
A Gap Analysis of Application Security in

Struts2/WebWork

Arshan Dabirsiaghi

Project Lead, OWASP Intrinsic Security Working Group

Director of Research, Aspect Security

With help from:

Nick Coblentz

Andrew van der Stock

April 21, 2009

Abstract

The purpose of this paper is to discover what features and capabilities, if any, the Struts2/WebWork

(hereafter referred to simply as Struts2) development team could add to increase the security of

applications built with Struts2. The version analyzed was version 2.1.6, which was the latest version

available when the project was started. The purpose of this research is not to discover security flaws

within Struts2, but rather intended to discover how the Struts2 framework allows developers to build

security into applications, and how it can be improved.

The only non-commercial application security library that covers all necessary security is an expert tool

called Enterprise Security API (ESAPI), which is maintained by OWASP (http://owasp.org/). Throughout

the paper there will be many comparisons to the ESAPI project since it serves as a de-facto model of

security best practices. Acegi Security, recently renamed to Spring Security, is a framework that allows

for excellent enterprise authentication and authorization configuration, but lacks coverage of other

areas covered by ESAPI.

Table of Contents

Introduction .. 3

Centralized Security Mechanisms .. 4

Authentication .. 6

User Management in Struts2 ... 6

Improvements in Authentication ... 6

Provide an Authentication Architecture ... 7

Provide Static Utilities for Authentication .. 7

Session Management .. 8

Improvements to Session Management ... 8

Disabling URL Rewriting or Rotate Session IDs at Application Boundaries ... 8

Add Absolute Timeout Capability ... 9

Add Enhanced Cookie Protection Options .. 9

Programmatic Access Control .. 11

Improvement in Programmatic Access Control .. 11

Input Validation ... 13

Improvements in Input Validation ... 14

Bring Back the validate() Method ... 14

Provide a More Secure and Usable API for Getting Parameters .. 14

Add Validation Annotations to Input POJOs ... 14

Add Canonicalization API ... 14

Add More Default Validators ... 15

Add a Workflow Scope ... 15

Cross-Site Scripting .. 17

Output Mechanisms and Their Encoding Properties ... 17

Improvement in XSS Defense Mechanisms .. 19

Cross-Site Request Forgery .. 20

Improvements in CSRF Defense ... 21

Appendix A: Authentication ... 22

Appendix B: URL-based Access Control .. 25

Appendix C: HTTP Caching Headers ... 28

Appendix D: Cross-Site Request Forgery .. 30

Appendix E: Handling Exceptions ... 32

Appendix F: Requiring SSL ... 33

Appendix G: Session ID Regeneration .. 35

Bibliography .. 36

Introduction

The research is broken down into several logical categories in order to manage the scope and easily

deliver partial and consumable results:

• Authentication

• Access Control (aka Authorization)

• Input Validation

• Cross-Site Scripting (output encoding)

• Cross-Site Request Forgery

• Error Handling

Rather than give a large number of gap data points and forcing a high level summary at the end of the

document, which will inevitably end up being not appropriately descriptive, each section will have its

own conclusions on coverage and a general set of recommendations.

It is not the purpose of the paper to denigrate the quality of the Struts2 project, whose many qualities

have played a large part in its popularity and longevity in a field where frameworks trend into and out of

popularity very quickly. Rather, the purpose of the paper is to discover ways to improve the security of

its users’ applications through framework enhancements. Also, it is recognized by the author that the

framework must accommodate users who want to build applications that have low-value assets and

therefore should not be forced to invest the necessary time to implement high assurance security. Or,

more plainly, if an application is not that important, Struts2 should not force developers to jump

through a bunch of security hoops.

We also recognize that Struts2 does not attempt to cover all the security areas mentioned in this paper.

The Struts2 development team most likely acknowledges that you use log4j to fulfill your logging needs

and they don’t attempt to step outside of their domain of expertise by reinventing the wheel. However,

exactly this type of “one stop shopping” is necessary for development teams in order to avoid the

complexity of managing an application’s security as decentralization of the security grows.

Another core principal in the analysis is the ease of use of a security mechanism. One of the tenets of

security API is that it must be easy to understand and use. If it is not, it will be called incorrectly,

haphazardly, or not at all (ASPECT1).

The attacks, vulnerabilities and countermeasures discussed in this paper can be found in various OWASP

sources, including the OWASP Guide (OWASP1) to Building Secure Web Applications, the OWASP Testing

Guide (OWASP7), and the OWASP Code Review Guide (OWASP8).

Centralized Security Mechanisms

The architecturally centralized components for performing security checks within Struts2 must be

invoked by extended base Action classes or Interceptor classes which must be explicitly added to

referenced Interceptor chains.

After some thinking on this strategy, the question that remains is this: what value does the Struts2

Interceptor add as opposed to the servlet filter? In simple terms, they are both custom Java that get

executed before a subset of requests. Therefore, at a high level it is easy to say that they can both do

the same thing. However, is the deployment strategy and development of one easier or safer to

accomplish security goals with?

Real world J2EE applications often include a number of architecturally “one-off” servlets or endpoints.

These endpoints accomplish cross-application requirements like performing redirects, logging users off

of SSO systems, serving images, etc. Therefore, any mechanism that only protects Struts2-based

resources that are likely to cause vulnerabilities in applications. There is more assurance (catch all

resource requests instead of just Struts2) and equivalent deployment work (insert an entry into an XML

file) in creating a J2EE filter instead of a Struts2 interceptor or extended base Action.

The following centralized security mechanisms are accomplishable in Struts2, but are similarly easier and

more safely implemented in one or multiple J2EE filters. For more information on implementing these

features in Struts2 for comparison purposes, consult the appendix:

• Authentication (see Appendix A)

• URL access control (also called “page-level“ access control (OWASP3)) (see Appendix B)

• Anti-caching controls (see Appendix C)

• CSRF controls (see Appendix D)

• Uncaught exception handling (see Appendix E)

• Enforcing SSL requirements (see Appendix F)

• Regenerating session IDs (see Appendix G)

The rest of the security areas discussed in the paper are those areas that are required to be

decentralized, or those areas that the Struts2 framework attempts to accomplish and therefore require

discussion. There are also some security areas that were not covered in the paper. The reasons they

were not included include one or many of the following:

• The security area is not thought to be solvable by an external library

• The security area is not close enough to the goal of Struts2 to warrant inclusion

• The problem area doesn’t usually include vulnerabilities that rank above a “low” in common

threat assessment standards

The security areas that met one or more of those criteria are as follows:

• Error handling patterns (avoiding fail-open, exception swallowing, information leakage, resource

exhaustion)

• Logging (how to log, when to log, what to log)

• Cryptography (having a simple-to-use API, encouraging strong algorithms, protecting the right

data)

• Backend communication (connecting with least privilege, channel protection, resource

exhaustion)

Authentication

The Struts2 framework doesn’t contain provide any authentication mechanisms directly to implement. It

does provide “interceptors” which are much like traditional J2EE servlet filters, but are closer

architecturally to Struts2 as opposed to the container. These appear to be the most architecturally

reliable places to put authentication protections (enforcing authentication after login). So, that leaves

the developer who has authentication requirements to do one of the following:

1. Rely on container-based authentication

2. Use custom interceptors in common stacks in order to control access to Actions that require

authentication

3. Use traditional J2EE servlet filters in order to control access to URLs that require authentication

It is very uncommon to find any medium to large enterprise applications that rely on container-based

authentication because of the lack of flexibility this option offers. For small, internal applications it is

considered sufficient if security requirements and principals are not expected to change much over the

lifetime of the application.

A typical enterprise security architecture calls for applications to be protected by authentication. Most

of the time, this is within a certain URL structure, like “/app”. There will also be a certain number of

unprotected pages, like the login form, that need to be listed as exceptions. Given the discussion in the

previous section, it is considered more secure to use a J2EE servlet in order to implement

authentication.

User Management in Struts2

There is no idea of “user management” in the Struts2 framework. There is no base “User” class or any

kind of static utilities in order to facilitate easy user administration. Because of the lack of inborn user

management capabilities and complementary API, developers must compensate with custom code or 3
rd

party libraries against the following attacks that are strictly related to authentication:

• Username harvesting

• Brute forcing

• Massive account lockouts

Improvements in Authentication

There are a number of improvements that could be made to the Struts2 framework in managing the

safe authentication and maintenance of users.

Provide an Authentication Architecture

Although JAAS is available in any J2EE application, it is widely unused. It’s not fine-grained enough for

some organizations, it’s too fine-grained for others, and it’s not easy to understand. Because of this,

JAAS will only fit at some organizations. Therefore, it is recommended that Struts2 adopt an

authentication mechanism that preempts any other servlet filter and allows developers to protect

Struts2 and non-Struts2 resources.

Provide Static Utilities for Authentication

There are a number of static utilities concerning authentication that are often written by developers

who are not security experts, and are therefore not usually written correctly. A set of static utilities that

should be made available to developers in a framework include the following:

• A function that can determine password strength

• A secure password generator

• A simple password hashing function

The following table shows what ESAPI and Struts2 offer in the area of authentication:

Function ESAPI Struts2

Has Authentication Mechanism

Built-In
Yes X

Authentication Covers All

Application Resources
Yes X

Secure User Interface Class Yes X

Secure User Management

Functions
Yes X

API for Password Strength

Measurement
Yes X

API for Secure Password

Generation
Yes X

API for Simple Password

Hashing
Yes X

Session Management

By default, J2EE application servers have a very simple session management lifecycle: if the application

server receives a request without a valid session ID, the application server will issue them a new one.

Also, if the difference in elapsed time between any two requests is greater than some inactivity limit,

then the session is terminated.

However, there are other security concerns around how sessions are implemented that are not

addressed by J2EE, and thus must be addressed at a framework or application level. Struts2 does not

influence how the J2EE application servers create, manage, or destroy sessions, so the following attacks

must be compensated for with custom application code:

• Session fixation

• URL-rewriting

• Cookie disclosure through XSS

• Cookie exposure through sniffing

• Permanent session hijacking

Improvements to Session Management

There are a number of improvements that could be made to the Struts2 framework, both in managing

the lifecycle of sessions and in protecting the session cookies themselves from disclosure.

Disabling URL Rewriting or Rotate Session IDs at Application Boundaries

Application servers use URL-rewriting on initial requests to allow cookie-less session management. In

practice, application servers usually rewrite URLs on a new session’s first response to contain the session

identifier. This way, if the user’s next request comes in without a session cookie, the application server

will still be able to track their state.

This feature can be used by attackers to seed a victim’s session ID by sending the victim a link with a

session ID in the URL. After the victim logs under the auspices of the attacker’s session ID, the attacker

can make requests to the application and be recognized as the victim.

This attack can be mitigated in one of two ways. First, the application framework can prevent URL-

rewriting from being used. This is not ideal since some users will not be able to use the application and

business may be lost. The more acceptable solution is to force a rotation of session ID values when

crossing application boundaries.

For instance, when a user “logs in”, the application should rotate the session ID so that an attacker that

knew or set the user’s session ID won’t know the new session ID, and therefore won’t have any means

of presenting themselves to the application server as the victim. The implementation of the “rotation”

should involve invalidating the old session and creating a new session so that no victim-specific data is in

any session except the new, safe session that will be delivered on the response to the request which

contained valid credentials.

This capability would require some way for users to mark certain Actions as security boundaries. A very

natural place to do that would be in the configuration file where Actions are defined. Such a marking

could allow applications to perform other security actions, like requiring re-authentication.

Add Absolute Timeout Capability

There is often a business requirement that applications not permit sessions to exist, despite activity

level, for more than some amount of time. This is different from an idle timeout, which application

servers all support and are used to kill sessions that have been left idle for too long. This serves many

purposes, including limiting the scope of damage of a stolen session and making sure users who have

been removed from an enterprise application can’t sustain their access to an application by never

allowing the idle session timeout from occurring with traffic automation.

It would be beneficial to the security of enterprise applications built with Struts2 to offer a framework-

level absolute timeout mechanism that is configurable by the developer.

Add Enhanced Cookie Protection Options

There are two security-relevant cookie flags that are honored by the major browsers. The secure flag

tells the browser not to send the cookie over an unencrypted channel. Sites that use a mix of SSL and

non-SSL pages typically don’t enable this flag because non-SSL requests will appear to be

unauthenticated users since they won’t be accompanied by the authenticated session cookie. The

HttpOnly flag tells the browser that client-side JavaScript should not have access to the cookie on which

the flag was set. A cookie value with both of these flags set would look something like the following:

Set-Cookie: JSESSIONID=abc123; domain=foo.com; Http Only=; secure=;

There is no way in the J2EE specification or in the various implementations to programmatically set the

secure or HttpOnly flags on the application server cookie. It is possible in some implementations to

configure the server to set these two flags. However, in most implementations this is not possible.

It should be noted that it is possible to set the secure flag, and in a few cases the HttpOnly flag, on

custom cookies created by the application.

Because of the lack of adoption, consistency and clarity surrounding the secure and HttpOnly flags, many

applications can’t or don’t take advantage of the critical protections these flags offer.

Therefore, it would be beneficial to Struts2 developers if there was an easy configuration option to allow

developers to enable “enforce SSL” and “protect session cookie from XSS” features. The implementation

details may require submitting a session ID as a form parameter (MANICODE1) or a 3-step HTTP

handshake (OWASP9) between the client and server. However, the implementation details of these

features are irrelevant as long as the goal of these protections is accomplished.

The following table shows what ESAPI and Struts2 offer in the area of session management:

Function ESAPI Struts2

API for Rotating Session ID Yes X

Automatically Rotate Session ID

on Login
X X

Framework Disables URL

Rewriting
Yes X

Allows Programmatically Setting

HttpOnly on Custom Cookies
Yes X

Allows Adding HttpOnly/Secure

Flags to Session Cookies
Yes X

Automatic Absolute Timeout

Handling
X X

Programmatic Access Control

For most enterprise applications, there is a need for creating fine grained access control systems that

take place after URL-based access control. There are many URLs that are accessible by multiple roles;

therefore further distinction regarding allowed access must be made before business case execution.

Also, there is usually a need for managing access to certain rows or records. This is called “data layer”

access control, because similarly privileged users must be segmented by data because they should not

be able to access each other’s data. A universal model for controlling such access to object instances is

considered difficult to design because each application’s requirements for modeling data are different.

The ESAPI project has a general-purpose set of interfaces to make the implementation of data-layer

access easier with an existing framework.

There are no functional or data-layer access control methods or architecture delivered as part of

Struts2. Standard practices currently in the J2EE development space include utilizing Acegi, JAAS, ESAPI,

creating a custom architecture, or not doing anything at all if security is not a concern. Because no

access control mechanisms are provided, developers must write custom code or utilize 3
rd

 party libraries

to compensate for the following attacks:

• Direct object references (OWASP2)

• Privilege escalation

Improvement in Programmatic Access Control

A model for all the necessary dimensions of a properly granular access control mechanism can be found

in the ESAPI project (OWASP4). A wholesale import of such functionality is in order if access control is a

goal of the Struts2 development team. The following table shows what functions ESAPI and Struts2 offer

in the area of access control:

Function ESAPI Struts2

API for Access Control Check on

URL
Yes X

API for Access Control Check on

Functions
Yes X

API for Access Control Check on

Data
Yes X

API for Access Control Check on

File
Yes X

API for Access Control Check on

Service
Yes X

Input Validation

There are many different places to perform input validation. How effective they are depends on how

much context the validation mechanism has about the use of the parameter. Therefore, the closer the

application’s validation is to the actual use of the parameter, the better the application can decide if the

value is appropriate.

This means that a web application firewall or J2EE filter can’t do proper input validation unless it is

supplied validation rules for each URL and parameter. This type of system, as was found in OWASP

Stinger and in many custom implementations, is generally thought not to be ideal since it requires

constant maintenance of a data file that describes all the validation. Over time, managing this data file

becomes too cumbersome a process and eventually the data file becomes ignored or out of date. This is

the type of input validation strategy in use in Struts2.

In order to validate a request for an Action, the developer must create a <ActionClassName>-

validation.xml file that contains the rules for that specific Action. A sample validation XML file may look

like the following:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE validators PUBLIC "-//OpenSymphony Group/ /XWork Validator 1.0.2//EN"
"http://www.opensymphony.com/xwork/xwork-validator- 1.0.2.dtd">

<validators>

 <field name="name">

 <field-validator type="requiredstring">

 <message>You must enter a name</message >

 </field-validator>

 </field>

 <field name="age">

 <field-validator type="int">

 <param name="min">13</param>

 <param name="max">19</param>

 <message>Only people ages 13 to 19 may take this quiz</message>

 </field-validator>

 </field>

</validators>

This validation file validates two things: that a parameter called “name” is present and that a parameter

called “age” is an integer between 13 and 19. It is a tedious process to add or change validation rules for

a parameter because of the XML bloat.

Improvements in Input Validation

There are a few improvements that could be done to increase the usability, security and efficiency of

input validation in the Struts2 framework.

Bring Back the validate() Method

As far as general improvements are considered, an alternative to the data-driven validation is to enforce

a validation pattern in the code, as was possible in Struts1. It is still possible however that an abstract

validation method required to be created by the architecture can simply be stubbed out to return

success and perform no validation and in effect bypassed by developers.

Provide a More Secure and Usable API for Getting Parameters

Accompanying this approach should be a system whereby developers can’t access a raw parameter

value without somehow specifying validation. For example, the only way to access a parameter is

through an API like the following:

someHttpRequestWrapper.getParameter(String paramete rName, IValidationRule rule)

someHttpRequestWrapper.getParameter(String paramete rName, List<IValidationRule> rules)

someHttpRequestWrapper.getParameter(String paramete rName, String regexp)

These methods could be configured to throw an exception or return null if validation rules fail. Similar

assert() type APIs could be provided if access to the parameter wasn’t necessary where validation was

taking place.

The ESAPI project has put a substantial amount of research into usable and reliable patterns in input

validation (OWASP5). It is our suggestion that the Struts2 developers consider the input validation

patterns in ESAPI and possibly integrate the features optionally before eventually phasing out older

techniques.

Add Validation Annotations to Input POJOs

As far as improving the existing infrastructure, it would be easy and powerful if a user could put

validation annotations inside the POJOs used as the input object model. Since these annotations are in

the Action class, they require more work to tie to individual parameters.

Add Canonicalization API

Another major piece of input validation that is missing is canonicalization. ESAPI also has taken great

strides in demonstrating to the J2EE community how to properly break down input into its simplest form

in order to avoid encoding and fragmentation attacks. Proper canonicalization is necessary for input

validation.

Add More Default Validators

Finally, it would be good if Struts2 bundled more validators with the project. There is already a good set

of validators now, including an email and URL validator. However, many real world applications run into

other common validation problems, such as how to validate a relative URL or filename safely.

Many applications would also benefit from an input validation API that automatically checked to see if

input received from the user was possible given the data delivered to them. For example, if a hidden

field delivered to the user was modified, this should cause an error in the framework since it is possible

to detect this problem automatically, assuming there’s no JavaScript code that drastically alters input

once received or creates new input forms that are not expected. This type of parameter-tampering

prevention has been implemented and can be studied in the Secure Parameter Filter project

(GOTHAM1).

Add a Workflow Scope

Another approach that can help application developers avoid hidden fields is the idea of a framework-

level “Workflow” scope, which is used by the Groovy framework. For wizard or multi-stage form

functionality, a developer can put information into a workflow-scoped object on the server side in order

to remove the need for putting that data into hidden fields. Any step in a workflow will from that point

forward have access to all of the data put into the workflow scope. The workflow scope is actually

stored within the session, but the framework should automatically manage the data. The framework

relays the information from the session when queried and it is cleared from the session when the

workflow is terminated. The following table shows what ESAPI and Struts2 offer in the area of input

validation:

The following table shows what ESAPI and Struts2 offer in the area of input validation:

Function ESAPI Struts2

Has Architectural Input

Validation Option
X Yes

API for Input Validation Yes Yes

Validate Method Enforce as Part

of Action Framework
X X

Input Validation Annotations on

Action
X Yes

Input Validation Annotations on

Input Object Model
X X

API for Canonicalization Yes X

Has Default Validators Yes Yes

Extended Set of Validators

(HTML, file paths, etc.)
Yes X

Has Workflow Scope X X

Cross-Site Scripting

There are generally two ways to defend against cross-site scripting: input validation and output

encoding. Input validation is not considered safe by itself because some injection contexts require very

few “special” characters in order to be exploitable. Also, an architecture that enforces strong input

validation on every field is difficult to achieve both technically and as part of a software development

process. Because of these circumstances, an emphasis on output encoding mechanisms available in a

platform is due. There are a number of criteria on which we can decide the effectiveness of an encoding

API:

• Does it support encoding based on HTML context (such as inside an attribute or JavaScript

block)?

• Does the encoding algorithm properly encode all characters needed to prevent an “up” or

“down” injection in the target context?

• Is it obvious when to use a particular mechanism?

• Can the mechanism produce output based on an arbitrary character set?

Output Mechanisms and Their Encoding Properties

Struts 2 JSP tags like <s:textfield/>, <s:textarea/>, and other UI tags help prevent basic XSS by encoding 3

very important special characters: ‘<’, ‘>’ and ‘”’.

The UI components, even with this limited encoding, are safe without a separate encoding vulnerability

(e.g., when the application uses US-ASCII or UTF-7 or doesn’t specify one, or if the output encoding is

controlled by the user). Therefore, a developer in Struts2 can use the default mechanisms available for

the safely building web forms with the following objects:

• Text fields

• Text areas

• Hidden fields

• File fields

• Checkboxes

It is not very difficult to build an application using only these UI controls. Situations where inputs are

used but <form> tags are not (like Ajax) are slightly awkward but still possible by using an empty Struts2

form tag need forms make things slightly awkward because an empty form is needed. However, the

tools are in Struts2 to build secure UI components.

However, XSS can occur when user input appears anywhere on a page, and not necessarily in a UI

component. According to the OWASP Prevention Cheatsheet, there are 5 injection contexts that need

unique levels of protection.

The first place and one of the most common places where XSS occurs is in the text body between a start

and end tag, like the following:

<div> [user input] </div>

The expected tag to use in this situation would be <s:property/>, which is a generic output mechanism

that encodes the same 3 characters as the UI tags: “<”, “>”, and ‘”’ (double quote). This is safe assuming

that application controls the page encoding and doesn’t choose an unsafe one.

The second context to look at is also a common place for XSS to occur: inside HTML attributes. We have

to breakdown the attributes into categories when talking about encoding – JavaScript event handlers

and everything else. For “everything else”, a safe encoding mechanism needs to encode many things.

The following is a quote from the Cheatsheet that talks about why so many characters need encoding

for HTML attributes:

Except for alphanumeric characters, escape all characters with ASCII values less

than 256 with the &#xHH; format (or a named entity if available) to prevent

switching out of the attribute. The reason this rule is so broad is that developers

frequently leave attributes unquoted. Properly quoted attributes can only be

escaped with the corresponding quote. Unquoted attributes can be broken out of

with many characters, including [space] % * + , - / ; < = > ^ and |.

The <s:property/> tag only encodes the 3 character’s we’ve mentioned before, and obviously does not

meet this criteria so it is not safe in general for encoding data that goes into non-event handler

attributes.

The second set of attributes is JavaScript event handlers. Many times security folks will suggest that

“HTML-encoding” output prevents XSS. While true in some contexts, HTML-encoding in JavaScript

sections doesn’t mean much. The rules for encoding there are vastly different from that of a normal

HTML context. Encoding data that goes into JavaScript (whether inside event handlers or script tags) is

different:

Except for alphanumeric characters, escape all characters less than 256 with the

\xHH format to prevent switching out of the data value into the script context or

into another attribute. Do not use any escaping shortcuts like \" because the

quote character may be matched by the HTML attribute parser which runs first. If

an event handler is quoted, breaking out requires the corresponding quote. The

reason this rule is so broad is that developers frequently leave event handler

attributes unquoted. Properly quoted attributes can only be escaped with the

corresponding quote. Unquoted attributes can be broken out of with many

characters including [space] % * + , - / ; < = > ^ and |. Also, a </script> closing tag

will close a script block even though it is inside a quoted string because the HTML

parser runs before the JavaScript parser.

There is no Struts2 tag (or utility method, or anything) that performs JavaScript encoding. Again, the

<s:property/> tag only encodes the 3 basic characters, so that offers very little protection against user

input inside of JavaScript contexts. The same can be said of any data that ends up inside stylesheet

sections.

Because of the lack of diverse or comprehensive encoding methods available in the framework,

developers must compensate with custom code or libraries against the following XSS attack vectors:

• JavaScript injection

• Unquoted or single-quoted attribute-based injection

• Stylesheet injection

Improvement in XSS Defense Mechanisms

We suggest that the Struts2 team implement tags that match ESAPI’s contextual output tags. In order to

provide the ability to output raw (and dangerous, if contents are influenced by the user) data so that

developers can send un-encoded data to the browser, there can be an “encode=false” option.

We suggest that the new tags be introduced as soon as possible so that the process of deprecation and

eventual removal can begin. The following table shows what ESAPI and Struts2 offer in the area of XSS

protection:

The following table shows what ESAPI and Struts2 offer in the area of XSS protection:

Function ESAPI Struts2

Safe UI Controls X Yes

API + View Tag for HTML

Element Context Encoding
Yes Yes

API + View Tag for HTML

Attribute Context Encoding
Yes X

API + View Tag for JavaScript

Encoding
Yes X

API + View Tag for CSS Property

Encoding
Yes X

API + View Tag for HTML URI

Encoding
Yes X

Cross-Site Request Forgery

Ignoring downstream solutions from the browser, an application developer’s highest assurance solution

for CSRF is secure form tokens, which are also called nonces. The qualities of a good token in a CSRF

defense mechanism include the following:

• The token value must be universally unique to user

• The token value must be computationally difficult to guess

• The token’s legitimacy must have a comparable lifetime to the user’s session

The following code snippet from org.apache.struts2.util.TokenHelper.java shows how Struts2 double-

submit tokens are built:

 private static final Random RANDOM = new Random();
 ...
 public static String setToken(String tokenName) {
 Map session = ActionContext.getContext().ge tSession();
 String token = generateGUID();
 try {
 session.put(tokenName, token);
 }
 ...
 public static String generateGUID() {
 return new BigInteger(165, RANDOM).toString(36).toUpperCase();
 }

This is bad CSRF token for several reasons:

• It doesn’t use a cryptographic-strength pseudo-random number generated (like

java.security.SecureRandom)

• The token value is not specific to the user

• Although the token is approximately 20 bytes (which is technically long enough), the token value

is forced to be 36-bytes in representation large. Thus, the token’s randomness is

disproportionate to its length, possibly giving a false sense of security.

So, Struts2 double-submit tokens are not a good defense against CSRF unless the TokenHelper utility is

sub-classed, made better, and hacked back into the bundled token interceptor framework.

Because of the lack of strong, token-based protection available in the framework, developers must

compensate with custom code or libraries against the following attacks:

• CSRF

• JavaScript Hijacking (FORTIFY1)

Improvements in CSRF Defense

Provide an additional “secure” or “csrf_strength” flag to the token interceptor framework that allows

developers to optionally absorb the performance penalty of generating cryptographically unique and

personalized random numbers for double submit token values. This is the cheapest and easiest place to

put a CSRF protection in the application ecosystem and it is backwards-compatible.

The following table shows what ESAPI and Struts2 offer in the area of CSRF protection:

Function ESAPI Struts2

API for Generating CSRF Token Yes X

API for Validating CSRF Token Yes X

Framework Anti-CSRF Solution X X

Appendix A: Authentication

The following Interceptor, AuthenticationInterceptor.java, shows how to create a centralized

authentication interceptor.

package com.nickcoblentz.struts2.interceptors;

import java.util.Collections;

import java.util.Map;

import java.util.Set;

import org.apache.struts2.StrutsStatics;

import com.nickcoblentz.rbaexample.security.Authent icationAware;

import com.opensymphony.xwork2.ActionInvocation;

import com.opensymphony.xwork2.interceptor.Abstract Interceptor;

import com.opensymphony.xwork2.util.TextParseUtil;

public class AuthenticationInterceptor extends Abst ractInterceptor {

 private String authenticationSessionField = new String("authenticated");

 private static final String authenticationRequir edResult =
"authentication_required";

 private Set excludeActions = Collections.EMPTY_S ET;

 @Override

 public String intercept(ActionInvocation invocat ion) throws Exception {

 Map session = invocation.getInvocationContext ().getSession();

 String actionName = invocation.getProxy().get ActionName();

 if(invocation.getAction() instanceof Authenti cationAware) {

 action = ((AuthenticationAware) invocation. getAction());

 action.setActionsWithoutAuthentication(excl udeActions);

 }

 Object authenticationObject = session.get(aut henticationSessionField);

 if(excludeActions.contains(actionName) ||

 (authenticationObject!=null && authenticati onObject instanceof Boolean &&

 authenticationObject.equals(Boolean.TRUE))) {

 return invocation.invoke();

 }

 return authenticationRequiredResult;

 }

 public void setAuthenticationSessionField(String authenticationSessionField) {

 this.authenticationSessionField = authenticat ionSessionField;

 }

 public void setExcludeActions(String values) {

 if (values != null) {

 this.excludeActions = TextParseUtil.commaDe limitedStringToSet(values);

 }

 }

}

The application would then have to reference the class as part of an interceptor chain as shown in the

following struts-security.xml:

<?xml version="1.0" encoding="UTF-8" ?>

<struts>

 <constant name="struts.custom.i18n.resources" valu e="global-messages login-
messages" />

 <package name="loginPackage" namespace="/" exte nds="struts-security">

 ...

 <!-- The authentication interceptor ensures us ers have authenticated

 before allowing access to Actions unless the action in listed

 in the "excludeActions" -->

 ...

 <interceptors>

 <interceptor name=" authenticationInterceptor"
class="com.nickcoblentz.struts2.interceptors.Authen ticationInterceptor" />

 <interceptor-stack name=" defaultSecurityStackWithAuthentication">

 <interceptor-ref name="defaultSecurityStack" />

 <interceptor-ref name=" authenticationInterceptor">

 <param
name="excludeActions">TokenError,SSLError,Authentic ationError,AuthorizationError,Custo
mError,Login,ProcessSimpleLogin</param>

 </interceptor-ref>

 </interceptor-stack>

 </interceptors>

 <default-interceptor-ref name=" defaultSecurityStackWithAuthentication" />

 <global-results>

 <result type="chain"
name="authentication_required">AuthenticationError< /result>

 </global-results>

 ...

 <!-- Error Handling Actions.

 They should be excluded from authenticati on and authorization -->

 <action name="AuthenticationError"
class="com.nickcoblentz.rbaexample.actions.CustomEr ror">

 <param name="errorMessage">error.authentic ation</param>

 <result>/WEB-INF/pages/security/CustomErro r.jsp</result>

 </action>

 <!-- Authentication Actions

 They should be excluded from authentication and authorization -->
 <action name="Login">

 <result type="tiles" name="input">Login.simpl eLogin</result>

 <result type="tiles">Login.simpleLogin</resul t>

 </action>

 <action name="ProcessSimpleLogin"
class="com.nickcoblentz.rbaexample.actions.ProcessS impleLogin">

 <result name="input" type="chain">Login</resu lt>

 <result type="redirect-action" name="success" >Internal</result>

 </action>

 <!-- Actions Requiring authentication -->

 <action name="Internal">

 <result type="tiles">Authenticated.interna l</result>

 </action>

 </package>

</struts>

Appendix B: URL-based Access Control

There is no built-in role-based access control mechanism protecting Actions in Struts2. Struts1

applications had this capability by assigning “roles” to actions defined in struts-config.xml. The standard

method for accomplishing this capability is by creating a customer Interceptor. An example of this

technique is displayed in the following RolesInterceptor.java class:

package com.nickcoblentz.struts2.interceptors;

import java.util.Collections;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Set;

import java.util.StringTokenizer;

import com.nickcoblentz.rbaexample.security.RolesAw are;

import com.opensymphony.xwork2.ActionInvocation;

import com.opensymphony.xwork2.interceptor.Abstract Interceptor;

import com.opensymphony.xwork2.util.TextParseUtil;

public class RolesInterceptor extends AbstractInter ceptor {

 private String roleSessionField = "role";

 private Map<String, Set> roleActions = Collections .EMPTY_MAP;

 private static final String AuthorizationRequiredR esult =
"authorization_required";

 @Override

 public String intercept(ActionInvocation invocatio n) throws Exception {

 final String actionName = invocation.getProxy().g etActionName();

 Map session = invocation.getInvocationContext().g etSession();

 if(invocation.getAction() instanceof RolesAware) {

 RolesAware action = (RolesAware) invocation.getA ction();

 action.setRoleActions(roleActions);

 }

 Object userRole = session.get(this.roleSessionFie ld);

 if(hasSufficientRole(userRole, actionName))

 return invocation.invoke();

 return AuthorizationRequiredResult;

 }

 public void setRoleActions(String roleActionsParam) {

 StringTokenizer roleActionsParamTokenizer = new
StringTokenizer(roleActionsParam,";");

 this.roleActions=new HashMap<String,
Set>(roleActionsParamTokenizer.countTokens());

 while(roleActionsParamTokenizer.hasMoreTokens()) {

 String roleActionArray[] =
roleActionsParamTokenizer.nextToken().trim().split(":");

 if(roleActionArray.length == 2) {

 String role = roleActionArray[0].toLowerCase();

 Set actions =
TextParseUtil.commaDelimitedStringToSet(roleActionA rray[1]);

 this.roleActions.put(role,actions);

 }

 }

 }

 public boolean hasSufficientRole(Object userRole, String actionName) {

 if(roleActions.containsKey("*") &&
roleActions.get("*").contains(actionName))

 return true;

 if(userRole !=null && userRole instanceof String) {

 String userRoleString = ((String)userRole).toLow erCase();

 if(roleActions.containsKey(userRoleString) &&

 roleActions.get(userRoleString).contains(actio nName))

 return true;

 }

 return false;

 }

 public String getRoleSessionField() {

 return roleSessionField;

 }

 public void setRoleSessionField(String roleSession Field) {

 this.roleSessionField = roleSessionField;

 }

}

This technique, as was highlighted in the “Centralized Security Mechanisms” section, fails to protect any

resource that isn’t a Struts2 Action.

Appendix C: HTTP Caching Headers

One way web applications can reduce the likelihood of browsers disclosing sensitive data through

caching is to include HTTP headers within the server's response that tell the browser not to cache the

received data.

Cache-control: no-cache, no-store

Pragma: no-cache

Expires: -1.

Depending on the browser, version and other circumstances, the “must-revalidate” flag and other such

values must also be present. These headers can be included within a Struts2 application by creating a

custom Interceptor. An example Interceptor class, CachingHeadersInterceptor.java, has been provided

below.

package com.nickcoblentz.struts2.interceptors;

import javax.servlet.http.HttpServletResponse;

import org.apache.struts2.StrutsStatics;

import com.opensymphony.xwork2.ActionContext;

import com.opensymphony.xwork2.ActionInvocation;

import com.opensymphony.xwork2.interceptor.Abstract Interceptor;

public class CachingHeadersInterceptor extends Abst ractInterceptor {

 public String intercept(ActionInvocation invocati on) throws Exception {

 final ActionContext context = invocation.getInv ocationContext();

 final HttpServletResponse response = (HttpServl etResponse)
context.get(StrutsStatics.HTTP_RESPONSE);

 if(response!=null) {

 response.setHeader("Cache-control","no-cache, no-store");

 response.setHeader("Pragma","no-cache");

 response.setHeader("Expires","-1");

 }

 return invocation.invoke();

 }

}

Once a custom interceptor has been created, it must be included within the Struts2 Interceptor stack.

The example struts-security.xml below defines an abstract Struts package; this package must be

extended before it can be used in an application.

<?xml version="1.0" encoding="UTF-8" ?>

<struts>

 <package name="struts-security" abstract="true" e xtends="struts-default">

 <interceptors>

 <interceptor name="cachingHeadersInterceptor"
class="com.nickcoblentz.struts2.interceptors.Cachin gHeadersInterceptor" />

 <interceptor-stack name="defaultSecurityStack ">

 <interceptor-ref name="defaultStack" />

 <interceptor-ref name="cachingHeadersInterc eptor" />

 </interceptor-stack>

 </interceptors>

 <default-interceptor-ref name="defaultSecurityS tack" />

 </package>

</struts>

Appendix D: Cross-Site Request Forgery

The following struts-security.xml file demonstrates creating an Interceptor stack that includes a token

check.

<?xml version="1.0" encoding="UTF-8" ?>

<struts>

 <package name="struts-security" abstract="true" extends="struts-default">

 <interceptors>

 <interceptor-stack name="defaultSecurityStack ">

 <interceptor-ref name="defaultStack" />

 <interceptor-ref name="tokenSession">

 <param name="excludeMethods">*</param>

 </interceptor-ref>

 </interceptor-stack>

 </interceptors>

 <default-interceptor-ref name="defaultSecurityS tack" />

 </package>

</struts>

The Interceptor stack must be referenced from your application’s Struts2 configuration:

<action name="ProcessSimpleLogin"
class="com.nickcoblentz.example.actions.ProcessSome Action">

 <result name="input" type="chain">SomeFailedActio n</result>

 <result type="redirect-action" name="success">Som eSuccessfulAction</result>

 <interceptor-ref name=" defaultSecurityStackWithAuthentication">

 <param name="tokenSession.includeMethods">*</pa ram>

 </interceptor-ref>

</action>

The only thing left is to use the <s:token /> tag in a form that requires protection:

<%@ page language="java" contentType="text/html; ch arset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<%@ taglib prefix="s" uri="/struts-tags" %>

<s:actionmessage label="Messages"/>

<s:actionerror label="Errors"/>

<s:fielderror label="Field Errors" />

<s:form action="ProcessSimpleLogin" validate="true" >

 <s:textfield name="username" label="Username" />

 <s:password name="password" label="Password" />

 <s:token />

 <s:submit value="Login" />

</s:form>

Appendix E: Handling Exceptions

Struts2 includes an Exception Interceptor in its default stack. Developers can utilize this interceptor to

catch errors and redirect users to a page containing a generic error message. One example is shown

below. The example struts-security.xml below defines an abstract Struts2 package; this package must

be created before it can be used in an application.

<?xml version="1.0" encoding="UTF-8" ?>

<struts>

 <constant name="struts.custom.i18n.resources" val ue="global-messages" />

 <package name="struts-security" abstract="true" extends="struts-default">

 <global-results>

 <result type="chain" name="custom_error">Cust omError</result>

 </global-results>

 <global-exception-mappings>

 <exception-mapping exception="java.lang.Excep tion" result="custom_error" />

 </global-exception-mappings>

 <action name="CustomError"
class="com.nickcoblentz.rbaexample.actions.CustomEr ror">

 <result>/WEB-INF/pages/security/CustomErr or.jsp</result>

 </action>

 </package>

</struts>

Appendix F: Requiring SSL

One way to redirect non-SSL requests within Struts2 is to create an Interceptor to verify this connection.

An example Interceptor, RequireSSLInterceptor.java, has been provided below.

package com.nickcoblentz.struts2.interceptors;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts2.StrutsStatics;

import com.opensymphony.xwork2.ActionContext;

import com.opensymphony.xwork2.ActionInvocation;

import com.opensymphony.xwork2.interceptor.Abstract Interceptor;

public class RequireSSLInterceptor extends Abstract Interceptor {

 public String intercept(ActionInvocation invocati on) throws Exception {

 final ActionContext context = invocation.getInv ocationContext();

 final HttpServletRequest request = (HttpServlet Request)
context.get(StrutsStatics.HTTP_REQUEST);

 if(request.isSecure()) {

 return invocation.invoke();

 }

 else {

 // invalidate session

 // redirect to a different page

 }

 }

}

It must be added to a referenced Interceptor stack as shown in the previous examples. The example

struts-security.xml below defines an abstract Struts2 package that includes the Interceptor in the

defaultSecurityStack; this package must be extended before it can be used in an application.

<?xml version="1.0" encoding="UTF-8" ?>

<struts>

 <package name="struts-security" abstract="true" e xtends="struts-default">

 <interceptors>

 <interceptor name="requireSSLInterceptor"
class="com.nickcoblentz.struts2.interceptors.Requir eSSLInterceptor" />

 <interceptor-stack name="defaultSecurityStack ">

 <interceptor-ref name="defaultStack" />

 <interceptor-ref name="requireSSLInterceptor" />

 </interceptor-stack>

 </interceptors>

 <default-interceptor-ref name="defaultSecurityS tack" />

 </package>

</struts>

Appendix G: Session ID Regeneration

When users cross an authentication boundary, their session ID should be regenerated. This means that

a user in an unauthenticated context should have a completely different JSESSIONID once they log in.

This concept can also be applied to events such as an elevation in privileges, addition or removal of a

role, a logout action, or a rotation between SSL and non-SSL requests.

In Struts2, a user’s JSESSIONID can be regenerated using the following code:

package nickcoblentzblog.actions.sessions;

import java.util.Map;

import org.apache.struts2.interceptor.SessionAware;

import com.opensymphony.xwork2.ActionContext;

import com.opensymphony.xwork2.ActionSupport;

import org.apache.struts2.dispatcher.SessionMap;

public class Login extends ActionSupport implements SessionAware {

 private String userid;

 private String password;

 private Map session;

 public String execute() {

 if(//check for successful authentication here) {

 ((SessionMap)this.session).invalidate();

 this.session = ActionContext.getContext().get Session();

 session.put(//Mark the user's session "Authen ticated" here);

 return SUCCESS;

 }

 else

 return ERROR;

 }

 public void setSession(Map session) {

 this.session = session;

 }

}

Bibliography

OWASP1. (n.d.). Guide to Building Secure Web Applications. Retrieved from OWASP.org:

http://www.owasp.org/index.php/Category:OWASP_Guide_Project

OWASP2. (n.d.). Top 10 2007-Insecure Direct Object Reference. Retrieved from OWASP.org:

http://www.owasp.org/index.php/Top_10_2007-A4

OWASP3. (n.d.). Top 10 2007-Failure to Restrict URL Access. Retrieved from OWASP.org:

http://www.owasp.org/index.php/Top_10_2007-A10

OWASP4. (n.d.). AccessController.java. Retrieved from code.google.com:

http://code.google.com/p/owasp-esapi-

java/source/browse/trunk/src/org/owasp/esapi/AccessController.java?r=303

OWASP5. (n.d.). Validator.java. Retrieved from code.google.com:

http://code.google.com/p/owasp-esapi-java/source/browse/trunk/src/org/owasp/esapi/Validator.java

OWASP6. (n.d.). ESAPI Canonicalization. Retrieved from jazoon.com:

http://jazoon.com/download/presentations/5320.pdf

GOTHAM1. (n.d.). Secure Parameter Filter (SPF). Retrieved from owasp.org:

http://www.owasp.org/images/8/8f/SPF.pdf

OWASP7. (n.d.). Testing Guide. Retrieved from owasp.org:

http://www.owasp.org/index.php/Category:OWASP_Testing_Project

OWASP8. (n.d.). Code Review Guide. Retrieved from owasp.org:

http://www.owasp.org/index.php/Code_Review_Guide_Frontispiece

OWASP9. (n.d.). ESAPIWebApplicationFirewallFilter.java. Retrieved from owasp.org:

http://code.google.com/p/owasp-esapi-

java/source/browse/branches/1.5.wafexperiment/src/main/java/org/owasp/esapi/filters/waf/ESAPIWe

bApplicationFirewallFilter.java?r=437

FORTIFY1. (n.d.) JavaScript Hijacking. Retrieved from fortify.com:

http://www.fortify.com/landing/downloadLanding.jsp?path=%2Fpublic%2FJavaScript_Hijacking.pdf

MANICODE1. (n.d.). double-submit cookie CSRF defense and HTTPOnly. Retrieved from blogspot.com:

http://manicode.blogspot.com/2009/02/double-submit-cookie-csrf-defense-and.html

ASPECT1. (n.d.). Breaking the Waterfall Mindset of the Security Industry. Retrieved from owasp.org:

http://www.google.com/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fwww.owasp.org%2F

images%2Fb%2Fb8%2FAppSecEU08-

Agile_and_Secure.ppt&ei=YPDsSfDeLpn4Mcz5nNkF&usg=AFQjCNEG5Chb9JV38bGBjCsE_ZldX0Xevw

