
The OWASP Foundation
http://www.owasp.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

OWASP
AppSec APAC 2013

Web Security
 –

New Browser Security Technologies

Tobias Gondrom
OWASP London

OWASP Global Industry Committee

Chair of IETF Web Security WG

tobias.gondrom@gondrom.org

Tobias Gondrom
• 12 years information security experience

(Global Head of Security, CISO, CTO)

• 10 years application development experience

• Information Security & Risk Management,
CISO Research and Advisory,
Managing Director, Thames Stanley Ltd.

• Author of Standards on Digital Signatures and
Secure Archiving

• Chair of IETF Web Security Working Group
http://datatracker.ietf.org/wg/websec/charter/
Member of the IETF Security Directorate

• Invited expert at W3C WebAppSec WG

• London OWASP chapter board member
OWASP Global Industry Committee
www.owasp.org

http://datatracker.ietf.org/wg/websec/charter/

3

Web Security – New Browser
Security Technologies

 • Past Attacks/Breaches

• Insufficient Transport Layer Protection

• Solutions

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• New Protection against XSS and Clickjacking

• X-Frame-Options and CSP

• When

4

Web Security – New Browser
Security Technologies

 • Past Attacks/Breaches

• Insufficient Transport Layer Protection

• Solutions

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• New Protection against XSS and Clickjacking

• X-Frame-Options and CSP

• When

The Past: CA breaches
March 15th 2011: Comodo breach

• Nine fake certificates for seven domains
were issued: mail.google.com,
login.live.com, www.google.com,
login.yahoo.com (three certificates),
login.skype.com, addons.mozilla.org,
and global trustee

• Hacked several times afterwards

5

The Past: CA breaches
June (?) 2011: DigiNotar breach

• Discovered on June 19th

• July 10, 2011: wildcard cert issued for Google, subsequently used by
unknown persons in Iran to conduct a man-in-the-middle attack against
Google services

• August 28, 2011, certificate problems were observed on multiple Internet
service providers in Iran

• Tor Project has published extensive updates on the scope of the attack,
including a list of 531 fraudulent certificates issued by DigiNotar

6

The Past: CA breaches
June (?) 2011: DigiNotar breach

• All browser vendors remove trust of DigiNotar swiftly, e.g. August 30,
2011: Mozilla removed DigiNotar certificates from their list of trusted CAs
(via patches etc.)

• September 20, 2011 – DigiNotar filed for bankruptcy

• Remark: Google Chrome users were protected from this attack because
Chrome was able to detect the fraudulent certificate due to pinning.

• Statements have appeared that the DigiNotar attacker is the same
person who attacked Comodo earlier

• The attacker claims to be an individual Iranian who has chosen to help
the government monitor individuals' communications. Additionally, he
claims to have compromised four additional as-yet-unspecified certificate
authorities.

7

MITMA - TLS attack

OWASP

Attacker replaced Server

cert with own compromised

cert and could read all

communication (incl.

passwords) in the clear

TLS TLS

The situation
• Browsers trust CA certificates for all domains

equally (any trusted CA can sign for any
identity, true or fake, e.g. google.com,
paypal.com, …)

• hundreds of CAs

• From 46 countries/jurisdictions

• If a single one is broken, all TLS/SSL
domains are prone to attacks

9

From EFF: SSL Observatory

• 1,482 CA Certificates trustable by
Windows or Firefox

• 1,167 distinct issuer strings

• 651 organizations, but ownerships &
jurisdictions overlap

• (If a CA can sign for one domain, it can
sign for any domain.)

10

11

Web Security – New Browser
Security Technologies

 • Past Attacks/Breaches

• Insufficient Transport Layer Protection

• Solutions

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• New Protection against XSS and Clickjacking

• X-Frame-Options and CSP

• When

OWASP Top 10 – Insufficient
Transport Layer Protection

What’s the problem
- Some are not using / not mandating TLS/SSL

- Relies on trust relationships (trust on first use
/ trusted source)

- Weak channel protection

- Authentication & leakage of credentials

=> Today, Web Applications try to fix this on
the Application level with little support of the
underlying infrastructure

13

A9 – Insufficient Transport Layer Protection

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data is sent
• On the web, to backend databases, to business partners, internal communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident

• Business gets sued and/or fined

Typical Impact

Still not using SSL?

15

Now:

Redirect to https

before login

OWASP

Insufficient Transport Layer Protection

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1
External

attacker steals

credentials and

data off

network

2
Internal attacker

steals credentials

and data from

internal network

Internal Attacker
16

OWASP

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

Common attack vectors

17

Attacks

SSL
downgrading

Use of fake
SSL certs

SSL stripping

Moxie’s SSL Strip

Terminates

SSL

Changes

https to http

Normal

https to the

server

Acts as

client

http https

MitM user Data centre

18

OWASP

Moxie’s SSL Strip

Secure cookie?

Encoding, gzip?

Cached content?

Sessions?

Strip the secure attribute off all cookies.

Strip all encodings in the request.

Strip all if-modified-since in the request.

Redirect to same page, set-cookie expired

http https

MitM user Data centre

19

OWASP

SSL dowgrading

OWASP

start https

https with weak encryption

MitM user Data centre

Respond:

only speak https with

weak encryption

start https with weak encryption

listen

20

A9 – Avoiding Insufficient Transport Layer
Protection

Use the mechanisms correctly

• Use TLS on all connections with sensitive data

• Use standard strong algorithms (disable old SSL algorithms)

• Manage keys/certificates properly

• Verify SSL certificates before using them

• Use proven mechanisms when sufficient

• E.g., SSL vs. XML-Encryption

See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat
_Sheet for more details

21

OWASP

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

22

Web Security – New Browser
Security Technologies

 • Past Attacks/Breaches

• Insufficient Transport Layer Protection

• Solutions

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• New Protection against XSS and Clickjacking

• X-Frame-Options and CSP

• When

Who – Introducing the Players

• OWASP

• Top Ten

• Browser Security Day at OWASP Summit

• IETF

• Web Security WG

• Browser Vendors

• Secure Web-sites of critical information and
payment systems (e.g. paypal, google, ebay, …)

• Security Researchers and Plug-in developers for
browsers

23

What’s been done / what’s coming

• Secure the Channel:

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• TLS cert pinning in DNSSEC

24

HSTS - Secure Channels: Strict Transport
Security

• Server declares “I only talk TLS”

• Example:
HTTP(S) Response Header:
Strict-Transport-Security: max-age=15768000;

includeSubDomains

• Header can be cached and also prevents leakage via
subdomain-content through non-TLS links in content

• Weakness: “Trust on first use”

• Possible pre-loaded HSTS in browsers

• Already first deployments
25

Cert Pinning (1)
draft-ietf-websec-key-pinning-01

• Server identities tend to be long-lived, but
clients have to re-establish the server's identity
on every TLS session.

• How could Google/Chrome be resilient to
DigiNotar attack?

• Google built-in in Chrome "preloaded"
fingerprints for the known public keys in the
certificate chains of Google properties.
Thereby exposed the false *.google.com
certificate DigiNotar signed.

26

Cert Pinning (2)
But….

…..preloading does not scale, so we need
something dynamic:

=> Could use an HTTP header

i.e. transmit the SHA1 or SHA256 hash of
the Subject Public Key Info structure of
the X.509 certificate. (You could pin to
end entity, intermediary, root. Select
your degree of precision.)

27

Cert Pinning - Syntax

Header add Public-Key-Pins "max-

age=10000; pin-

sha1=\"ObT42aoSpAqWdY9WfRfL7i0H

sVk=\"; pin-

sha1=\"hvfkN/qlp/zhXR3cuerq6jd2Z7g=\

"“

28

Cert Pinning - parameters

• List at least 2 certs: 1 live pin (a hash of an SPKI in
the current cert chain) and at least one backup pin
(a hash of an SPKI not in the current cert chain).

• Clients remember the most recently seen set of pins
for max-age seconds after it was most recently
seen.

• Clients drop TLS connections if not using the listed
certs.

29

Cert Pinning – possible problems
Possible Problems:

• Bootstrap – “trust on first use”

• Pre-loaded browser

• Servers might accidently "brick" themselves (pin for
a long time to an SPKI which is later lost, for
example) – reason why backup cert is mandatory

• Attackers with ISP capabilities / man-in-the-middle
access may try to “brick” domains for users even
when outside of their reach (imagine: Iranian
travelling abroad and no longer able to access
Google, etc.)

• Recovery / cache flush mechanisms
30

Other Methods:
Secure Channels: DNSSEC for TLS

• DNSSEC can be used to declare
supported protocols for domains

• DNSSEC can be used to declare server
certificate for domain

• Advantage: Advantage of trusted signed
source

• Disadvantage: long time to deploy
31

32

Web Security – New Browser
Security Technologies

 • Past Attacks/Breaches

• Insufficient Transport Layer Protection

• Solutions

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• New Protection against XSS and Clickjacking

• X-Frame-Options and CSP

• When

New Protection against XSS and Clickjacking
X-Frame-Options and CSP

 Common Threats from XSS and Clickjacking:

• Bootstrap – “trust on first use”

• Recovery / cache flush mechanisms

33

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user’s browser

Occurs any time…

• Stored in database

• Reflected from web input (form field, hidden field, URL, etc…)

• Sent directly into rich JavaScript client

Raw data…

• Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

• Steal user’s session, steal sensitive data, rewrite web page, redirect user
to phishing or malware site

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

Typical Impact

Cross-Site Scripting Illustrated

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores

the data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with

full access to the DOM

and cookies

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti
o

n

T
ra

n
s
a

c
ti
o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

 M
g

m
t

E
-C

o
m

m
e

rc
e

B
u

s
.
F

u
n

c
ti
o

n
s

A2 – Avoiding XSS Flaws
Recommendations

• Eliminate Flaw

• Don’t include user supplied input in the output page

• Defend Against the Flaw

• Primary Recommendation: Output encode all user supplied input (Use OWASP’s ESAPI to
output encode:

 http://www.owasp.org/index.php/ESAPI

• Perform ‘white list’ input validation on all user input to be included in page

• For large chunks of user supplied HTML, use OWASP’s AntiSamy to sanitize this HTML to
make it safe

 See: http://www.owasp.org/index.php/AntiSamy

• Use Content Security Policy!

References: For how to output encode properly, read the new
http://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Safe Escaping Schemes in Various HTML Execution Contexts

HTML Style Property
Values

(e.g., .pdiv a:hover {color: red; text-

decoration: underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256  \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256  \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ")  &entity; (', /)  &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256  &#xHH

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256  %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

for more details

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

New Protection against XSS and Clickjacking
X-Frame-Options and CSP

 • "Content-Security-Policy:" 1#policy

• "Content-Security-Policy-Report-Only:"

1#policy

directive-name = "default-src"

directive-value = source-list

Example:

Content-Security-Policy: default-src 'self';

script-src example.com

38

New Protection against XSS and Clickjacking
X-Frame-Options and CSP

 script-src

object-src

style-src

img-src

39

media-src

frame-src

font-src

connect-src

Frame-Options - History
X-Frame-Options widely deployed/used to prevent

Click-jacking

• Running code and (some) consensus by
implementers in using X-FRAME-OPTIONS

HTTP-Header:

• DENY: cannot be displayed in a frame,
regardless of the site attempting to do so.

• SAMEORIGIN: can only be displayed if the
top-frame is of the same “origin” as the page
itself.

Frame-Options –
Example Use-Cases

A.1. Shop

• An Internet Marketplace/Shop link/button to "Buy
this" Gadget, wants their affiliates to be able to
stick the "Buy such-and-such from XYZ" IFRAMES
into their pages.

A.2. Confirm Purchase Page

• Onlineshop "Confirm purchase" anti-Click-Jacking
page. The Confirm Purchase page must be shown
to the end user without possibility of overlay or
misuse by an attacker.

Frame-Options
In EBNF:

Frame-Options = "Frame-Options" ":"

"DENY"/ "SAMEORIGIN" / ("ALLOW-FROM"

":“URI)

• DENY: The page cannot be displayed in a frame,
regardless of the site attempting to do so.

• SAMEORIGIN: can only be displayed in a frame on
the same origin as the page itself.

• ALLOW-FROM: can only be displayed in a frame on
the specified origin

Protection against Clickjacking
with Frame-Options in CSP1.1

directive-name = "frame-options"

directive-value = 'deny' / 'self' ['top-only']

/ 1*1<host-source> ['self'] / 1*1<host-

source> 'top-only'

43

44

Web Security – New Browser
Security Technologies

 • Past Attacks/Breaches

• Insufficient Transport Layer Protection

• Solutions

• HSTS - HTTP Strict Transport Security

• Cert Pinning

• New Protection against XSS and Clickjacking

• X-Frame-Options and CSP

• When

When - Timeframes

HSTS Strict Transport Security – now

Cert Pinning Q2 2013

TLS in DNSSEC – 201?

X-Frame-Options – now (will be informational RFC in Q2 2013)

CSP 1.0 – now - published as a W3C Candidate Recommendation. – Q4 2012

CSP 1.1 – Q? 2013

45

Join the discussion
Ideas / feedback / participation welcome

IETF Websec:
http://tools.ietf.org/wg/websec/charters

W3C WebAppSec:

 http://www.w3.org/2011/webappsec/

Or drop me an email:
tobias.gondrom@gondrom.org

46

http://tools.ietf.org/wg/websec/charters
http://tools.ietf.org/wg/websec/charters
http://www.w3.org/2011/webappsec/
http://www.w3.org/2011/webappsec/
http://www.w3.org/2011/webappsec/
mailto:tobias.gondrom@gondrom.org

47

Questions?

Thank you

