Secure ContainErisation

SLICE

Achim Eisele

Agenda

« Motivation

« Terminology

« Basic Architecture

* Docker Example App
* Threats

* Docker Security

Container
Container Engine
Host

Network

Secrets

 Conclusion

Motivation

« Application Containerisation found its way from playground to production

« Easy and reliable provisioning of applications in different environments
« application, libraries and (default) configuration are deployed as a whole
« allow afast and highly automated deployment routine

« 1&1 operates several environments

* e.g. CaaS - Container-as-a-Service (Hosting Product)
» First applications are deployed onto those platforms and more “traditional” ones to be

shifted onto the new platforms in the future

 Document and share security best practices

Terminology

Docker is a software technology providing operating-system-level virtualisation

+ Based on Kernel namespaces (2002) and cgroups (2008)
+ LXC, Solaris Zones, FreeBSD Jails existed prior to Docker, but Docker drives the containerisation

hype by ease of use.

« Kubernetes (OpenShift is built around) offers Container Orchestration

« OpenStack — Infrastructure-as-a-Service platform

« Animage is afile resp. a package, which contains everything to run an
application, such as libraries, default configuration and code.

« Acontainer is a runtime instance of image. It is isolated from the underlying host
environment and other containers on the same host.

* Images are generally stored at a central place called registry.

 Apod is a group of one ore more containers with shared storage, network and

configuration.

Basic Architecture

u ddy

Z ddy

T ddy

usq] U soiseno

¢ =qn ¢ SO 1senH

Isq T SQIseno

A

u ddy usqi

Z ddy Zsqn
T ddy T sqn

, _
|

lauleluon

Hypervisor

ContainerEngine

Host OS5

Host OS5

02.03.18

Docker Example WebApp

:$ cat Dockerfile

base image
FROM ubuntu:16.04

add apache
RUN apt-get update && apt-get install -y apache?

add basic web page
COPY index.html /var/www/html/index.html

do some configuration

ENV APACHE RUN USER www-data

ENV APACHE RUN GROUP www-data

ENV APACHE LOG DIR /var/log/apache2

listen on port 80
EXPOSE 80

run command on instantiation
CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

:$ docker build -t test/mywebpage

:$ docker run test/mywebpage

:$ curl http://192.168.122.2/

<html><head><title>Hallo World!</title></head><body /></html>

Threats

 Poisoned images

* Images might be tampered

« Outdated images might contain vulnerabilites.
« Container breakouts

« An attacker with access to a container might break out and control the host
« Denial-of-service attacks

« Container overconsuming resources
« Kernel exploits

* One shared kernel among all containers on same host
« Compromising secrets

« Secrets built into an image are not secret

Recommendations

 Down the stack
« Container
 Engine
* Host

« Depending on strived level of security
Must Have (M)
 Should Have (S)
« Can Have (S)

Docker Security — Container I/l

Base images must either be provided or created from trusted sources! (M)
Regularly inspect images against new, previously unknown

vulnerabilities! (M)

Regularly update your images and exchange appropriate containers (M)

Images shall only be loaded from Official Repositories! (S)

Disclaimer applies.

Enable Docker Content Trust! (S)

Drop root privileges as quickly as possible! (M)
Only use and create small (base) images! (S)
Reduce the number of layers to a minimum! (C)

Aim at one process per container only! (S)

Docker Security — Container I/l

« Treat your images as immutable and do not store files inside a
container (S)

 Ensure SSH is not run within containers! (M)

« Reduce the set of capabilities per container to the needed minimum! (C)

 Remove setuid and setgid flags off binaries unless needed! (C)

* Reduce the set of allowed syscalls! (C)

« Authenticate and authorise your clients! (M)

« Write logfiles to a central and tamper-proof log store under consideration
of the GDPR! (S)

Docker Security — Engine

« Only trusted users shall be allowed to control your Docker daemon! (M)

* Docker's REST API shall only be accessible from trusted networks for
authenticated and authorised users! (M)

« Make use of cgroups and define resource limits on container level! (S)

« Use appropriate measures to segregate containers with different data

classification! (S)

Docker Security — Host

« Use a minimal operating system installation! (M)

« Do not use a container host for other services! (M)

« Patch the container host regularly! (M)

« Make sure the procfs and sysfs filesystems are mounted read-only into
the container! (S)

* Introduce AppArmor or SELIinux! (C)

» Apply grsecurity kernel patches! (C)

Not for free anymore ®

Container Security — Network + Secrets

« Create and apply a firewall or ACL concept! (M)
« Ensure transport encryption over untrusted network segments! (M)
« Loadbalancer or reverse proxy shall be the only containers exposing a

port to the outside world! (S)

* Do not store sensitive data in an image! (M)

* Inject during instantiation

« Manage your secrets in a secure manner! (M)

[INFO] 2
[WARN] 2.

Docker daemon configuration

= Ensure network traffic is restricted between containers on the default bridge
Ensure the logging level is set to 'info'

Ensure Docker is allowed to make changes to iptables

Ensure insecure registries are not used

Crrmiimm =iiFer ecdacacss dedsime A0 aad doead

o BB R
nf e = |
[|

Conclusion

« Many best practises do not differ from regular Linux hardening
« Head for defense in depth

« Follow the least privileges principle

* Only use trusted images

« Itis not the question either VM or Docker — combine them

« Define the responsibilities for security — DevOps

« Done right, there's an additional layer of security

References

« Aaron Grattafiori, Understanding and Hardening Linux Containers, 2016

» Center for Internet Security, CIS Docker Community Edition Benchmark,
2017

* Docker Inc., Docker Security, 2017

 The Linux Foundation, Security Best Practices for Kubernetes
Deployment, 2016

 https://github.com/docker/docker-bench-security

15 02.03.18

