Taxonomy of web application vulnerabilities
Introduction

The rapid growth of Internet has influenced many companies in the way their services are delivered. More and more companies deploy online services allowing their clients and partners to perform their activities faster and more convenient. As the number of delivered services increase so does the complexity of the underlying information systems. The public interface exposed by these systems is commonly implemented via web applications. The lack of client software requirements and the common HTML interface are the major benefits of web applications.
As these information systems often deal with private data (credit card numbers, insurance numbers, home addresses, license numbers, etc.) and are exposed to public, the security requirements should be strictly held: the information system should enforce data confidentiality (privacy), data integrity and availability of services [1]. However, due to complexity of systems, time-to-market pressure, security unawareness of web programmers, the most of the systems (90%) [2] suffer from errors that make possible breaking of confidentiality, integrity or availability of delivered services. These kinds of errors are widely known as security vulnerabilities, and activities performed to exploit them are called web attacks.
There is a number [3, 4] of publicly available databases that keep track of the discovered flaws. A brief study of these databases shows that many vulnerabilities have the same root causes and slightly differ in exploit implementation only. Hence a good idea is to group vulnerabilities of the same type together. A good grouping will have the major benefit: a systematic analysis could be performed on the group basis instead of dealing with every instance of vulnerability. This may result both in developing of vulnerability detection methods and in creation of best practices ‘how not to write source code’. Also a common reference language for security analysts could be created.

There were some efforts to create common classification schemes both for web application threats [10], web attacks [9], and vulnerabilities [5]. The goal of this work is to introduce a new taxonomy for web application vulnerabilities that gives more insight into vulnerability analysis.
What is taxonomy, what is classification?
In common life the terms taxonomy and classification are usually used interchangeably. Further, often by word “classification” people refer to some process of breaking the set of items into groups. The goal of this section is to precisely define these terms. This section is based on the “Classifications and taxonomies” chapter of the [5].
Marradi [6] defines the process of classification as one of the following:
· an intellectual operation, whereby the extension of a concept at a given level of generality is subdivided into several narrower extensions corresponding to as many concepts at a lower level of generality;
· an operation whereby the objects or events in a given set are divided into two or more subsets according to the perceived similarities of one or several properties; or
· an operation whereby objects or events are assigned to classes or types that have been previously defined.

The first is an a priori classification, in which one considers only a concept and tries to subdivide it into sub concepts. The second is an a posteriori classification, in which one considers the actual objects or events and targets at grouping them according to properties, valuable to him. The final possibility is the actual process of determining the concrete class from the pre-defined set of classes for every given object.
According to Simpson [7], a taxonomy is a “classification, including bases, principles, procedures and rules”. Thus, a taxonomy is more than a classification – it states the principles, according to which the classification is done, and procedures to be followed in order to classify new objects.

According to [8], good taxonomies have taxonomic categories with the following characteristics:
1. Mutually exclusive: the categories do not overlap.

2. Exhaustive: taken together, the categories include all the possibilities.

3. Unambiguous: clear and precise so that classification is not uncertain, regardless of who is classifying.

4. Repeatable: repeated applications result in the same classification, regardless of who is classifying.

5. Accepted: logical and intuitive so that categories could become generally approved.

6. Useful: could be used to gain insight into the field of inquiry.

As the authors of [5] point out, there is no such thing as the ultimate taxonomy. Rather, each taxonomy is designed for the specific intended usage. Hence, the value of each taxonomy and its usefulness should be considered along with the viewpoint and the scope that the authors thereof had intended. Moreover, the authors of the certain taxonomy should explicitly state the intended usage, the scope and the viewpoint thereof.
The Case Study

As was already stated in the introduction, the main goal of the paper is to build taxonomy suitable for applying more systematization to vulnerability analysis. Thus, existing approaches to classification of web based security issues are considered with regard to the stated goal. We attempt to classify vulnerabilities as this is the root cause for all security issues. Threats and/or Attacks are possible due to vulnerabilities and therefore are of the second interest to us.
WASC Threat Classification.

According to the Web Application Security Consortium the goal of the Threat classification [10] is stated as follows:
· Identify all known web application security classes of attack.

· Agree on naming for each class of attack.

· Develop a structured manner to organize the classes of attack.

· Develop documentation that provides generic descriptions of each class of attack.
The standpoint of the authors of this classification is the attacker’s standpoint. The classification criterion is the intention of the attacker: authentication bypass, authorization bypass, DoS implementation or harvesting of data about web application. The important thing to note is that different attacker’s intents can be performed due to the very same flaw. For example, blind trust to the hidden field can result in broken access control or in command injection. Next, buffer overflow can be exploited for both remote command execution or for DoS attack (via memory corruption). Finally, bad input validation during form-based authentication can result in general SQL injection attack, an instance of which can be used to bypass authentication.
OWASP Top Ten 2007
According to the OWASP consortium, the aim of the Top Ten 2007 project [11] is stated as follows:
· Educate developers, designers, architects and organizations about the consequences of the most common web application security vulnerabilities. The Top 10 provides basic methods to protect against these vulnerabilities – a great start to your secure coding security program.

The standpoint of the authors is the web application side. The objects under analysis are vulnerabilities. The important thing about the project is that it is not classification, but merely a grouping. There is no ultimate rule that motivates why the groups are like this ones and not different. Instead this Top Ten is the result of evaluation of security incidents over a certain period of time by experts. The assessment of severity and frequency of common security incidents influenced the project authors during the grouping. The OWASP Top Ten 2007 is not exhaustive and its groups are of different granularity, but the project never intended to enforce the corresponding features.
The Common Weakness Enumeration
According to [12] CWE is targeted at:

· Serve as a common language for describing software security weaknesses in architecture, design, or code.

· Serve as a standard measuring stick for software security tools targeting these weaknesses.

· Provide a common baseline standard for weakness identification, mitigation, and prevention efforts.

CWE is a general enumeration and contains weaknesses both of web applications and of other software. CWE has two classifications of weaknesses: by Location and by Intent. The classification by Location has three major groups: Source code, Byte code and Environment. The vast majority of vulnerabilities are located under Source code group. Since CWE classification is general purpose, it contains not relevant to web applications entries. Next, CWE has some technology-specific groups, and composite entries (check CSRF). Finally, a weakness is not always vulnerability. However, the CWE is a good starting point; this database had inspired many ideas for the current work.
PwC vulnerability classification

PriceWaterhouseCoopers had attempted to classify web application vulnerabilities in the [20]. However the classification does not provide answers to the following questions:

· What kind of vulnerability is race condition or memory leakage?
· What kind of vulnerability is CSRF: authentication, session management, or business logic?
· Where is the line between Authorization and Business logic? Consider ‘transaction integrity’ and ‘information flow control’, ‘need to know’ and ‘least privilege’, etc.
· Why session management is not a subclass of authentication class?

Alvares classification of web attacks
Alvares et al [9] introduced the taxonomy for web based attacks. The standpoint of the author is an attacker’s side. However, for his attack classification Alvares considered vulnerabilities type that particular attacks exploit. The proposed types for vulnerabilities were: code injection, canonicalization, html manipulation, overflows and misconfiguration. Obviously, this is not complete taxonomy.
Bugtraq vulnerability classification

According to [5], Bugraq [3] utilizes the following classification for vulnerabilities: Access validation error, boundary condition error, input validation error, design error, failure to handle exceptional conditions, configuration error and unknown. First of all, bugraq tracks vulnerabilities for different kinds of software, not only web application. Hence, the groups are very general. Second, its completeness is achieved via ‘Unknown’ group, which makes this classification less clear and useful.
The proposed taxonomy

The first step in building taxonomy is to define the model of the subject matter. The model focuses on the interesting traits of the objects under analysis while omitting uninteresting ones. The model defines the standpoint and the scope of view for the taxonomy.

The first part of the current section discusses two different approaches to model HTTP processing stages performed on the server side. The first approach is based on the physical decomposition and the second one – on the logical decomposition.
Decomposition by physical components
The model of common components running server side during HTTP request processing is presented in the Figure 1.

[image: image1.emf]OS Mail DBMS LDAP

Services

Web Server

Web Application

Language Runtime

Web Framework

HTTP request HTTP response

Figure 1. HTTP processing. Decomposition by physical components.
First, the incoming HTTP request is served by the web server. Web server parses it and determines the requested resource. If the resource is a registered executable (i.e. jsp, asp, php, etc.) the web server invokes (we do not focus how: CGI, web server API, etc.) the execution of the requested executable and passes the request to it. The web application component is executed within the language runtime environment. The component uses the standard library (e.g. .NET CLR, Java Runtime Environment, PHP or Python standard library, etc.) and surrounding web framework (which is built upon standard library as well) to obtain parsed data from HTTP request and to manipulate it according to its business logic. At times web component utilizes services like OS system calls, DBMS, Mail, LDAP and so on. Eventually, web application by means of web framework and/or standard library generates HTTP response, which is finally delivered to the client via web server.
Apparently, the model of physical components resembles a sandwich, where subsequent component is wrapped into preceding one. To make things worse, often Language Runtime is wrapped into Web Server component. The examples include IIS with ASP, Geronimo, Apache with mod_php or mod_perl or mod_python, etc. This wrapping is the root cause of inconvenience for further refinement to taxonomy. The model does not provide clear and separate boundaries as it does not provide abstraction over technology. For example, in Java 5 EE authentication and authorization is basically implemented by web server, in ASP.NET – by web server (IIS) and Language Runtime (ASP library), in PHP and Perl – by web server and web frameworks.
Decomposition by logical components

The second approach to model activities on the server side – is to model the services that participate in HTTP response processing. The logical decomposition of HTTP processing into services is presented in Figure 2.

[image: image2.emf]Communication

Authentication

Authorization

Logging

Pre-processing Post-processing

Forge references to objects

Forge queries to services

Generate output

Business Logic

HTTP request HTTP response

Figure 2. HTTP processing. Decomposition by logical components.

The underlying basis for every network service is the Communication subsystem. This subsystem implements transport protocols, accepts and serves incoming connections.
The next step in processing the connection is to pre-process any incoming data according to syntax checking rules. The following activities are performed during this step:

· Parse and validation of HTTP request according to RFC;
· Forgery of request object and its environment (i.e. connection information, session data, etc.) according to the rules of the certain API (e.g. PHP SAPI, CGI, FastCGI, ASP.NET);
· Canonicalization of input data into the certain format;

· Application of syntax checking policy to input data.
The goal of the step is to insure that particular input parameters comply with the certain syntax rules implied by the APIs used in web application. The examples of these rules are: “input parameter A should not contain SQL special characters” or “input parameter B should be valid email address” or “input parameter C should be valid integer representation”, etc. No semantic checks occur at this stage: the syntax checking routines do not care whether parameter A represents a price, or an age, or even an Id of particular internal object.
The next step is to authenticate the HTTP request: that is to ensure that the request was indeed submitted by the user, whose credentials it contains. Authentication is performed by the special authentication protocols, the most popular of which are: HTTP basic, HTTP digest and Cookie authentication. It’s important to note, that this step is optional: there are lots of public services that do not require knowing user identities. These services treat any user as general “unknown” person.
The next step after authentication is authorization. Authorization is the mechanism by which a system determines what level of access a particular authenticated user should have to secured resources controlled by the system. Authorization systems provide answers to the questions:

· Is user X authorized to access resource R?

· Is user X authorized to perform operation P?

· Is user X authorized to perform operation P on resource R?

Since every part of the HTTP request is controlled by the client, the following activities are performed during this step:

· Detection of every input parameter’s origin: whether it was set by user or by application (and was not changed);
· Application of access control rules, that is, the answer to the stated above questions.
It’s important to note, that this step is paired with the previous one. The both steps could be omitted, but when any of them is present, the lack of the other is a severe vulnerability.
The next step is to perform useful processing of input data according to the business logic and the client’s expectations. The input data already has correct syntax and the access to the requested operation is granted by authorization step. The following activities are performed during this step:
· Application of semantic checking policy to input data. Examples of semantic checks are: “ensure that square root function argument is non-negative value”, “ensure that minimum funds withdraw is 5$”, “ensure that message post does not contain foul words”, etc. These checks heavily rely on the intended data domain for business operations.
· Forgery of object references, queries to external services. Object reference is a link in the notation of particular API, which is used to access data in certain environment. The examples of references are filenames, XPath expressions, URIs, etc. Queries are commands to external services such as DBMS, LDAP, OS command interpreter, and so on.
· Sequencing of data manipulation routines according to algorithm implementing business logic;
· Output generation.
The goal of this step is the same as of the whole web application: to perform certain useful data processing.
The final step in the request handling life cycle is Post-processing. The goal of this step is to apply custom transformation policies to the generated HTTP response. The examples of the policies are:
· URL rewriting. This processing occurs when the authentication protocol is implemented via cookieless session identifiers.
· Comments stripping. Comments sometimes contain sensitive data that could be exploited by malicious users. A good idea is to strip all comments from the resulting HTML pages.
· Server header replacement. The easiest way to fingerprint web server is to check the Sever header of HTTP response. A good idea to mess things up is to replace real Server header value with different version.
· JavaScript obfuscation. JavaScript obfuscation is a good option to conceal logic of client side processing, which is practical in AJAX enabled applications.
· Error suppression (custom error page presentation).
There is also one service that is spread throughout request processing – a logging service. The goal of this service is to provide accountability for all transactions performed by web application. For example, financial transactions must always be tracked in order to abide by Sarbanes-Oxley regulations.
The taxonomy of vulnerabilities
The model in previous section has intuitive division into services and can be further refined by considering the security policies each service is able to enforce. These policies are presented in Figure 3. Each policy is the basis for a class of security vulnerabilities.

[image: image3.emf]Encryption Policy, Connection Acceptance Policy

Authentication Protocol

Access Control Policy

Logging Policy

Syntax Checking Policy Obscurity Policy

Semantics Checking Policy

Business Logic

HTTP request HTTP response

Figure 3. HTTP processing. Security points of application by service.
Encryption Policy
This policy defines which web application interface should be protected by encryption and what algorithms should be used. Besides, the encryption policy specifies which data should be encrypted before storing in the local storage. Basically, encrypted tunnels are created whenever sensitive data (passwords, credit card numbers, etc.) is to be transmitted. RFC 2818 defines HTTPS, which is an additional encryption/authentication layer between the HTTP and TCP. The level of protection depends on the correctness of the implementation by the web browser and the server software and the actual cryptographic algorithms supported.
Thus, the three subclasses of the Encryption Policy vulnerabilities are:
· The lack of encryption for interfaces dealing with sensitive data;
· Weak encryption algorithms for data transition;

· Weak encryption algorithms for data storage;

· Improper implementation of HTTPS by web server.
Connection Acceptance Policy
This policy specifies the circumstances under which the request should be processed and under which – should not. In general, there are two kinds of parameters to be used in a policy: statistical and network. Statistical rules can be: “the number of connection in simultaneous processing should not exceed N” or “the number of simultaneous connections from certain IP should not exceed K”. Rules based on the network parameters are widely known as ACLs. The ACLs are extremely helpful to limit access to administrative interfaces.
Thus, the two subclasses of the Encryption Policy vulnerabilities are:
· Improper statistical policy;
· Improper of network policy.
Syntax Checking Policy
This policy specifies the syntax rules that particular parameters should conform to. The rules are implied by the APIs that are used in web application for data manipulation. The syntax checking process consists of the two stages: normalization (or canonicalization) and application of rules. The usage of input parameters in further processing could be classified as follows:
· Forgery of reference to an object. The examples of such references are filename, XPath expression, URI.
· Forgery of control structure for a certain service. The examples of such structures include: HTTP response, HTML page, SQL query, eval-argument, Shell interpreter command, and so on.
· Usage in custom routines implementing business logic. The examples of such routines include mathematical operations, if web application implements online calculator or calculus of approximations. These errors are basically fixed during functional testing.
Generally, data processing APIs utilize widely accepted grammars for data manipulation: URI notation, XPath syntax, SQL, Shell language, etc. In contrast, business logic operations do not. This is one of the reasons, why it is easier to identify injection vulnerabilities than logic ones.
The subdivision of syntax checking policy vulnerabilities is:

· The lack of or errors in normalization;

· Object reference without validation;
· Subdivision according to grammar used for reference construction
· Subdivision by access type: execute, read, write;

· Command construction without validation;
· Subdivision according to grammar used for command construction;

· Application failures due to type mismatch errors.
Authentication protocol
According to [13], authentication protocol is a defined sequence of messages between a Claimant and a Verifier that demonstrates that the Claimant has control of a valid token to establish his/her identity, and optionally, demonstrates to the Claimant that he or she is communicating with the intended Verifier. HTTP is initially stateless protocol. This means that besides initial authentication, every subsequent request should be authenticated as well. There are several methods to keep a user in authenticated state: HTTP basic and digest, URL rewriting, hidden fields, RFC 2965 (HTTP State Management Mechanism via cookies).
According to [14] authentication protocol should be resistant to: eavesdropper attack, replay attack, online guessing, verifier impersonation and man-in-the-middle attacks. We add to these one more category: incorrect failover mechanism. Thus, the subclasses of the Authentication Protocol vulnerabilities are:
· Susceptibility to eavesdropper attack.
· Susceptibility to replay attack.

· Susceptibility to online guessing.

· Susceptibility to verifier impersonation.

· Susceptibility to man-in-the-middle attacks.

· Incorrect failover mechanism:
· Flawed secret recovery procedure;

· Flawed accounts lockout procedure.
Access Control Policy
Access control is the ability to permit or deny the use of a particular resource by a particular entity. Access control policies are based on access control models. There are both general access control models [15] and web application specific ones [16]. The access control rules are expressed in the terms of the chosen model. The process of developing access control can be viewed as follows:
1. Define access control policy in common language;
2. Chose access control model;
3. Translate access control policy into formal notation of the model;

4. Implement the model.

There is a possibility of error in every step:
1. Missed used case. This is flaw of the design and it cannot be detected automatically, since there is no specification of the system intended usage.
2. Weakness in the model. For example, MAC and DAC models do not deal with data flows. Data flow models basically do not deal with covert channels, etc. This flaw can be detected via lookup in the database containing drawbacks of popular access control models (this database needs to be maintained somewhere).
3. Errors in translation. A rule in common language and the same rule in the notation of the model could become nonequivalent after translation. These errors cannot be detected automatically either: there is no other formal definition of policy to compare the translated one with.
4. Errors in implementation. The automated tools can be applied to test if the implemented system enforces access control rules that were specified by the certain policy (if the policy exists).
The bad thing about authorization in web application is that access control is rarely specified formally. If there is no formal definition of the security policy the three steps specified above cannot be distinguished, instead the security analyst observes access control as is. Hence, an analyst or automated tool should somehow imply these rules. The next chapter proposes an approach to derive access control rules automatically.
To sum the things up, the Access Control Policy vulnerabilities are:

· Failure to detect parameter’s origin.

· Discontinuous authorization. This class can be subdivided, if there is enough knowledge into:

· Missed use case in security policy.
· Weakness in access control model.
· Error in formalizing security policy.
· Error in implementation of the model.

Semantics checking policy
This policy ensures that business logic operations receive values from the certain domains and that operations are executed in a certain order and timing.
According to Church-Turing thesis, Turing machines capture the informal notion of effective method in logic and mathematics, and provide a precise definition of an algorithm or 'mechanical procedure'. The Turing machine is a finite state machine. That’s why program logic is commonly modeled via finite state machines. As was shown earlier, in the absence of formal specification, the two events for security analyst are equivalent:

· Flawed logic, perfect implementation;

· Perfect logic, flawed implementation.

Therefore, we proceed with the assumption that the logic is fine. From the FSM standpoint, the code that implements program logic can suffer from the following errors:
· There exists a transition between states that was not intended (with, possibly, new states). But the access to business logic functions is controlled by the authorization step and, particularly, access control rules. So, this issue should be handled by access control.
· The transition rule has different predicate from the intended.

· The timing issues for transitions are not considered.
Many examples of flaws that are treated as logic can be found in [17], [18] and [19]. However, only some of them are really logic ones. The rest relate to other classes (basically, to access control vulnerabilities).
Example 1: The transition rule has different predicate from the intended.
This example was inspired by the sixth example in [18]. Consider an online payment system. Everyone is able to donate some money to a recipient of his choice. Let the account A be a donator and the account B – the recipient. The formulas for funds calculus after transaction are:
· Account A = Initial amount – donation amount;

· Account B = Initial amount + donation amount;

So, what if donation interface does not enforce submitting positive numbers? At this point two choices are possible: if the business logic implements bidirectional money transfer via negative numbers (and it is stated in documentation), then inability to enforce positive donation is an access control flaw. Otherwise, it is business logic flaw, particularly – inability to perform semantics check.
Example 2: The timing issues for transitions are not considered.
This example is taken form [19]:
… a mobile telecom operator (we'll call it FlawedPhone.com) launched a webmail+SMS service for its customers, with the following characteristics:

· New customers, when buying a SIM card, can open a free, permanent email account with the flawedphone.com domain.
· The email is preserved even if the customer “transfers” the SIM card to another telecom operator.
· However, as long as the SIM card is registered to FlawedPhone, each time an email is received, a SMS message is sent to the customer, including sender and subject.

· The SMS application checks that the target phone number is a legitimate customer from its own copy of the FlawedPhone customers list, which is automatically updated every ~8 hours.

The application had been developed following security best practices but it suffered from a business logic flaw and FlawedPhone was soon targeted by the following fraud attack:

· The attacker bought a new FlawedPhone SIM card;

· The attacker immediately requested to transfer the SIM card to another mobile carrier, which credits 0.05 € for each received SMS message;

· As soon as the SIM card was “transferred” to the new provider, the malicious user started sending hundreds of emails to their FlawedPhone email account;

· The malicious user had an ~8 hours window before the email+SMS application had its list updated and stopped delivering messages;

· By that time, the malicious user had accumulated ~50-100 € on the card, and proceeded to sell it on eBay.

The developers thought that SMS messages delivered during the 8 hours period would have introduced a negligible cost but failed to consider the likelihood of an automated attack like the one described. As we can see, the customer list synchronization time combined with the lack of limit to the number of messages that could be delivered in a given period of time, introduced a critical flaw in the system that was soon exploited by malicious users.

This flaw is the result of mistakenly estimation of business transactions timings. The most common way of ensuring proper duration of transactions is to include CAPTCHA into certain web application interfaces.
To sum the things up, the Semantics checking policy vulnerabilities are:

· Insufficient semantics checking of input data;

· Insufficient control for transactions timings.

In the absence of specification, the first type of flaws cannot be checked automatically. The second type of flaws could be checked semi automatically: an automated tool gathers a list of business logic activities that are performed without timing constraints and present them to security analyst for further analysis.
Obscurity policy
This policy defines what type of information web application users should never get. As was listed earlier, the following information could be concealed: web server name and version, HTML comments, detailed errors, stack traces and debug information, client side logic (via JavaScript obfuscation). Thus, the subclasses of the Obscurity Policy vulnerabilities are:

· Exposure of web server name and version;

· Exposure of HTML comments;

· Exposure of web application errors and debug information;

· Exposure of client side data processing logic.

Logging policy
This policy defines what web application operations should be logged and what kind of information should be provided in each log entry. The flaws in logging system are usually design flaws and concerned with missing logging facility for sensitive operations, such as authentication, critical transactions, errors, etc. This class does not have subclasses.
Code quality and manner of usage

Every web application has an important property inherited from functional and load testing software development phases – software quality. There are a number of common errors that should be detected during these phases, which influence security of web applications. These errors are treated as subclasses of software quality flaws:
· Inability to free resources;

· Race conditions;

· Memory corruptions;
· Numeric overflows.

Furthermore, in our services classification we did not include vulnerabilities, which are introduced by improper usage of web application functionality. It’s widely known, that even most secure system could be compromised by its users and irresponsible administrators. The examples of improper usage are:
· Web application administrator creating overpermissive user accounts;
· Web application administrator disabling logging;

· Web server administrator refusing to patch the system with updates;

· Web application users sharing their accounts.
These vulnerabilities are considered as vulnerabilities of security policy of a company running web application. These are grouped together under the name “Improper usage”.
Mapping of the OWASP Top Ten 2007
This section provides mapping of the OWASP Top Ten 2007 vulnerabilities to the introduced taxonomy.

	A1 - Cross Site Scripting (XSS)
	Improper syntax checking (Command construction without validation (JavaScript

	A2 - Injection Flaws
	Improper syntax (Command construction without validation

	A3 - Malicious File Execution
	Improper syntax (Reference construction without validation (Filenames (Execute

	A4 - Insecure Direct Object Reference
	Improper syntax (Reference construction without validation (Filenames (Read

	A5 - Cross Site Request Forgery (CSRF)
	Authentication Protocol Flaws (Susceptibility to verifier impersonation

	A6 - Information Leakage and Improper Error Handling
	Improper Obscurity Policy

	A7 - Broken Authentication and Session Management
	Authentication Protocol Flaws

	A8 - Insecure Cryptographic Storage
	Improper Encryption Policy (Weak encryption algorithms

	A9 - Insecure Communications
	Improper Encryption Policy (The lack of encryption for interfaces dealing with sensitive data

	A10 - Failure to Restrict URL Access
	Improper Access Control (Discontinuous authorization

Table 1. Mapping of OWASP Top Ten 2007 vulnerabilities to the developed taxonomy.
References
[1] J. B. D. Joshi, W. G. Aref, A. Ghafoor, E. H. Spafford. “Security models for web-based applications.” In: Communications of the ACM, vol. 44, no. 2, pp. 38-44, Feb. 2001.
[2] J. Grossman. "Website Vulnerabilities Revealed: What everyone knew, but afraid to believe". WhiteHat Security, March, 2008.
[3] BugTraq. Available: http://www.securityfocus.com/archive/1
[4] Common Weakness Enumeration. Available: http://cwe.mitre.org/
[5] C. Vanden Berghe, J. Riordan, F. Piessens. “A Vulnerability Taxonomy Methodology applied to the Web Services.” In: Proceedings of the 10th Nordic Workshop on Secure IT Systems (NordSec 2005), pp. 49-62, 2005.
[6] A. Marradi. “Classification, typology, taxonomy.” Quality and Quantity, no. 2, pp. 129‑157, May 1990.
[7] G. G. Simpson. “Principles of animal taxonomy.” Technical report, Columbia University, New York, US, 1961.
[8] E. G. Amoroso. “Fundamentals of Computer Security Technology.” Prentice-Hall PTR, 1994.
[9] G. Álvarez, S. Petrovic. “A new taxonomy of Web attacks suitable for efficient encoding.” Computers & Security vol. 22, no. 5, pp. 435-449, 2003.

[10] Web Application Security Consortium: Threat Classification. Version 1.00. Web Application Security Consortium, 2004.

[11] OWASP Top Ten 2007. The OWASP Foundation, 2007.

[12] Common Weakness Enumeration. The MITRE Corporation, 2008.
[13] Information Security. NIST Special Publication 800-63-1. Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, February 20, 2008.
[14] Electronic Authentication: Guidance for selecting secure techniques. Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology, 2004.
[15] J. B. D. Joshi, W. G. Aref, A. Ghafoor, E. H. Spafford. “Security models for web-based applications.” In: Communications of the ACM, vol. 44, no. 2, pp. 38-44, Feb. 2001.

[16] V. Kolovski, J. Hendler, B. Parsia. “Analyzing web access control policies.” In: Proceedings of the 16th international conference on World Wide Web, May 8-12, 2007.

[17] J. Grossman. “Seven business logic flaws that put your website at risk.”, WhiteHat Security, October, 2007.

[18] D. Stuttard, M. Pinto. “The web application hacker’s handbook: discovering and exploiting security flaws.” Chapter 11, Wiley Publishing Inc., 2007.
[19] OWASP: Testing for business logic. Available: http://www.owasp.org/index.php/Testing_for_business_logic
[20] Developing a Secure Web application. PwC Information Security, PwC, April, 2007.
PAGE
1

_1276422132.vsd
�

Communication

Authentication

Authorization

Logging

Pre-processing

Post-processing

Forge references to objects
Forge queries to services
Generate output

Business Logic

HTTP request

HTTP response

_1276529752.vsd
�

Encryption Policy, Connection Acceptance Policy

Authentication Protocol

Access Control Policy

Logging Policy

Syntax Checking Policy

Obscurity Policy

Semantics Checking Policy

Business Logic

HTTP request

HTTP response

_1276410014.vsd
�

Web Server

Language Runtime

Web Framework

Web Application

OS

Mail

DBMS

LDAP

Services

HTTP request

HTTP response

