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Background



Verification: Who Cares?
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Heartbleed is a catastrophic bug that affects thousands of sites and services
across the internet, but whatis it, and what do you need to do aboutit to
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Verification: A Challenge for Computer Science

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of the
programs that it compiles”

—Hoare’03



Whiley



Overview: What is Whiley?

function max(int x, int y) — (int 2z)
// result must be one of the arguments
ensures x == |y ==

// result must be greater-or-equal than arguments
ensures x <= z && y <= z:

@ A language designed specifically to simplify verifying software

@ Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

@ Goal: to statically verify functions meet their specifications



History of Whiley
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@ 2009 — Initial version of Whiley released (GPL Licence)

@ 2010 — GitHub repository and http://whiley.org go live
@ 2010 — Version 0.3.0 released (BSD Licence)

@ 2016 — Version 0.4.0 released

@ 2017 — Version 0.4.1 released
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Demo Time...



Example: max (int [])

// Returns index of largest item in array
function max(int[] items) — (int r)



Diagram!
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How does it work?



Verification: How does it work?

function abs(int x) => (int 1)
ensures r >= 0:
if x >= 0:
return x

else:
return —x

@ To verify above function, compiler generates verification
conditions

@ Verification conditions are (roughly) first-order logic formulas



Verification: Verification Condition Generation
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Verification: Assertion Language

@ Whiley compiler emits verification conditions in assertion
language

assert:
forall (int Xx):
x >= 0 ==> x >= 0

assert:
forall (int Xx):
X < 0 ==> —-x >= 0

@ \erification conditions from | abs () | example shown above

@ In principle, can hook up different automatic theorem provers
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Verification: Constrained Types

type N i1s (T x) where e

@ Above defines constrained type

@ Invariant: for any variable of type

, follows that

always holds

@ Constrained types can simplify specifications / invariants

@ Example: natural numbers

type nat is (int n) where n >= 0



Verification: Structural Typing

type nat is (int n) where n >= 0

function cut (int x) — (nat y):
if x >= O0:
return x
else:
return 0

@ Variable types in Whiley are ephemeral ...

... and determined by what is known (not what was declared)



Verification: Flow Typing

function indexOf (int[] items, int item) — (int|null r)
// If integer value returned, must be index of item
ensures r is int ==> items[r] == item
// No element before integer r matches item
ensures r is int ==> all { k in O0..r | items[k] != item }
// If null returned, no matching item
ensures r is null ==> all { k in O..|items| | items[k] != item }:
/
int 1 = 0
//
while i < |items|
where 1 >= 0 && 1 <= |items|
where all { J in 0..1 | items[]] != item }:
if items[i1i] == item:
return 1
i =1+ 1
//
return null



