
TM

Software Composition Analysis

OWASP Stammtisch

19.11.2019

München

Stanislav Sivak

OWASP

Agenda

• Introduction

• Challenges

• Approaches

• Integration

• Q & A

OWASP

Agenda

• Introduction

• Challenges

• Approaches

• Integration

• Q & A

OWASP

Introduction

Disclaimer:

This is my personal presentation and represents neither my current
employer nor any other organization.

OWASP

Introduction

• Senior security consultant at Synopsys

• Working on various AppSec related projects mainly in Germany in the
areas of
• How to secure SDLC with focus on:

• Threat modelling

• Application security testing

• Security in CI/CD

• Previously worked as web developer, security administrator, pentester

OWASP

Up to 90%
Open Source

TODAY

50%
Open Source

2010

20%
Open Source

20051998

10%
Open Source

Open Source Software
• How did the open source usage evolve?

OWASP 2019

DEVELOPER DOWNLOADS

OUTSOURCED DEVELOPMENT

THIRD PARTY LIBRARIES

CODE REUSE

APPROVED COMPONENTS

COMMERCIAL APPS

OPEN SOURCE CODE

It enters your code through many channels…

…and open source vulnerabilities can come with it.

OWASP 2019

State of open source 2018 (1/2)

Based on over 1,200 commercial applications analyzed by Black Duck On-Demand in 2018

17%

96% 134%

60%

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-19.pdf

Open source represented

60% of the code analyzed in

2018, up from 57% in 2017

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-19.pdf

OWASP

State of open source 2018 (2/2)
Most seen open-source components

jQuery BootStrap jQuery UI

Font
Awesome

Moment

OWASP

What software is in scope?
FOSS – Free and open-source software

FSOS

License type
approved by Open
Source Initiative

License type
approved by Free
Software
Foundation

OWASP

What software is in scope?

Open Source Code

• Snippets

• Modules

• SDK

Open Source Binary Software

• Libraries

• Executables

• FOSS – Free and open-source software

Proprietary 3rd-party
components

FOSS

OWASP

Agenda

• Introduction

• Challenges (No challenge-> no fun)

• Approaches

• Integration

• Q & A

OWASP

Challenge No.1 - Assets

• I need further information to our application inventory…

• How much open source do we use?

• How is the use of open source governed in our company?
CIO

StrutsAngular

Rubyzip JQuery

?OpenSSL

Bill of Material (BoM)

OWASP

Challenge No.2 - Security

• Which our projects have known open-source vulnerabilities?

• Do we have any components with critical and high vulnerabilities?

• Do our projects have the XXX vulnerable component?

CISO/Security Manager

OWASP

Challenge No.2 - Security

OWASP

Challenge No.3 - Licensing
• Are we allowed to share/distribute my software in its current form?

• Do we have any licenses non-compliant with our internal FOSS policy?

• Do we distribute any software with a copyleft license?

Lawyers

212

95

20

16

16

88

License count

Apache License 2.0

Eclipse Public License 1.0

MIT License

Unknown License

BSD 3-clause "New" or
"Revised" License

Others

OWASP

Beware of these license families

Licensing scheme License Family Examples

Copyleft Affero General
Public License
(AGPL)

GNU Affero General Public License v3 or
later

Copyleft Reciprocal GNU General Public License (GPL) 2.0 or 3.0

Sun GPL with Classpath Exception v2.0

Copyleft Weak Reciprocal Code Project Open License 1.02

Common Development and Distribution
License (CDDL) 1.0 or 1.1

Eclipse Public License

GNU Lesser General Public License (LGPL)
2.1 or 3.0

Microsoft Reciprocal License

Mozilla

Non-commercial use Non-commercial AFPL

JRL

Full source code available to any network user

Full source code available if distributed

The modified/used OSS source code (mostly)
must be shared.

For non-commercial use only

OWASP

License breach – is it really suable?
2017 - Artifex Software, Inc. versus Hancom, Inc.

- 1. Developed open-source PDF interpreter

- 2. The interpreter has a dual license: either GPL or commercial

Hancom Inc.Artifex Software

- 3. Used the interpreter in the commercial Office software

- 4. Hancom neither paid for the commercial license nor published
the custom software as open-source -> license infringement

5. GPL can be treated like a legal contract

US District Court

https://www.linux.com/blog/artifex-v-hancom-open-source-now-enforceable-contract

https://www.linux.com/blog/artifex-v-hancom-open-source-now-enforceable-contract

OWASP

Challenge No.4 – Operational risks

• How well is the component maintained?

• Is there any support?

• Are security vulnerabilities/bugs fixed within tolerable time?

• How large is the community?

• What is plan B if there is no new update?

Developers, architects

OWASP

Challenge No.5 – Date protection
Does any of my open-source components access sensitive data and if
yes, what happens with that data?

• User tracking

• Data collection

• GDPR

Data protection officer

OWASP 2019

Who wins?

FOSS advantages

OWASP

Agenda

• Introduction

• Challenges

• Approaches

• Integration

• Q & A

OWASP

Approach
How to deal with our 4 challenges?

Improve
existing

approaches?

Add a new
approach?

OWASP

Common manual approaches

SPORADIC VULNERABILITY

TRACKING
• No single responsible entity

• Labor intensive manual effort

• Unmanageable (~11 new vulns/day)

SPREADSHEET INVENTORY
• Requires consistent developer input

• Difficult to maintain and scale

• Not a full/accurate list of actual usage

PERIODIC VULNERABILITY

SCANNING
• Monthly/quarterly vulnerability assessments

• Not aimed at open source vulnerabilities

• Integrated later in the SDLC

MANUAL DISCOVERY
• Cumbersome processes

• Occurs at end of SDLC

• High effort and low accuracy

• No ongoing controls

#FAIL

OWASP

Common automated approaches

Shift left!

https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-fda53ec9bba

OWASP

Common automated SCA approaches (1/5)

+ Examines open source components automatically – no triggered scan needed

+ Known FOSS security vulnerabilities with CVE are reported

+ Visualisation

+ Often easy remediation in the repository -> replacement of the vulnerable component

+ Alerts sent and displayed for new vulnerabilities

+ Continuous analysis

- Focus on dependencies but no code snippets or modified files/directories

- Often no licenses overview

- Reporting

Source code repository checks

OWASP

Common automated SCA approaches (1/5)
Using GitHub source code repository checks

E-mail Alert Dependency Graph

OWASP

Common automated SCA approaches (2/5)
+ Examines all binary components known for open-source vulnerabilities

+ Easy access to artifacts

+ Can be triggered on-demand or automatically when new artifacts appear

+ Easy implementation of approved artifacts only (due to licensing, whitelisting,…)

+ Dependency graph

+ Easy integration

+ Continuous analysis

- Only successful if all artifacts stored there -> single source of truth

- Can miss references in Source Code repositories

- Licensing information?

- Reporting

Binary repository manager checks

OWASP

Common automated SCA approaches (2/5)
Binary repository manager checks - example

Common automated SCA approaches (3/5)
+ Finds both publicly known and unknown
security vulnerabilities in the source code

+ No additional tool/stage needed

+ SAST can be performed in various pipeline
stages

+ SAST tools can have a separate module that
inspects software composition

- Limited insight into Software Composition
Analysis

- No Bill of Material

- No licensing information

- Results represent a point in time

SAST

Static Application
Security Testing

• Analyzes any source code, not
only FOSS specific

• Finds common vulnerability
patterns:

• SQL injection

• Cross-site scripting

• Buffer overflows, etc.

Common automated SCA approaches (4/5)
+ Finds both publicly known and unknown
security vulnerabilities

+ No additional tool/stage needed

+ Fewer false positives than SAST

- Limited insight into Software Composition
Analysis as it examines running software from
outside

- Runs later in a later pipeline stage

- Very incomplete Bill of Material

- No licensing information

- Results represent a point in time

DAST

Dynamic Application Security
Testing

• Tests running apps

• Finds vulnerable app behavior:

• Misconfigurations

• Authentication issues

Common automated SCA approaches (5/5)
+ Focused on Open Source Components

+ Few false positives due to several ways of
identifying FOSS components

+ Both compiled and uncompiled code can be
analysed

+ Usually faster in scanning FOSS components

+ Public and private vulnerability databases

+ Can integrate with other application security
testing metrics

- Yet another stage/tool to implement

- Does not find publicly unknown vulnerabilities,
so need to be complemented with SAST/DAST

SCA Testing

Software Composition
Analysis (Testing)

• Scans for open source

• Provides Bill of Material

• Finds Open Source licenses

• Finds open source vulnerabilities:

• Detects known vulns

• Works through full SDLC

• Monitors for new vulns

OWASP

Software composition analysis

SCA is a process that can determine all underlying components of a software and
identify at least the public known (open-source) components.

A well defined process is consistent, automated and measurable.

OWASP

Commercial SCA tools (1/2)

• Sample 1

OWASP

Commercial SCA tools (2/2)

OWASP

Open Source SCA tools (1/5)
RetireJS – JavaScript dependencies

https://github.com/retirejs/retire.js/

Integration:
• A command line scanner
• A grunt plugin (NPM)
• A Chrome extension
• A Firefox extension
• Burp and OWASP Zap plugin
• Eclipse plugin

https://github.com/retirejs/retire.js/

OWASP

Open Source SCA tools (2/5)
NPM Audit

https://blog.npmjs.org/post/173719309445/npm-audit-identify-and-fix-insecure

• A command line scanner
• Focuses on NPM packages
• Suggest fixes -> easy remediation
• Package signing checks in the

future?

https://blog.npmjs.org/post/173719309445/npm-audit-identify-and-fix-insecure

OWASP

Open Source SCA tools (3/5)

• Open-Source tools examples for

OWASP Dependency Check OWASP Dependency Track

https://jeremylong.github.io/DependencyCheck/ https://www.owasp.org/index.php/OWASP_Dependency_Track_Project

https://jeremylong.github.io/DependencyCheck/
https://www.owasp.org/index.php/OWASP_Dependency_Track_Project

OWASP

Open Source SCA tools (4/5)
Dependency Track – THE open source tool for SCA

https://www.owasp.org/index.php/OWASP_Dependency_Track_Project

https://www.owasp.org/index.php/OWASP_Dependency_Track_Project

OWASP

Open Source SCA tools (5/5)

• OSS Review Toolkit https://github.com/heremaps/oss-review-toolkit

• Fossology https://www.fossology.org/

• SW360 https://sw360.github.io/

Open-Source tools examples for finding licensing issues

https://github.com/heremaps/oss-review-toolkit
https://www.fossology.org/
https://sw360.github.io/

OWASP

SCA decision table

Profile Recommendation

Developer startup with JS frameworks Use technology-specific tools such as RetireJS, npm audit,…

SMB with multiple technologies and
powerful development teams

Use binary repository manager add-ons or source control
versioning mechanisms

SMB with multiple technologies at SCA
beginning with focus on security

Use or start with OWASP Dependency Track

SMB with multiple technologies at SCA
beginning with focus on compliance

Use open-source tools such as Fossology/OSS Review Toolkit

Enterprises with clear SCA requirements
and multiple stakeholders: CISO, Legal,
Developers, Open-Source Officers

Start with OWASP Dependency Track and/or
Evaluate commercial SCA tools

OWASP

1. Contextual identification

2. Complete vulnerability and legal data

3. Zero-day notification

4. Timely remediation

5. Efficient policy management

6. Integrate and automate

KEYS TO open source security management

OWASP

Agenda

• Introduction

• Challenges

• Approaches

• Integration in SDLC

• Q & A

OWASP

Requirements

• Automatable

• User-friendly

• Actionable

• Flexible/Open

• Easy to integrate

CI/CD

OWASP

Application security pipeline

code

build

test

deploy

production

SAST SCA IAST DAST

Operations

Development

CI/CD Pipeline

[INFO] Sensor Black Duck Hub Plugin for SonarQube [hubsonarqube]
[INFO] Successfully connected to https://hubsig.blackducksoftware.com
[INFO] Gathering local component files...
[INFO] Gathering Hub component files...
[INFO] Getting matched files for Apache Ant...
[INFO] Getting matched files for Apache Commons Compress...
[INFO] Getting matched files for Apache Maven 2...
[INFO] Getting matched files for Apache Tomcat...
[INFO] Getting matched files for Bootstrap (Twitter)...
[INFO] Getting matched files for Bouncy Castle...
,,,
[INFO] Getting matched files for Spring Data Commons...
[INFO] Getting matched files for Spring Framework...
[INFO] Getting matched files for Spring Security...
[INFO] Getting matched files for Spring TestContext Framework...
[INFO] Getting matched files for Spring Transaction...
[INFO] Getting matched files for XStream...
[INFO] --> Number of local files matching inclusion/exclusion patterns: 8
[INFO] --> Number of vulnerable Hub component files matched: 8
[INFO] Comparing local components to Hub components...

2018-09-14 14:25:13 INFO [main] --- Starting the Hub signature scans
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- Starting the signature scan of /var/lib/jenkins/workspace/test_pipeline1
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- Hub CLI command :
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- /var/lib/jenkins/blackduck/tools/Hub_Scan_Installation/scan.cli-4.8.2/jre/bin/java
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- -Done-jar.silent=true
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- -Done-jar.jar.path=/var/lib/jenkins/blackduck/tools/Hub_Scan_Installation/scan.cli-4.8.2/lib/cache/scan.cli.impl-standalone.jar
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- -Xmx4096m
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- -jar
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- /var/lib/jenkins/blackduck/tools/Hub_Scan_Installation/scan.cli-4.8.2/lib/scan.cli-4.8.2-standalone.jar
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --no-prompt
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --scheme
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- https
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --host
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- hubsig.blackducksoftware.com
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --port
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- 443
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- -v
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --logDir
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- /var/lib/jenkins/blackduck/scan/HubScanLogs/2018-09-14_12-25-13-022_17
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --statusWriteDir
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- /var/lib/jenkins/blackduck/scan/HubScanLogs/2018-09-14_12-25-13-022_17
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --project
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- WebGoat
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --release
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- 8.0
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- --name
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- test_pipeline1/WebGoat/8.0 scan
2018-09-14 14:25:13 INFO [pool-2-thread-1] --- /var/lib/jenkins/workspace/test_pipeline1

https://hubsig.blackducksoftware.com/

OWASP

Interesting Links

• Copyright trolling https://blog.fossa.io/patrick-mchardy-and-
copyright-profiteering-44f7c28c0693

• GitHub and SCA https://www.dev-insider.de/security-alerts-auf-
github-nutzen-a-758877/

• Open Source Metadata https://clearlydefined.io/about

https://blog.fossa.io/patrick-mchardy-and-copyright-profiteering-44f7c28c0693
https://www.dev-insider.de/security-alerts-auf-github-nutzen-a-758877/
https://clearlydefined.io/about

OWASP

Q&A

Stanislav.Sivak@synopsys.com

