
© 2012

Presented by:

Screw You and the Script You Rode in On

Charles Henderson
Director, Application Security Services

chenderson@trustwave.com

David Byrne
Managing Consultant

dbyrne@trustwave.com

© 2012

Introductions

Charles Henderson

Director, Application Security Services

David Byrne

Managing Consultant

© 2012

Agenda

•  The Problem

•  Current Solutions

•  Our Solution

•  Examples

© 2012

The Problem: Automated website access…

•  Search engine bots

•  Vulnerability scanners

•  Spam-bots (pills & porn)

•  DDoS attacks

•  Miscellaneous crawlers

© 2012

The Problem: Automated website access…

•  Search engine bots

•  Vulnerability scanners

•  Spam-bots (pills & porn)

•  DDoS attacks

•  Miscellaneous crawlers

© 2012

Common Solutions

•  Web Application Firewalls
–  Pro:

•  Do a good job of filtering out automated
vulnerability scanners

–  Cons:
•  Aren’t well suited for identifying non-attacks
•  DDoS attacks will almost always be missed

© 2012

Common Solutions

•  Request Throttling
–  Pros

•  Effective at stopping aggressive crawlers
–  Cons

•  Likely to block aggregated traffic (proxy servers or
NAT)
•  Or, aggressive crawling can be passed off as

aggregated traffic using forged HTTP headers

© 2012

Common Solutions

•  CAPTCHA
–  Pros:

•  Good protection against simple spam-bots
•  Really hard ones can’t be solved by even advanced scripts

–  Cons:
•  Really hard ones can’t be solved by even humans
•  Easy ones can be solved by scripts
•  Everyone hates them
•  You can only use them on key components

© 2012

CAPTCHA Scope Limitations

•  Generally only used on key operations:
–  Account creation
–  Auction bids
–  Comment posts

© 2012

CAPTCHA Solving

•  OWASP AppSec DC 2012, Gursev Singh Kalra
released TesserCap

•  Nice automation to solve common CAPTCHA
formats using Tesseract

•  Accommodations to users introduce weaknesses

© 2012

reCAPTCHA

© 2012

Uncommon Solutions

•  Honeypot tags (injecting hidden content that only
an automated tool would request)

•  Pros:
–  Theoretically, very sound. Avoiding it requires extensive

client-side DOM modeling to identify which components
are visible. Files like robots.txt must be avoided, etc.

•  Cons:
–  Must be implemented before the problem occurs
–  Many organizations are currently reluctant to

implement

© 2012

Uncommon Solutions

•  Honeypot tags (con’t)

•  Cons:
–  Only blocks complete crawlers – a price crawler won’t

request hidden links

© 2012

Our Motivation

•  Client’s repeated problems with aggressive
crawling

•  First time was easy to spot

•  Second time was a little harder…

•  Third time was a huge pain

© 2012

Our Solution:

•  Voigt-Kampff

•  Offline log analysis

•  Entirely passive

•  Designed with the goal to grow into a real-time
traffic analysis engine

© 2012

Voigt-Kampff

•  Java-based

•  High-performance
–  Designed for multi-core/CPU, high-RAM computers
–  Separate threads for file reading, parsing, analysis
–  Uses java.nio.channels.FileChannel for file reading
–  Regular expressions rarely used, only after initial

simpler pattern matching
–  Uses H2 database – easy switching between in-memory

and on-disk storage
–  Custom string cache engine (truncated MD5)

© 2012

Voigt-Kampff

•  High-performance (con’t)
–  All behavioral pattern analysis done against “long” data

type
–  Javolution collections
–  Log file parsing with modified OpenCSV

© 2012

Voigt-Kampff Techniques

•  Confidence score-based

•  Per IP-address analysis

•  Attempts to categorize as:

 –  Search engine
–  Scripting tool
–  Spider
–  Security scanner
–  Unknown automated

–  Link checker
–  Validator
–  Web library
–  Human

© 2012

Voigt-Kampff Techniques

•  Static analysis
–  Performed against every log entry
–  Typically simpler tests
–  Is started while logs still being read

•  Dynamic analysis
–  Pattern creation

•  Baseline of “normal” behavior (only works if most behavior is
human)

–  Pattern comparison
•  Checks for deviations from normal baselines

© 2012

Voigt-Kampff Techniques

•  Simplest detection with known user agent strings
–  LWP: libwww-perl/5.821
–  Curl: curl/7.9.8 (i686-pc-linux-gnu) libcurl 7.9.8

(OpenSSL 0.9.6b) (ipv6 enabled)
–  Google images: Googlebot-Image/1.0
–  Java: Java/1.6.0_26
–  Nikto: Mozilla/4.75 (Nikto/2.1.2)

•  Implemented as static test

© 2012

Voigt-Kampff Techniques

•  Multiple categories of known user agents
–  Link checkers
–  Security scanners
–  Validators
–  Web libraries
–  Search engines

© 2012

Voigt-Kampff Techniques

•  Other simple tests, all implemented as static tests
–  Requests for robots.txt
–  Requests for sitemap.xml
–  Unknown / unique user agents

© 2012

Voigt-Kampff Techniques

•  Anomalous response code rates…

•  Baseline:
–  200 – 80%
–  304 – 10%
–  302 – 8%
–  404 – 2%

•  Anomaly:
–  200 – 50%
–  404 – 40%
–  500 – 10%

© 2012

Voigt-Kampff Techniques

•  Anomalous file not founds (depends on real 404
codes)…
–  3032 -- /scripts/tracking.js
–  4268 -- /images/spacer.gif
–  1 -- /admin.aspx
–  4729 -- /css/tables.css

© 2012

Voigt-Kampff Techniques

•  Anomalous file not founds (depends on real 404
codes)…
–  3032 -- /scripts/tracking.js
–  4268 -- /images/spacer.gif
–  1 -- /admin.aspx <--------
–  4729 -- /css/tables.css

© 2012

Voigt-Kampff Techniques

•  Application entry point (no referer header, or
external referer header)

•  Most applications will have a relatively small
number of entry points
–  Main page
–  Key Google results
–  Login pages
–  Popular bookmarks

© 2012

Voigt-Kampff Techniques

•  Dependency requests: JavaScript, style sheets,
images, etc.

•  Automated tools may not request dependencies
they don’t use (especially large files)

•  Passive dependency mapping isn’t easy. Based on
referer headers in proximity to original request.

•  Requires ALL logs from a web site

© 2012

Voigt-Kampff Techniques

•  Multiple user agents per IP over small time

•  Could be aggregated traffic (NAT or proxy)

•  Could be automated tool trying to mask its
signature

•  Low confidence level

© 2012

Voigt-Kampff Techniques

•  Average request rate (requests per IP over a one
minute period)

•  Could be aggregated traffic (NAT or proxy)

•  Low confidence level

© 2012

Voigt-Kampff Techniques

•  Request delays

•  Standard deviation for delay between requests for
an IP address

•  If a client is very consistent in how frequently it
sends requests, that is very suspicious

© 2012

Voigt-Kampff Techniques

•  Navigational patterns

© 2012

Voigt-Kampff Techniques

•  Navigational patterns

© 2012

Voigt-Kampff CLI
usage: voigtkampff [options] <filename>
 -v,--verbose Increase verbose output. Can be used multiple
 times.
 -r,--recursive Use <logfile> as a directory and recursively search
 for all log files
 -f,--file <filename> additional log file(s) to parse, can be used multiple
 times
 -o,--format <format string> A W3C or format string defining the columns. For
 example, -o "%h %l %u %t \"%r\" %>s %b \"%{Referer}i
 \"\%{User-agent}i\"" or -o "date time c-ip
 cs-username s-ip s-port cs-method cs-uri-stem
 cs-uri-query sc-status cs(User-Agent)"
 If this is ommited, voigtkampff will look for a file
 header, then try to guess the format.
 -D,--skip-dependencies Do NOT perform dependency request analysis. This is
 useful if you are missing log files from a load
 balanced website.
 -m,--all-memory Keep all databases in memory for faster performance.
 -r,--report <filename> Report file name. Defaults to report.html

© 2012

Voigt-Kampff CLI
 ./voigtkampff -v –v -m ex20120320.log

345 [main] INFO root -
Lines read: 0
Requests parsed: 0
Parsing queue: 0
Static tests: 0

5354 [main] INFO root -
Lines read: 399,960
Requests parsed: 199,722
Parsing queue: 200,495
Static tests: 0

6385 [Static testing thread 0] INFO root - Flushing string cache with 23184
records
10354 [main] INFO root -
Lines read: 562,267
Requests parsed: 382,584
Parsing queue: 167,704
Static tests: 10,799

© 2012

Voigt-Kampff CLI
991071 [Log parsing thread 1] INFO root - Exiting after 28735316 jobs on Log
parsing thread 1
991071 [Log parsing thread 2] INFO root - Exiting after 28735316 jobs on Log
parsing thread 2
991071 [Log parsing thread 0] INFO root - Exiting after 28735316 jobs on Log
parsing thread 0

© 2012

Voigt-Kampff CLI
===================================
IP Address - 28.481.381.45
Total score - 100
Possible profiles -
===================================

The user-agent string matches a known scanner: Mozilla/4.75 (Nikto/2.1.2)

===================================
IP Address - 132.278.184.28
Total score - 78
Possible profiles - Unknown automated tool
===================================

The IP had an unusually high number of 404 response codes from the server. 11.31%
of the IP's responses were this code, while most clients averaged 1.02%
The IP had an unusually high number of 500 response codes from the server. 5.2% of
the IP's responses were this code, while most clients averaged 0.29%

© 2012

Voigt-Kampff Release

•  Not today L

•  As soon as Trustwave Legal approves it on our
return

© 2012 © 2012

Questions or Ideas?

© 2012

Survey

https://www.surveymonkey.com/s/
Research12_Byrne_Henderson

