Secure Your Programming
Future!

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

dWhileyDave
http://whiley.org
http://github.com/Whiley

@WhileyDave
http://whiley.org
http://github.com/Whiley

Background

Verification: Who Cares?

theguardian

iﬂ‘] nzherald.conz

home ; tech world politics sport football opinion cultu = all

ﬁ National Opinion Business Technology World Sport Entertainment Life &Sty Heartbleed
Heartbleed bug: what do you actually
need to do to stay secure?

AIR Open 2625 High 2685 Low 2808 BidFrice 252
Offer Price 2556 Value 2910700.38 “olume 'Catastrophic' bug leaves thousands of sites vulnerable, but what exactly is Heartbleed

1142735 and how does it affectme?

Current as of 30/06/15 07:38PM NZST

ﬁ GrantBradley Aviation, tourism and energy writer for the Business Herald
.
Computers rebooted to tackle Dreamliner glitch

Alr New Zealand Ltd = Airlines Aviation 116 18 o o

Rebooting computers will overcome glitch that could cut
all power.

Photograph: Peter Titmuss/Alamy

Samuel Gibbs
W @5amuelGibbs
Thursday 10 April 2014 14.29 BST

0000060

Shares g Comments

1577 140

Heartbleed is a catastrophic bug that affects thousands of sites and services
across the internet, but whatis it, and what do you need to do aboutit to
onits Dreamliners every protect yourself from cybercriminals?

Air New Zealand says it will comply with the directive to undertake a "power cycle”
three months. Photo / Brett Phibbs

Verification: A Challenge for Computer Science

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of the
programs that it compiles”

—Hoare’03

Whiley

Overview: What is Whiley?

function max(int x, int y) — (int 2z)
// result must be one of the arguments
ensures x == |y ==

// result must be greater-or-equal than arguments
ensures x <= z && y <= z:

@ A language designed specifically to simplify verifying software

@ Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

@ Goal: to statically verify functions meet their specifications

History of Whiley

200k

100k

- —ATEEeeEER——

Jul '10 Jan'11 Jul '11 Jan'12 Jul '12 Jan '13 Jul '13 Jan'14 Jul'14 Jan'15 Jul '15 Jan'le Jul'16 Jan'17

@ 2009 — Initial version of Whiley released (GPL Licence)

@ 2010 — GitHub repository and http://whiley.org go live
@ 2010 — Version 0.3.0 released (BSD Licence)

@ 2016 — Version 0.4.0 released

@ 2017 — Version 0.4.1 released

http://whiley.org

Demo Time...

Example: max (int [])

// Returns index of largest item in array
function max(int[] items) — (int r)

Diagram!

R *

Y *

o O | file:///Users/djp/projects/Whiley2J | c Q_ Ssearch

| Gettinc Startec _ Elvis F A L

Minesweeper (in Whiley)

How does it work?

Verification: How does it work?

function abs(int x) => (int 1)
ensures r >= 0:
if x >= 0:
return x

else:
return —x

@ To verify above function, compiler generates verification
conditions

@ Verification conditions are (roughly) first-order logic formulas

Verification: Verification Condition Generation

if x >= 0

! !

return X J [return -Xx

x>=0 — x>=0 x<) —-x>=0

Verification: Assertion Language

@ Whiley compiler emits verification conditions in assertion
language

assert:
forall (int Xx):
x >= 0 ==> x >= 0

assert:
forall (int Xx):
X < 0 ==> —-x >= 0

@ \erification conditions from | abs () | example shown above

@ In principle, can hook up different automatic theorem provers

People (so far)

B
|/

Melby . Matt
Daniel
(built GPGPU backend, (compiling for a QuadCopter,
(built C backend, 2012) (helping with WhileyWeb)
2013) 2014)

Sam . Mark
Lindsay
(started PhD on (A/Prof, University of
(improving verification, 2014) (A/Prof, Victoria University)

Parallelisation, 2014) Waikato)

http://whiley.org

dWhileyDave
http://github.com/Whiley

http://whiley.org
@WhileyDave
http://github.com/Whiley

Verification: Constrained Types

type N i1s (T x) where e

@ Above defines constrained type

@ Invariant: for any variable of type

, follows that

always holds

@ Constrained types can simplify specifications / invariants

@ Example: natural numbers

type nat is (int n) where n >= 0

Verification: Structural Typing

type nat is (int n) where n >= 0

function cut (int x) — (nat y):
if x >= O0:
return x
else:
return 0

@ Variable types in Whiley are ephemeral ...

... and determined by what is known (not what was declared)

Verification: Flow Typing

function indexOf (int[] items, int item) — (int|null r)
// If integer value returned, must be index of item
ensures r is int ==> items[r] == item
// No element before integer r matches item
ensures r is int ==> all { k in O0..r | items[k] != item }
// If null returned, no matching item
ensures r is null ==> all { k in O..|items| | items[k] != item }:
/
int 1 = 0
//
while i < |items|
where 1 >= 0 && 1 <= |items|
where all { J in 0..1 | items[]] != item }:
if items[i1i] == item:
return 1
i =1+ 1
//
return null

