OWASP
AppSec APAC 2013

"4

3 -
/
/ 4 %

-
|

Web Security

New Browser Security Technologies

Tobias Gondrom

OWASP London
OWASP Global Industry Committee
Chair of IETF Web Security WG

tobias.gondrom@gondrom.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

Tobias Gondrom

12 years information security experience
(Global Head of Security, CISO, CTO)

10 years application development experience

Information Security & Risk Management,
CISO Research and Advisory,
Managing Director, Thames Stanley Ltd.

Author of Standards on Digital Signatures and
Secure Archiving

Chair of IETF Web Security Working Group
http://datatracker.ietf.org/wg/websec/charter/
Member of the IETF Security Directorate

Invited expert at W3C WebAppSec WG

London OWASP chapter board member
OWASP Global Industry Committee
WWW.0Wasp.org

http://datatracker.ietf.org/wg/websec/charter/

* Web Security — New Browser

Security Technologies
o Past Attacks/Breaches

e Insufficient Transport Layer Protection
® Solutions
e HSTS - HTTP Strict Transport Security
e (Cert Pinning
e New Protection against XSS and Clickjacking
e X-Frame-Options and CSP

e When
I —

Web Security — New Browser
Security Technologies

[o Past Attacks/Breaches J

e Insufficient Transport Layer Protection
® Solutions
e HSTS - HTTP Strict Transport Security
e (Cert Pinning
e New Protection against XSS and Clickjacking
e X-Frame-Options and CSP

e When
4

The Past: CA breaches
March 15t 2011: Comodo breach

* Nine fake certificates for seven domains
were issued: mail.google.com,
login.live.com, www.google.com,
login.yahoo.com (three certificates),

login.skype.com, addons.mozilla.org,
and global trustee

* Hacked several times afterwards

The Past: CA breaches
June (?) 2011: DigiNotar breach

Discovered on June 19th

July 10, 2011: wildcard cert issued for Google, subsequently used by
unknown persons in Iran to conduct a man-in-the-middle attack against

Google services

August 28, 2011, certificate problems were observed on multiple Internet
service providers in Iran

Tor Project has published extensive updates on the scope of the attack,
including a list of 531 fraudulent certificates issued by DigiNotar

The Past: CA breaches
June (?) 2011: DigiNotar breach

All browser vendors remove trust of DigiNotar swiftly, e.g. August 30,
2011: Mozilla removed DigiNotar certificates from their list of trusted CAs
(via patches etc.)

September 20, 2011 — DigiNotar filed for bankruptcy

Remark: Google Chrome users were protected from this attack because
Chrome was able to detect the fraudulent certificate due to pinning.

Statements have appeared that the DigiNotar attacker is the same
person who attacked Comodo earlier

The attacker claims to be an individual Iranian who has chosen to help
the government monitor individuals' communications. Additionally, he
claims to have compromised four additional as-yet-unspecified certificate
authorities.

; ™
r .
-41
1
—

MITMA - TLS attack

TLS

Attacker replaced Server

cert with own compromised
cert and could read all
communication (incl.
passwords) in the clear

The situation

* Browsers trust CA certificates for all domains
equally (any trusted CA can sign for any
identity, true or fake, e.g. google.com,
paypal.com, ...)

* hundreds of CAs

* From 46 countries/jurisdictions

* If a single one is broken, all TLS/SSL

domains are prone to attacks
9

RN
- v
» d ‘,;:

/ I

From EFF: SSL Observatory

* 1,482 CA Certificates trustable by
Windows or Firefox

* 1,167 distinct issuer strings

* 651 organizations, but ownerships &
jurisdictions overlap

* (If a CA can sign for one domain, it can
sign for any domain.)

"~ Web Security — New Browser

Security Technologies
o Past Attacks/Breaches

[¢ Insufficient Transport Layer Protection J

® Solutions
e HSTS - HTTP Strict Transport Security
e (Cert Pinning
e New Protection against XSS and Clickjacking
e X-Frame-Options and CSP

e When
T

OWASP Top 10 — Insufficient
Transport Layer Protection

A3: Broken
A2: Cross-Site Authentication
Scripting (XSS) and Session

Management

A4 Insecure
Direct Object
References

Al: Injection

A7: Failure to A8: Insecure
Restrict URL Cryptographic
Access Storage

A5: Cross Site
Request Forgery
(CSRF)

AG6: Security
Misconfiguration

A9: Insufficient A10: Unvalidated
Transport Layer Redirects and
Protection Forwards

What's the problem

- Some are not using / not mandating TLS/SSL

- Relies on trust relationships (trust on first use
/ trusted source)

- Weak channel protection
- Authentication & leakage of credentials

=> Today, Web Applications try to fix this on
the Application level with little support of the
underlying infrastructure

A9 — Insufficient Transport Layer Protection

Transmitting sensitive data insecurely

e Failure to identify all sensitive data
e Failure to identify all the places that this sensitive data is sent

e On the web, to backend databases, to business partners, internal communications
e Failure to properly protect this data in every location

Typical Impact

e Attackers access or modify confidential or private information
e e.g, credit cards, health care records, financial data (yours or your customers)
o Attackers extract secrets to use in additional attacks
e Company embarrassment, customer dissatisfaction, and loss of trust
e Expense of cleaning up the incident
e Business gets sued and/or fined

Still not using SSL?

Now:

—lﬂ MO l Mozilla Firefox 3
kol coeue 11) (0} '
Lllinm JICIE] Redirect to https

\

‘ eric+google@codebutler.com

'.l Coogle
™ lan Gallagher
¥ Facebook

| neg9
‘ Twitter

74 cdine
| % Flickr

before login

] News Feed

lan Gallagher
Edit My Profile

4

] News Feed
(57 Messages

What's on your mind?

Firesheep downloaden

Firesheep is een gratis add-on voor de Firefox webbrowser waarmee iedereen
een niet-versleuteld Wifi-netwerk kan scannen en wachtwoorden kan
onderscheppen van andere gebruikers op dat netwerk.

Na installatie van Firesheep verschijnt er in de Firefox browser een nieuwe
indeed. sidebar. Nadat u een connectie heeft gemaakt met een onbeveiligd netwerk klikt u op de knop

Ashley Winter:
realized i really
for some fake r

Events 1
& Friends

L1 Create Group...

"Start Capturing". Wanneer andere personen die verbonden zijn met dit netwerk inloggen op
@ % roxyProxy:D

isabled een website waarmee Firesheep bekend is worden de naam en foto van die gebruikers in de

sidebar weergegeven. Wanneer u dubbelklikt op een persoon logt u in als die gebruiker op
bijvoorbeeld Facebook, Twitter of Flickr.

Met het openbaar maken van deze software wil de ontwikkelaar, Eric Butler, de aandacht
vestigen op de gevaren van niet-versleutelde websites.

Morzilla, de ontwikkelaar van Firefox, heeft aangegeven de Firesheep add-on niet te zullen
blokkeren.

Firesheep heeft de volgende kenmerken:

e » gratis Firefox add-on

e _ gebruikersnamen en wachtwoorden onderscheppen van andere gebruikers op een
openbaar Wifi netwerk

e _ werkt voor onder andere accounts op Facebook, Twitter, Google, Flickr, Amazon en
Bit.ly

e > open source
beschikbaar voor Windows en Mac

OWASP @

Insufficient Transport Layer Protection

ol
&

Business Partner:

Backend Systems |

|

b
o
hith.

@ Employees
|

nternal attacker
steals credentials
data off and data from
network iInternal network

External Attacker Internal Attacker owAsP ©

@ External

attacker steals
credentials and

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

Common attack vectors

Use of fake

SSL stripping . A e a—|

Q

Moxie's SSL Strip

https

Data centre

Normal
https to the
server

Acts as
client

OWASP @

:
MitM Data centre

Strip the secure attribute off all cookies.

Strip all encodings in the request.

Strip all if-modified-since In the requesit.

Redirect to same page, set-cookie expired
OWASP @)

SSL dowgradlng

=TT
-t T
[| -

start https
_
Respond: [&ii
only speak https with
weak encryption

MitM

listen

Data centre

start https with weak encryption

https with weak encryption

b - o
=
i B

A9 —

Avoiding Insufficient Transport Layer
Protection

Use the mechanisms correctly

Use TLS on all connections with sensitive data

Use standard strong algorithms (disable old SSL algorithms)
Manage keys/certificates properly

Verify SSL certificates before using them

Use proven mechanisms when sufficient

e E.g., SSL vs. XML-Encryption

See: http://www.owasp.org/index.php/Transport_Layer Protection Cheat

Sheet for more details

OWASP @

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

* Web Security — New Browser

Security Technologies
o Past Attacks/Breaches

e Insufficient Transport Layer Protection

-

-

® Solutions
e HSTS - HTTP Strict Transport Security

® (Cert Pinning

e New Protection against XSS and Clickjacking
e X-Frame-Options and CSP
e \When

Who — Introducing the Players

* OWASP

* Top Ten

* Browser Security Day at OWASP Summit
e IETF

* Web Security WG

* Browser Vendors

e Secure Web-sites of critical information and
payment systems (e.g. paypal, google, ebay, ...)

* Security Researchers and Plug-in developers for
browsers

What's been done / what’s coming

* Secure the Channel:
e HSTS - HTTP Strict Transport Security
* Cert Pinning
* TLS cert pinning in DNSSEC

HSTS - Secure Channels: Strict Transport
Security

* Server declares "I only talk TLS”

* Example:
HTTP(S) Response Header:
Strict-Transport-Security: max-age=15768000;
iIncludeSubDomains

* Header can be cached and also prevents leakage via
subdomain-content through non-TLS links in content

e \Weakness: “Trust on first use”

* Possible pre-loaded HSTS in browsers

. AIread; first deﬁloxments

Cert Pinning (1)

draft-ietf-websec-key-pinning-01

* Server identities tend to be long-lived, but
clients have to re-establish the server's identity
on every TLS session.

* How could Google/Chrome be resilient to
DigiNotar attack?

* Google built-in in Chrome "preloaded”
fingerprints for the known public keys in the
certificate chains of Google properties.
Thereby exposed the false *.google.com
certificate DigiNotar signed.

Cert Pinning (2)

But....

..... preloading does not scale, so we need
something dynamic:

=> Could use an HTTP header

i.e. transmit the SHA1 or SHA256 hash of
the Subject Public Key Info structure of
the X.509 certificate. (You could pin to
end entity, intermediary, root. Select
your degree of precision.)

Cert Pinning - Syntax

Header add Public-Key-Pins "max-
age=10000; pin-
shal=\"ObT42ao0SpAgWdYOWIRfL7I10H
sVk=\"; pin-
shal=\"hvfkN/qglp/zhXR3cuerq6jd2Z/g=\

i

Cert Pinning - parameters

List at least 2 certs: 1 live pin (a hash of an SPKI in

the current cert

nain) and at least one backup pin

(a hash of an SPKI not in the current cert chain).

Clients remember the most recently seen set of pins
for max-age seconds after it was most recently

Seen.

Clients drop TLS connections if not using the listed
certs.

Cert Pinning — possible problems

Possible Problems:

* Bootstrap — “trust on first use”
* Pre-loaded browser

* Servers might accidently "brick" themselves (pin for
a long time to an SPKI which is later lost, for
example) — reason why backup cert is mandatory

* Attackers with ISP capabilities / man-in-the-middle
access may try to “brick” domains for users even
when outside of their reach (imagine: Iranian
travelling abroad and no longer able to access
Google, etc.)

* Recovery / cache flush mechanisms

Other Methods:

Secure Channels: DNSSEC for TLS

* DNSSEC can be used to declare
supported protocols for domains

* DNSSEC can be used to declare server
certificate for domain

* Advantage: Advantage of trusted signed
source

* Disadvantage: long time to deploy
3]

"~ Web Security — New Browser

Security Technologies
o Past Attacks/Breaches

e Insufficient Transport Layer Protection
e Solutions
e HSTS - HTTP Strict Transport Security

e (Cert Pinning

e New Protection against XSS and Clickjacking

e X-Frame-Options and CSP

e When
3

_ J

3) (o)
; b
= J

g - -)‘ 3

= . I

New Protection against XSS and Clickjacking
X-Frame-Options and CSP

Common Threats from XSS and Clickjacking:

* Bootstrap — “trust on first use”

* Recovery / cache flush mechanisms

:\.’;-\- . b 3
- 3 'A/

2 — Cross-Site Scripting (XSS)

Occurs any time...

e Raw data from attacker is sent to an innocent user’s browser

Raw data...

e Stored in database
o Reflected from web input (form field, hidden field, URL, etc...)
e Sent directly into rich JavaScript client

Virtually every web application has this problem

e Try this in your browser — javascript:alert(document.cookie)

Typical Impact

e Steal user’s session, steal sensitive data, rewrite web page, redirect user
to phishing or malware site

e Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

Cross-Site Scripting Illustrated

Attacker sets the trap — update my profile

Application with
stored XSS

Attacker enters a vulnerability
malicious script into a
web page that stores
the data on the server —

Accounts
Administration
Transactions
E-Commerce
Bus. Functions

Vlctlm V|ews page — sees attacker profil

Communication
Knowledge Magmt

Custom Code

Script runs inside
victim’s browser with
full access to the DOM

B and cookies p—

Script silently sends attacker Victim’s session cookie

A2 — Avoiding XSS Flaws

Recommendations

e Eliminate Flaw
e Don't include user supplied input in the output page
e Defend Against the Flaw

¢ Primary Recommendation: Output encode all user supplied input (Use OWASP’s ESAPI to
output encode:

http://www.owasp.org/index.php/ESAPI

e Perform ‘white list” input validation on all user input to be included in page

e For large chunks of user supplied HTML, use OWASP’s AntiSamy to sanitize this HTML to
make it safe

See: http://www.owasp.org/index.php/AntiSamy

e Use Content Security Policy!

References: For how to output encode properly, read the new
http://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/AntiSamy
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Safe Escaping Schemes in Various HTML Execution Contexts

'é Blank Page - Windows Internet Explorer

ol E) S

) e aboutblank v ‘ s X

/\
—s N\

HTML Element Content

(e.g., <div> some text to display </div>)

47 @ Blank Page v B - ® v rpagev O

HTML Attribute Values

(e.g., <input name='person' type="TEXT'
value='defaultValue'>)

JavaScript Data

(e.g., <script> some javascript </script>)

Values
(e.g., .pdiv a:hover {color: red; text-

— HTML Style Property

5 -

Tools »

decoratiorn. underiney)

URI Attribute Values

(e.g., <a href="javascript:toggle(‘lesson’)")

& Intemet | Protected Mode: On

R100% ~

#1: (&, <, >,") > &entity; (',/) > &#xHH;
ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 - &#xHH
ESAPI: encodeForHTMLAttribute()

#3: All non-alphanumeric < 256 - \xHH
ESAPI: encodeForJavaScript()

#4: All non-alphanumeric < 256 - \HH
ESAPI: encodeForCSS()

#5: All non-alphanumeric < 256 - %HH
ESAPI: encodeForURL()

ALL other contexts CANNOT Include Untrusted Data

Recommendation: Only allow #1 and #2 and disallow all others
See: www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet

e ——

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

- - , \
! -
-,*' K
= ,/
3 =

New Protection against XSS and Clickjacking
X-Frame-Options and CSP

* "Content-Security-Policy:" l#policy

* "Content-Security-Policy—-Report-Only:"
1#policy

"default—-src"

directive—name

directive-value = source-1l1st

Example:

Content-Security-Policy: default-src 'self';
script—-src example.com

< . N :
ko ;
. o
3 . —

New Protection against XSS and Clickjacking
X-Frame-Options and CSP

script-src medla—-src
object-src frame-src
style-src font-src

1mg—-src C@r=@iEans. - C

Frame-Options - History
X-Frame-Options widely deployed/used to prevent
Click-jacking

e Running code and (some) consensus by
implementers in using X-FRAME-OPTIONS

HTTP-Header:

e DENY: cannot be displayed in a frame,
regardless of the site attempting to do so.

e SAMEORIGIN: can only be displayed if the
top-frame is of the same “origin” as the page

itself.

Frame-Options —
Example Use-Cases

A.1. Shop

e An Internet Marketplace/Shop link/button to "Buy
this" Gadget, wants their affiliates to be able to

stick the "Buy such-and-such from XYZ" IFRAMES
into their pages.

A.2. Confirm Purchase Page

e Onlineshop "Confirm purchase" anti-Click-Jacking
page. The Confirm Purchase page must be shown

to the end user without possibility of overlay or
misuse by an attacker.

Frame-Options

In EBNF:

Frame-Options = "Frame-Options" ":"
"DENY"/ "SAMEORIGIN" / ("ALLOW-FROM"
" WURT)

e DENY: The page cannot be displayed in a frame,
regardless of the site attempting to do so.

e SAMEORIGIN: can only be displayed in a frame on
the same origin as the page itself.

e ALLOW-FROM: can only be displayed in a frame on
the specified origin

Protection against Clickjacking
with Frame-Options in CSP1.1

directive—-name = "frame-options"

directive-value = 'deny' / 'self' ['top-only']
/ 1*1<host-source> ['self'] / 1*1<host-
source> 'top-only'

"~ Web Security — New Browser

Security Technologies
o Past Attacks/Breaches

e Insufficient Transport Layer Protection
® Solutions
e HSTS - HTTP Strict Transport Security
e (Cert Pinning
e New Protection against XSS and Clickjacking
e X-Frame-Options and CSP

e When

When - Timeframes

HSTS Strict Transport Security —

Cert Pinning Q2 2013
TLS in DNSSEC — 2017

X-Frame-Options — (will be informational RFC in Q2 2013)
CSP 1.0 — - published as a W3C Candidate Recommendation. — Q4 2012

CSP 1.1 — Q? 2013

Join the discussion

Ideas / feedback / participation welcome

IETF Websec:
http://tools.ietf.org/wg/websec/charters

W3C WebAppSec:
http://www.w3.0rg/2011/webappsec/

Or drop me an email:
tobias.gondrom@gondrom.org

http://tools.ietf.org/wg/websec/charters
http://tools.ietf.org/wg/websec/charters
http://www.w3.org/2011/webappsec/
http://www.w3.org/2011/webappsec/
http://www.w3.org/2011/webappsec/
mailto:tobias.gondrom@gondrom.org

-

Questions?

