
Secure Your Programming
Future!

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

@WhileyDave
http://whiley.org

http://github.com/Whiley

@WhileyDave
http://whiley.org
http://github.com/Whiley

Background

Verification: Who Cares?

Verification: A Challenge for Computer Science

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of the
programs that it compiles”

–Hoare’03

Whiley

Overview: What is Whiley?

function max(int x, int y) → (int z)

// result must be one of the arguments
ensures x == z || y == z

// result must be greater-or-equal than arguments
ensures x <= z && y <= z:

...

A language designed specifically to simplify verifying software

Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

Goal: to statically verify functions meet their specifications

History of Whiley

2009 — Initial version of Whiley released (GPL Licence)
2010 — GitHub repository and http://whiley.org go live
2010 — Version 0.3.0 released (BSD Licence)
2016 — Version 0.4.0 released
2017 — Version 0.4.1 released

http://whiley.org

Demo Time...

Example: max(int[])

// Returns index of largest item in array
function max(int[] items) → (int r)

Diagram!

Diagram!

How does it work?

Verification: How does it work?

function abs(int x) => (int r)

// return value cannot be negative
ensures r >= 0:

//
if x >= 0:

return x

else:
return -x

To verify above function, compiler generates verification
conditions

Verification conditions are (roughly) first-order logic formulas

Verification: Verification Condition Generation

Verification: Assertion Language

Whiley compiler emits verification conditions in assertion
language

assert:
forall (int x):

x >= 0 ==> x >= 0

assert:
forall (int x):

x < 0 ==> -x >= 0

Verification conditions from abs() example shown above

In principle, can hook up different automatic theorem provers

People (so far)

Art
(built C backend, 2012)

Melby
(built GPGPU backend,

2013)

Daniel
(helping with WhileyWeb)

Matt
(compiling for a QuadCopter,

2014)

Henry
(improving verification, 2014)

Sam
(started PhD on

Parallelisation, 2014)

Lindsay
(A/Prof, Victoria University)

Mark
(A/Prof, University of

Waikato)

http://whiley.org

@WhileyDave
http://github.com/Whiley

http://whiley.org
@WhileyDave
http://github.com/Whiley

Verification: Constrained Types

type N is (T x) where e

Above defines constrained type

Invariant: for any variable of type N , follows that e always holds

Constrained types can simplify specifications / invariants

Example: natural numbers

type nat is (int n) where n >= 0

Verification: Structural Typing

type nat is (int n) where n >= 0

function cut(int x) → (nat y):

if x >= 0:

return x

else:
return 0

Variable types in Whiley are ephemeral ...

... and determined by what is known (not what was declared)

Verification: Flow Typing

function indexOf(int[] items, int item) → (int|null r)

// If integer value returned, must be index of item
ensures r is int ==> items[r] == item

// No element before integer r matches item
ensures r is int ==> all { k in 0..r | items[k] != item }

// If null returned, no matching item
ensures r is null ==> all { k in 0..|items| | items[k] != item }:

//
int i = 0

//
while i < |items|

where i >= 0 && i <= |items|

where all { j in 0..i | items[j] != item }:

if items[i] == item:

return i

i = i + 1

//
return null

