
!"#$%#"

Presented by:

Anatomy of a Logic Flaw

David Byrne
Managing Consultant

dbyrne@trustwave.com

Logic

!"#$%#"

Vulnerabilities

•  "Traditional" Vulnerabilities
•  Standardized definitions
•  Security requirements common to all

applications

•  "Logic" Flaws
•  Violations of business rules; may be rules

unique to a company or industry

•  All vulnerabilities are violations of security
rules

!"#$%#"

SQL Injection

•  Requirement:
Do not allow users to execute arbitrary
SQL commands

•  Vulnerability:
Users can execute arbitrary SQL
commands

!"#$%#"

Authentication Bypass

•  Requirement:
 Verify a user’s identity before allowing
access to the application

•  Vulnerability:
 Access can be obtained without proving
identity

!"#$%#"

Cross-Site Scripting

•  Requirement:
 Do not allow users to define browser-side
scripts

•  Vulnerability:
 Users can define browser-side scripts

!"#$%#"

Vulnerabilities

•  "Traditional" Vulnerabilities
•  Standardized definitions
•  Security requirements common to all

applications

•  "Logic" Flaws
•  Violations of business rule
•  Rules are often unique to a company,

industry, or type of application

•  All vulnerabilities are violations of security
rules

!"#$%#"

Payment Bypass

•  Requirement:
 Customers must pay for goods & services

•  Vulnerability:
 Customers are not required to pay for
goods & services

!"#$%#"

Client-Side Price Fixing

•  Requirement:
 Only the business can set the price of goods

•  Vulnerability:
 Customers can set the price of goods

!"#$%#"

Vulnerabilities

•  "Traditional" Vulnerabilities
•  Standardized definitions
•  Security requirements common to all

applications

•  "Logic" Flaws
•  Violations of business rule
•  Rules are often unique to a company,

industry, or type of application

•  All vulnerabilities are failure to enforce
rules

!"#$%#"

Root Causes of Logic Flaws
•  Failure to anticipate threats

•  Insufficient documentation of business rules

•  Poor design practices (no SDLC)

•  Poor understanding of underlying technologies

•  Bad production management

!"#$%#"

Examples
•  All real world examples

•  Most are from real Trustwave tests, but client identity is
well protected

•  These are not rare flaws; we find them on a regular basis

!"#$%#"

Two factor – one factor = one factor

%&"

!"#$%#"

Two factor – one factor = one factor

%'"

!"#$%#"

Two factor – one factor = one factor

%("

!"#$%#"

Two factor – one factor = one factor
Root causes:
•  Insufficient documentation of business rules
•  Poor understanding of underlying technologies

History
•  Conflicting business priorities: customer security vs.

customer convenience
•  Someone said "use two factor"

Prevention
•  Better documentation
•  Security interests being represented throughout the process

!"#$%#"

Account Manipulation
Consider a banking application…

•  Functional requirement to allow wire transfers

•  Only allow transfers between accounts the logged in user owns

•  Banking application generated a drop-down list of accounts

to transfer funds to and from

•  User selects the accounts to transfer from and to and clicks
the "transfer" button

•  The form details were submitted as a post parameters for
the server-side to process

!"#$%#"

Account Manipulation
Root cause:
•  Failure to anticipate threats
•  Poor understanding of technology

History
•  This was the initial roll-out of the application developed by

a third-party. Unfortunately, it was basically a case of the
development team being unaware of secure coding
techniques.

Prevention
•  Understand how the technology works

!"#$%#"

Complex Price Manipulation

eyDigJ1pdGVtIjogeyAidGl0bGUiOiDigJ1IYWNraW5nIGZvciBE

dW1taWVzIiwg4oCdQXV0aG9yIjogeyAidGl0bGUiOiAiUyIsIO
KAnUNodWNrIEhlbmRlcnNvbiI6IHsgIkdsb3NzRW50cnkiOiB7
ICJJRCI6ICJTR01MIiwgIlNvcnRBcyI6ICJTR01MIiwgIkFjcm
9ueW0iOiAiU0dNTCIsIOKAnVByaWNlIjog4oCdMTU4NeKAnX0g
fSB9IH0gIAoK

{ "item": { "title": "Hacking for Dummies",

"Author": { "name": "S", "Chuck Henderson":
{ "GlossEntry": { "ID": "SGML", "SortAs": "SGML",
"Acronym": "SGML", "Price": "1585"} } } }

!"#$%#"

Complex Price Manipulation
Root cause:
•  Poor understanding of underlying technologies

History
•  This was an otherwise secure application
•  The application framework obscured what data was sent to

the client

Prevention
•  Avoid niche application frameworks
•  Popular frameworks have better documentation
•  If a niche product is needed, dig into its internals

!"#$%#"

Private Performances
•  Online theater seat reservation system

•  Put seats into a cart,
 then checkout later

•  Once seats are in a cart, they are held
so that seats are not overbooked

•  Using multiple browsers

1.  Put the seats you want into a cart
2.  Put the remaining open seats into a the second cart
3.  Complete the checkout of the first cart
4.  Never complete the checkout of the second cart.

!"#$%#"

Private Performances
Root causes:
•  Failure to anticipate threats
•  Poorly documented business rules
•  Poor design practices

History
•  Likely similar to the earlier examples of programmers used

to private applications

Prevention
•  A lot

!"#$%#"

Eat for (almost) Free
•  Online system to place restaurant orders for delivery

•  Standard online order process

1.  You select your meal
2.  Enter your address
3.  Pay your bill
4.  Food arrives

•  A third party handled the credit card transaction

•  Redirected to a third party to handle the credit card purchase
•  Redirected back to the primary site after approval

!"#$%#"

Eat for (almost) Free

!"#$%#"

Eat for (almost) Free
Root causes:
•  Insufficient documentation of business rules: The

restaurant’s novice developers assumed that the processor
was providing a secure service.

•  Failure to anticipate threats: User tampering should always
be prevented

History
•  The payment processor did not provide a way to detect user

tampering

Prevention
•  Clearly define security responsibilities when integrating

with a third party.
•  Detect user tampering with cryptographic signing

!"#$%#"

Static Entropy
•  Effective random number generation relies on a strong

entropy source

using System;
public class RandomGenerator
{

 Random random = new Random(3212351);
 public int getNext()
 {
 return random.Next();
 }

}

!"#$%#"

Static Entropy

!"#$%#"

Static Entropy
Root causes:
•  Poor understanding of underlying technologies

History
•  The developers didn’t understand how random number

generators worked

Prevention
•  Educate developers

!"#$%#"

When Queries Collide

#)"

!"#$%#"

When Queries Collide

&$"

!"#$%#"

When Queries Collide

&%"

!"#$%#"

When Queries Collide

&#"

!"#$%#"

When Queries Collide

&&"

!"#$%#"

Salami Slicing Variant
•  Traditional Salami Slicing has been well

known since at least the 1970’s
•  Office Space, Superman III...
•  Stealing small amounts of money

repeatedly can add up
•  From June 2007 to May 2008,

Michael Largent obtained at least
$60,000 from E-trade, Schwab.com,
Google

•  Brokerages will commonly deposit a few cents to confirm
new bank accounts

•  Largent programmatically opened thousands of accounts
•  The transfers were legal, the phony checking accounts were

not
•  11,385 Schwab accounts were opened as "Speed Apex"

from only five AT&T IP addresses

!"#$%#"

Salami Slicing Variant
Root causes:
•  Poor application design: Insufficient steps to detect

automated account creation

History:
•  Apparently, a lack of account confirmation functionality

Prevention
•  CAPTCHAs probably aren’t enough
•  Where human identity is important, more sophisticated

data correlation is required

!"#$%#"

Logic Flaw Poster Child: SocGen
•  Société Générale is a major

European bank: over $1 trillion
in managed assets, and 160,000
employees

•  A leading industry analyst said they were "considered one
of the best risk managers in the world.'' …until January
2008

•  In one year, Jerome Kerviel made $73 billion in
unauthorized trades, losing $7 billion

•  A junior trader; used to work in the bank’s compliance
department.

!"#$%#"

Logic Flaw Poster Child: SocGen
•  Without using any "advanced" hacking skills, he evaded all

of the bank’s approval systems

•  The CEO described Jerome’s knowledge of the bank’s
controls as "intimate and perverse".

•  Internal audit findings:
•  Many controls were batch run, and could be evaded within a

limited window
•  Some controls were based on the net value of a group of

holdings and could be evaded by creating a fictitious opposite
entry

•  Some management approvals were email-based and were easily
spoofed

!"#$%#"

Unsolvable: Poker Collusion
•  Some logic flaws are impossible

to solve
•  It can be made difficult:

•  Analyze player win patterns
•  Correlate table-mate frequency
•  Attempt to validate human identity
•  Ask the software client for computer

description

!"#$%#"

Preparing to Test for Logic Flaws

•  Obtain or create thorough documentation of:
•  Business rules
•  Business processes
•  Domain data

•  Identify hypothetical violations of business rules
•  Where are the rules enforced
•  How can the relevant data be accessed and changed

•  Understand the technology used to exchange data

between the client & server

!"#$%#"

Verifying Logic Enforcement

•  Stand-alone transactions:
•  What business rules apply to this transaction?
•  What is the mechanism of enforcement?
•  What is the purpose of each piece of data sent to the

server from the client?
•  Are any data fields in the transaction relevant to

business rules?
•  What business domain information is returned by the

server?

!"#$%#"

Verifying Logic Enforcement

•  Multi-step
•  How is each step defined? (Different URL, query

parameter, server-side state, etc)
•  Can a future step be requested before prerequisites

are satisfied?
•  Can data from past steps be modified after the initial

business logic has been applied?

!"#$%#"

Verifying Logic Enforcement

•  Combining Processes
•  Logic flaws can span applications
•  All applications accessed by a user should be

considered
•  Publicly-available information should also be a factor

!"#$%#"

Summary
•  Poor design & poor planning lead to logic flaws

•  Logic flaws are one-off, custom creations

•  Logic flaws are generally driven by underlying programming

weakness
•  Unique instances of vulnerabilities
•  Combination of vulnerabilities to create a flaw
•  Requires manual testing to find

•  Adherence to secure coding techniques will go far to

remove logic flaws but code generally cannot fix design
issues.

!"#$%#"

Trustwave SpiderLabs

•  SpiderLabs Website & Wiki – Papers, Tools, Service
Information

•  http://www.trustwave.com/spiderlabs
•  https://wiki.trustwave.com/display/sl/SpiderLabs+Team+Site

•  Twitter – Security News, Event Information, etc.
•  http://www.twitter.com/spiderlabs

•  LinkedIn – Security News, Event Information, etc.
•  http://www.linkedin.com/groups?home=&gid=90640

!"#$%#"

Presented by: Questions?

