— Don’t underestimate the total effort!

e Although first steps are fairly easy (esp. with Docker),
the full setup including processes takes time

— Tests are important, esp. JIRA integration is tricky
— Feels overengineered, basic features missing
— Data model seems to be too ambitious

— Core team is quite responsive (Github, Slack), but
has an own view on how to use DefectDojo

— Documentation somewhat dated, it does not keep
up with to current development speed

Lessons learned 2/2

— Needs a lot of glue code to integrate into existing
infrastructure (inventory, issue tracking)

— APl — missing methods e.g. add metadata, add
tags, ...

— APl is complicated (eg. query by product id, which
has to be searched first)

— Operational challenge updates, stability
— User experience odd at times — no cancel buttons
— JIRA Webhooks

Not figured out, yet ;)

Usage of Tags vs. Product-Type vs. Metadata

Leading system for URLs/Endpoints/Application
— DefectDojo

— Asset-Management System

— Links between systems

Combining AppSec and NetSec vulnerability data
— AppSec — web-applications

e Output DAST, SAST
— NetSec — IP-addresses
e Qutput Nessus, OpenVAS, Qualys, ...

Reviewing fix of vulnerabilities/ automation — manual
review needed

Future

— Active project, with many new ideas

— A new APl implementation based upon Django’s Rest
Framework (https://github.com/DefectDojo/django-
DefectDojo/pull/566) -> merged

— Add Meta Data / Additional Information to API
(https://github.com/DefectDojo/django-
DefectDojo/issues/459)

— Add to the API (https://github.com/DefectDojo/django-
DefectDojo/issues/457)

— Sponsoring possible for support of product and
enhancements

— Enhacements as part of OWASP Security Summit planned

https://github.com/DefectDojo/django-DefectDojo/pull/566
https://github.com/DefectDojo/django-DefectDojo/issues/457

Thanks for your Attention!

If there are any questions, comments, ideas —
it’s your time now.

Links

https://github.com/DefectDojo/django-DefectDojo
https://www.denimgroup.com/resources/blog/2016/07 /whats-in-a-name-why-gartner-
picking-application-vulnerability-correlation-is-an-important-step-for-the-application-
security-market/

https://codedx.com/2017/11/08/gartner-identifies-the-next-step-in-software-vulnerability-
management-application-vulnerability-correlation-avc/

https://www.owasp.org/index.php/OWASP AppSec Pipeline#ftab=Pipeline Design Patterns

https://www.denimgroup.com/resources/blog/2016/07/whats-in-a-name-why-gartner-picking-application-vulnerability-correlation-is-an-important-step-for-the-application-security-market/
https://www.denimgroup.com/resources/blog/2016/07/whats-in-a-name-why-gartner-picking-application-vulnerability-correlation-is-an-important-step-for-the-application-security-market/
https://codedx.com/2017/11/08/gartner-identifies-the-next-step-in-software-vulnerability-management-application-vulnerability-correlation-avc/
https://www.owasp.org/index.php/OWASP_AppSec_Pipeline

BACKUP

Manual creation of

TDEFECTdojo

&

E W = % D

© EE B

Home Product List Test-Product1

Penetration Test

Environment

ctest

Findings

Outdated webserver

Potential Findings

Engagement: Engagement 1 (May 17, 2018) Penetration Test (May 17, 2018)

Engagement

Engagement: Engagement 1 (May 17, 2018)

Reporter Mitigation Date Severity

admin None Low

Verified

True

N

Target Start Date

May 17, 2018
Active Duplicate
True False

Actions

View

Target End Date

May 17, 2018

Finding From Template

¥ New Finding

Delete

+ Add Potential Finding

Templates

 Templates can be used for manual creation of vulnerabilties
* Links to policies, secure coding guideline, etc. can be utilized
e Standard texts for ,standard” vulnerabilities eg. XSS, Injection, ...

FDEFECTdojo B o -

@ —
Home / Template Listing / Edit Template

e Edit Template Outdated webserver
1§ Title” Outdated webserver
i CWE
B

Severif ity
AT
- Descri| ption Th b: dated
- Ple pdate t t h intranet.apg I b
i
>}

Mitlgatlon Please update to a version that is compliant with https://intranet.appsec./compliant-webservers

Impact The utilized version has known vulnerabilities which can be exploited and impact the application

Manual upload of Reports

=> Pain

Demo -> Manuelles erzeugen von Engagement

Scripting/ automation for the win

