
DefectDojo

The Good, the Bad and the Ugly

OWASP Stammtisch Hamburg
Tilmann Haak
Manuel Schneider
2018-05-31

PREFACE

CIO: „What is the security posture of our
applications?“

How do you handle and communicate
vulnerabilities of (web-)applications?

A normal workday … simplified

Application Security Pipeline

Application Vulnerability Corelation
(AVC)

– “application security workflow and process
management tools that aim to streamline SDLC
application vulnerability remediation by
incorporating findings from a variety of security-
testing data sources into a centralized tool.”

– New tool category defined by Gartner

– Commercial tools

– Open source -> DefectDojo

DEFECTDOJO

What is the Promise of DefectDojo?

– Vulnerability Management Tool

– Security Program-/Test- Management Tool

– Importers for many scanners

– De-duplication

– REST API

– Free and Open Source (BSD 3-Clause)

– Uses Python Django, which makes it to integrate
various plugins

DefectDojo Data Model

Endpoint

Docker

Seems to be easy!
Get it:

$ docker pull appsecpipeline/django-defectdojo

Run it:
$ docker run -it -p 8000:8000 \
appsecpipeline/django-defectdojo

Web interface:
$ open http://localhost:8000/

Livedemo

• High Level Walkthrough DefectDojo
– Typical workflows
– Manual creation of a finding
– Upload of report
– De-duplication
– Reporting

• Data needed/Products, etc.
– DB-Export MySQL

• manage.py / Django Data export/import
• DB Tools

DEFECTDOJO @REAL LIVE

DefectDojo at Company A

– Existing inventory of platform applications
– Existing inventory of internal software
– Existing inventory of Micro-Sites
– OWASP Dependency Check for all known software

projects
– Automated with Jenkins CI
• Jenkins jobs (XML) generated with ERB (embedded

ruby) templates
• and uploaded via Jenkins API

– Central issue tracking with JIRA

Too much Software at Company A

– Many subsidiaries
– More than 100 own software applications
– Many engineering teams writing code
– 50+ Micro-Sites (esp. marketing)
• Maintained by 17 external agencies

– 7+ mobile apps (Android, iOS, Windows)
– 2500+ hosts in two data centres (500+ physical,

2000+ VMs)
– A growing number of Docker containers (800+)

AppSec Pipeline at Company A

Company A‘s AppSec Pipeline

DefectDojo @Company B
– Motivation -> Security Assurance

• Application Security Pipeline
– Large amount of Internet facing applications

worldwide
– Baseline security scanning for Internet facing

applications
– Push of vulnerabilities to JIRA

• Distribution to devs/ ops via Jira
– Status planning/pilot
– Focus vulnerability documentation/ consolidation

• Not test-management/ intake

AppSec Pipeline @Company B

Custom
Checks

…

ZAP Baseline Scan

OWASP Dependency Check for all
projects @Company A

– Own software inventory

– Docker image with OWASP Dependency Check
(and Ruby’s bundler-audit)

– Generate Jenkins jobs for every software project
to scan source code repository

– Push findings to DefectDojo

– De-duplicate + review with DefectDojo

– Push to JIRA (and get status changes via
Webhook)

Dynamic Scanning @Company A
Scan all endpoints e.g. with Arachni
– Configure endpoints for all DefectDojo products

based on our own software inventory
– Jenkins job pulls all endpoints from DefectDojo
– Scan all endpoints

And from here on, you know the drill:
– Push findings to DefectDojo
– De-duplicate + review with DefectDojo
– Push to JIRA (and get status changes via

Webhook)

Dynamic Scanning @Company B
Scan all endpoints e.g. with ZAP

– Rundeck-Jobs for each application
• Perform ZAP Baseline Scan
• Upload to DefectDojo
• Review results
• Push to Jira
• Distribute to dev/ops

Manual findings @Company B

How to handle findings from internal audits,
external pen-tests
– Upload burp report to DefectDojo

– Enter findings for affected product in DefectDojo
• Templates

– Push to JIRA vunerability project

– Clone and move to dev/ops teams

Manual findings @Company A

How to handle findings from internal audits,
external pen-tests, and security researchers?
– Enter findings for affected product in DefectDojo
– Push to JIRA (and get status changes via

Webhook)
Easy!

FEATURES

API examples
$

API V2 in Dev

https://github.com/aaronweaver/defectdojo_api - Python wrapper

https://github.com/aaronweaver/defectdojo_api

Docker

Although the project claims to provide Docker
images…
– Everything is cramped into a single container

(bad!)
– My first try to split it up ended with approximately

1234 Docker images
– A high-availabilty Docker setup still requires some

work
However: The docker images are a good starting
point.

just fortest

Supported Scanner
• Nmap
• Node Security Platform
• OpenVAS CSV
• Qualys
• Retire.js
• SKF Scan
• Snyk
• SSL Labs
• Trufflehog
• Visual Code Grepper (VCG)
• Veracode
• Zed Attack Proxy

• Arachni Scanner
• AppSpider (Rapid7)
• Bandit
• Burp XML
• Contrast Scanner
• Checkmarx
• Dependency Check
• Generic Findings Import -

CSV format
• Nessus (Tenable)
• Nexpose XML 2.0 (Rapid7)
• Nikto

https://defectdojo.readthedocs.io/en/latest/integrations.html

WRAP UP

Lessons learned 1/2
– Don’t underestimate the total effort!
• Although first steps are fairly easy (esp. with Docker),

the full setup including processes takes time
– Tests are important, esp. JIRA integration is tricky
– Feels overengineered, basic features missing
– Data model seems to be too ambitious
– Core team is quite responsive (Github, Slack), but

has an own view on how to use DefectDojo
– Documentation somewhat dated, it does not keep

up with to current development speed

Lessons learned 2/2

– Needs a lot of glue code to integrate into existing
infrastructure (inventory, issue tracking)

– API – missing methods e.g. add metadata, add
tags, …

– API is complicated (eg. query by product id, which
has to be searched first)

– Operational challenge updates, stability
– User experience odd at times – no cancel buttons
– JIRA Webhooks

Not figured out, yet ;)

• Usage of Tags vs. Product-Type vs. Metadata

• Leading system for URLs/Endpoints/Application

– DefectDojo

– Asset-Management System

– Links between systems

• Combining AppSec and NetSec vulnerability data

– AppSec – web-applications

• Output DAST, SAST

– NetSec – IP-addresses

• Output Nessus, OpenVAS, Qualys, …

• Reviewing fix of vulnerabilities/ automation – manual

review needed

Future
– Active project, with many new ideas
– A new API implementation based upon Django’s Rest

Framework (https://github.com/DefectDojo/django-
DefectDojo/pull/566) -> merged

– Add Meta Data / Additional Information to API
(https://github.com/DefectDojo/django-
DefectDojo/issues/459)

– Add to the API (https://github.com/DefectDojo/django-
DefectDojo/issues/457)

– Sponsoring possible for support of product and
enhancements

– Enhacements as part of OWASP Security Summit planned

https://github.com/DefectDojo/django-DefectDojo/pull/566
https://github.com/DefectDojo/django-DefectDojo/issues/457

Thanks for your Attention!

If there are any questions, comments, ideas –
it’s your time now.

Links
• https://github.com/DefectDojo/django-DefectDojo
• https://www.denimgroup.com/resources/blog/2016/07/whats-in-a-name-why-gartner-

picking-application-vulnerability-correlation-is-an-important-step-for-the-application-
security-market/

• https://codedx.com/2017/11/08/gartner-identifies-the-next-step-in-software-vulnerability-
management-application-vulnerability-correlation-avc/

• https://www.owasp.org/index.php/OWASP_AppSec_Pipeline#tab=Pipeline_Design_Patterns

https://www.denimgroup.com/resources/blog/2016/07/whats-in-a-name-why-gartner-picking-application-vulnerability-correlation-is-an-important-step-for-the-application-security-market/
https://www.denimgroup.com/resources/blog/2016/07/whats-in-a-name-why-gartner-picking-application-vulnerability-correlation-is-an-important-step-for-the-application-security-market/
https://codedx.com/2017/11/08/gartner-identifies-the-next-step-in-software-vulnerability-management-application-vulnerability-correlation-avc/
https://www.owasp.org/index.php/OWASP_AppSec_Pipeline

BACKUP

Manual creation of Finding

Templates
• Templates can be used for manual creation of vulnerabilties
• Links to policies, secure coding guideline, etc. can be utilized
• Standard texts for „standard“ vulnerabilities eg. XSS, Injection, …

Manual upload of Reports
• => Pain
• Demo -> Manuelles erzeugen von Engagement

• Scripting/ automation for the win

