
Achim Eisele

SLICE

Secure ContainErisation

Agenda

02.03.182

• Motivation

• Terminology

• Basic Architecture

• Docker Example App

• Threats

• Docker Security
• Container

• Container Engine

• Host

• Network

• Secrets

• Conclusion

Motivation

02.03.183

• Application Containerisation found its way from playground to production

• Easy and reliable provisioning of applications in different environments

• application, libraries and (default) configuration are deployed as a whole

• allow a fast and highly automated deployment routine

• 1&1 operates several environments

• e.g. CaaS - Container-as-a-Service (Hosting Product)

• First applications are deployed onto those platforms and more “traditional” ones to be

shifted onto the new platforms in the future

• Document and share security best practices

Terminology

02.03.184

• Docker is a software technology providing operating-system-level virtualisation

• Based on Kernel namespaces (2002) and cgroups (2008)

• LXC, Solaris Zones, FreeBSD Jails existed prior to Docker, but Docker drives the containerisation

hype by ease of use.

• Kubernetes (OpenShift is built around) offers Container Orchestration

• OpenStack – Infrastructure-as-a-Service platform

• An image is a file resp. a package, which contains everything to run an

application, such as libraries, default configuration and code.

• A container is a runtime instance of image. It is isolated from the underlying host

environment and other containers on the same host.

• Images are generally stored at a central place called registry.

• A pod is a group of one ore more containers with shared storage, network and

configuration.

Basic Architecture

02.03.185

Docker Example WebApp

02.03.186

:$ cat Dockerfile

base image

FROM ubuntu:16.04

add apache

RUN apt-get update && apt-get install -y apache2

add basic web page

COPY index.html /var/www/html/index.html

do some configuration

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

listen on port 80

EXPOSE 80

run command on instantiation

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

:$ docker build –t test/mywebpage .

:$ docker run test/mywebpage

:$ curl http://192.168.122.2/

<html><head><title>Hallo World!</title></head><body /></html>

Threats

02.03.187

• Poisoned images
• Images might be tampered

• Outdated images might contain vulnerabilites.

• Container breakouts
• An attacker with access to a container might break out and control the host

• Denial-of-service attacks
• Container overconsuming resources

• Kernel exploits
• One shared kernel among all containers on same host

• Compromising secrets
• Secrets built into an image are not secret

Recommendations

• Down the stack
• Container

• Engine

• Host

• Depending on strived level of security
• Must Have (M)

• Should Have (S)

• Can Have (S)

02.03.188

Docker Security – Container I/II

02.03.189

• Base images must either be provided or created from trusted sources! (M)

• Regularly inspect images against new, previously unknown

vulnerabilities! (M)

• Regularly update your images and exchange appropriate containers (M)

• Images shall only be loaded from Official Repositories! (S)

• Disclaimer applies.

• Enable Docker Content Trust! (S)

• Drop root privileges as quickly as possible! (M)

• Only use and create small (base) images! (S)

• Reduce the number of layers to a minimum! (C)

• Aim at one process per container only! (S)

Docker Security – Container II/II

• Treat your images as immutable and do not store files inside a

container (S)

• Ensure SSH is not run within containers! (M)

• Reduce the set of capabilities per container to the needed minimum! (C)

• Remove setuid and setgid flags off binaries unless needed! (C)

• Reduce the set of allowed syscalls! (C)

• Authenticate and authorise your clients! (M)

• Write logfiles to a central and tamper-proof log store under consideration

of the GDPR! (S)

02.03.1810

Docker Security – Engine

02.03.1811

• Only trusted users shall be allowed to control your Docker daemon! (M)

• Docker's REST API shall only be accessible from trusted networks for

authenticated and authorised users! (M)

• Make use of cgroups and define resource limits on container level! (S)

• Use appropriate measures to segregate containers with different data

classification! (S)

Docker Security – Host

02.03.1812

• Use a minimal operating system installation! (M)

• Do not use a container host for other services! (M)

• Patch the container host regularly! (M)

• Make sure the procfs and sysfs filesystems are mounted read-only into

the container! (S)

• Introduce AppArmor or SELinux! (C)

• Apply grsecurity kernel patches! (C)

• Not for free anymore

Container Security – Network + Secrets

02.03.1813

• Create and apply a firewall or ACL concept! (M)

• Ensure transport encryption over untrusted network segments! (M)

• Loadbalancer or reverse proxy shall be the only containers exposing a

port to the outside world! (S)

• Do not store sensitive data in an image! (M)

• Inject during instantiation

• Manage your secrets in a secure manner! (M)

• Check your installation

• https://github.com/docker/docker-bench-security

Conclusion

• Many best practises do not differ from regular Linux hardening

• Head for defense in depth

• Follow the least privileges principle

• Only use trusted images

• It is not the question either VM or Docker – combine them

• Define the responsibilities for security – DevOps

• Done right, there's an additional layer of security

02.03.1814

References

02.03.1815

• Aaron Grattafiori, Understanding and Hardening Linux Containers, 2016

• Center for Internet Security, CIS Docker Community Edition Benchmark,

2017

• Docker Inc., Docker Security, 2017

• The Linux Foundation, Security Best Practices for Kubernetes

Deployment, 2016

• https://github.com/docker/docker-bench-security

