[image: image5.emf][image: image6.emf]
[image: image7.png]() (DO

OWASP ESAPI Design Patterns
This document explores three common OWASP Enterprise Security API (ESAPI) design patterns. It is intended to be language-independent, i.e., the patterns described in this document are applicable to all language versions of ESAPI. OWASP ESAPI Toolkits are designed to ensure that strong simple security controls are available to every developer in every environment.

We’d Like to Hear from You

Further development of ESAPI occurs through mailing list discussions and occasional workshops, and suggestions for improvement are welcome. Please address comments and questions concerning the API and this document to the ESAPI mail list, owasp-esapi@lists.owasp.org
Copyright and License

Copyright © 2009 The OWASP Foundation.

This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse or distribution, you must make clear to others the license terms of this work.

Table of Contents

1About ESAPI

2The Built-In Singleton Pattern

3The Extended Singleton Pattern

4The Extended Factory Pattern

7Where to Go From Here

Figures
1Figure 1: How ESAPI works out of the box

2Figure 2: Built-In Singleton Pattern Example

4Figure 3: Extended Singleton Pattern Example

6Figure 4: Extended Factory Pattern Example

About ESAPI
OWASP ESAPI Toolkits are designed to ensure that strong simple security controls are available to every developer in every environment. All OWASP ESAPI versions are called in the same basic way, as depicted in the figure below.

[image: image1.emf]Naming conventions such as this are not

part of ESAPI but are good practice

Step Step

1 2

$clean= array(); //this is local in scope

$clean_sql= array(); //this is local in scope

$clean['id'] = ESAPI::getValidator()->getValidInput(...);

$clean_sql['id'] = ESAPI::getEncoder()->encodeForSQL(new MySQLCodec(), $clean['id']);

This is also an

ESAPI control

Figure 1: How ESAPI works out of the box

Allowing for language-specific differences, all OWASP ESAPI versions have the same basic design:

· There is a set of security control interfaces. There is no application logic contained in these interfaces. They define for example types of parameters that are passed to types of security controls. There is no proprietary information or logic contained in these interfaces.
· There is a reference implementation for each security control. There is application logic contained in these classes, i.e. contained in these interface implementations. However, the logic is not organization-specific and the logic is not application-specific. There is no proprietary information or logic contained in these reference implementation classes. An example: string-based input validation.
· There are optionally your own implementations for each security control. There may be application logic contained in these classes which may be developed by or for your organization. The logic may be organization-specific and/or application-specific. There may be proprietary information or logic contained in these classes which may be developed by or for your organization. An example: enterprise authentication.

There are three common ways to write your own implementations for each security control: using a “built-in” singleton pattern, using an “extended” singleton pattern, or using an “extended” factory pattern. The remainder of this document explores these three design patterns, including situations where taking more than one approach may be appropriate.
The Built-In Singleton Pattern

The ESAPI security control interfaces include an “ESAPI” class that is commonly referred to as a “locator” class. The ESAPI locator class is called in order to retrieve singleton instances of individual security controls, which are then called in order to perform security checks (such as performing an access control check) or that result in security effects (such as generating an audit record).
The “built-in” singleton pattern refers to the replacement of security control reference implementations with your own implementations. ESAPI interfaces are otherwise left intact.
For example:
...

require_once dirname(__FILE__) . '/../Authenticator.php';
...

//your implementation
class MyAuthenticator implements Authenticator {
...
Developers would call ESAPI in this example as follows:

...

$ESAPI = new ESAPI();
$myauthenticator = new MyAuthenticator();

//register with locator class
ESAPI::setAuthenticator($myauthenticator);

$authenticator = ESAPI::getAuthenticator();
$authenticator->login(...); //use your implementation
...

The UML for the above example is in the figure below.

[image: image2.emf]+login()

+...()

«interface»

Authenticator

+login()

+...()

MyAuthenticator

+login()

+...()

DefaultAuthenticator

ESAPI reference

implementation

ESAPI interface

Your implementation

(has the same functions as

reference implementation)

Figure 2: Built-In Singleton Pattern Example

Pros of taking this approach include loose coupling between ESAPI and your own implementations.
Cons include the need for developers to understand how to call ESAPI functions with the parameters required by your organization and/or application.

The Extended Singleton Pattern

While ESAPI security control reference implementations may perform the security checks and result in the security effects required by your organization and/or application, there may be a need to minimize the need for developers to understand how to call ESAPI functions with the parameters required by your organization and/or application. Availability of training may be an issue, for example. Another example would be to facilitate enforcing a coding standard.
The “extended” singleton pattern refers to the replacement of security control reference implementations with your own implementations and the addition/modification/subtraction of corresponding security control interfaces.
For example:
...

require_once dirname(__FILE__) . '/../Validator.php';
...

//reference implementation
class DefaultValidator implements Validator {
...

//not defined in Validator interface

function isValidEmployeeID($eid) {

...

Developers would call ESAPI in this example as follows:

...

$ESAPI = new ESAPI();
$validator = ESAPI::getValidator();
$validator->isValidEmployeeID(1234);
...

The UML for the above example is in the figure below.

[image: image3.emf]+isValidInput()

+...()

«interface»

Validator

+isValidInput()

+...()

+isValidEmployeeID()

MyValidator

+isValidInput()

+...()

DefaultValidator

ESAPI reference

implementation

(does not include a

“isValidEmployeeID” function)

ESAPI interface

Your implementation

(has additional and/or

perhaps changed functions

compared to reference

implementation)

May also be modified

Figure 3: Extended Singleton Pattern Example

Pros of taking this approach are the lessening of the need for developers to understand how to call ESAPI functions with the specific parameters required by your organization and/or application. Pros also include minimizing or eliminating the ability for developers to call ESAPI functions that deviate from your organization’s and/or application’s policies.

Cons result from the tight coupling between ESAPI and your own implementations: you will need to maintain both the modified security control reference implementations and the modified security control interfaces (as new versions of ESAPI are released over time).

The Extended Factory Pattern

While ESAPI security control reference implementations may perform the security checks and result in the security effects required by your organization and/or application, there may be a need to eliminate the ability of developers to deviate from your organization’s and/or application’s policies. High developer turnover may be an issue, for example. Another example would be to strongly enforce a coding standard.
The “extended” factory patterns refers to the addition of a new security control interface and corresponding implementation, which in turn calls ESAPI security control reference implementations and/or security control reference implementations that were replaced with your own implementations. The ESAPI locator class would be called in order to retrieve a singleton instance of your new security control, which in turn would call ESAPI security control reference implementations and/or security control reference implementations that were replaced with your own implementations.
For example:
In the ESAPI locator class:
...

class ESAPI {

...

//not defined in ESAPI locator class

private static $adapter = null;

...

//new function
public static function getAdapter() {

if (is_null(self::$adapter)) {

require_once dirname(__FILE__).'/adapters/MyAdapter.php';

self::$adapter = new MyAdapter();

}

return self::$adapter;

}
//new function
public static function setAdapter($adapter) {

self::$adapter = $adapter;

}

In the new security control class’ interface:
...

//new interface
interface Adapter {

function getValidEmployeeID($eid);

function isValidEmployeeID($eid);

}

In the new security control class:
...

require_once dirname (__FILE__) . '/../Adapter.php';

//new class with your implementation
class MyAdapter implements Adapter {
//for your new interface
function getValidEmployeeID($eid) {

//calls reference implementation

$val = ESAPI::getValidator();

//calls using hardcoded parameters

$val->getValidInput(

"My Organization's Employee ID",

$eid,

"EmployeeID", //regex defined in ESAPI config

4,

false

);

}

//for your new interface
function isValidEmployeeID($eid) {

try {

$this->getValidEmployeeID($eid);

return true;

} catch (Exception $e) {

return false;

}

}

Developers would call ESAPI in this example as follows:

...

$ESAPI = new ESAPI();
$adapter = ESAPI::getAdapter();
$adapter->isValidEmployeeID(1234);

... //no other ESAPI controls called directly
The UML for the above example is in the figure below.

[image: image4.emf]+...()

+getAdapter()

-adapter

ESAPI

+isValidEmployeeID()

+...()

«interface»

Adapter

+isValidEmployeeID()

+...()

MyAdapter

ESAPI

locator

class

Your

implementation

(calls ESAPI

interfaces)

Figure 4: Extended Factory Pattern Example

Pros of taking this approach are the same as for the extended singleton pattern, and additionally include loose coupling between ESAPI and your own implementations, compared to the extended singleton pattern.

Cons include the need to maintain the modified ESAPI locator class (as new versions of ESAPI are released over time).
Where to Go From Here

OWASP is the premier site for Web application security. The OWASP site hosts many projects, forums, blogs, presentations, tools, and papers. Additionally, OWASP hosts two major Web application security conferences per year, and has over 80 local chapters. The OWASP ESAPI project page can be found here http://www.owasp.org/index.php/ESAPI
The following OWASP projects are most likely to be useful to users/adopters of ESAPI:

· OWASP Application Security Verification Standard (ASVS) Project - http://www.owasp.org/index.php/ASVS

· OWASP Top Ten Project - http://www.owasp.org/index.php/Top_10

· OWASP Code Review Guide - http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

· OWASP Testing Guide - http://www.owasp.org/index.php/Testing_Guide

· OWASP Legal Project - http://www.owasp.org/index.php/Category:OWASP_Legal_Project

Similarly, the following Web sites are most likely to be useful to users/adopters of ESAPI:

· OWASP - http://www.owasp.org

· MITRE - Common Weakness Enumeration – Vulnerability Trends, http://cwe.mitre.org/documents/vuln-trends.html

· PCI Security Standards Council - publishers of the PCI standards, relevant to all organizations processing or holding credit card data, https://www.pcisecuritystandards.org

· PCI Data Security Standard (DSS) v1.1 - https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

(

(

(

(

(

This page is intentionally blank

This page is intentionally blank

This page is intentionally blank

Design Patterns

This page is intentionally blank

This page is intentionally blank

(

Download the latest releases of ESAPI

http://www.owasp.org/index.php/ESAPI

ii ESAPI Design Patterns

 ESAPI Design Patterns
v

_1319277062.vsd
Text

+isValidInput()
+...()

«interface»
Validator

+isValidInput()
+...()
+isValidEmployeeID()

MyValidator

+isValidInput()
+...()

DefaultValidator

ESAPI reference implementation
(does not include a “isValidEmployeeID” function)

ESAPI interface

Your implementation
(has additional and/or perhaps changed functions compared to reference implementation)

May also be modified

_1319279600.vsd
Text

+login()
+...()

«interface»
Authenticator

+login()
+...()

MyAuthenticator

+login()
+...()

DefaultAuthenticator

ESAPI reference implementation

ESAPI interface

Your implementation
(has the same functions as reference implementation)

_1319277567.vsd
Text

+...()
+getAdapter()

-adapter

ESAPI

+isValidEmployeeID()
+...()

«interface»
Adapter

+isValidEmployeeID()
+...()

MyAdapter

ESAPI locator class

Your implementation (calls ESAPI interfaces)

_1316949331.vsd
Naming conventions such as this are not part of ESAPI but are good practice

Step

Step

1

2

$clean = array(); //this is local in scope
$clean_sql = array(); //this is local in scope
$clean['id'] = ESAPI::getValidator()->getValidInput(...);
$clean_sql['id'] = ESAPI::getEncoder()->encodeForSQL(new MySQLCodec(), $clean['id']);

This is also an ESAPI control

