
The OWASP
Foundation

http://www.owasp.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

OWASP AppSec EU
August 20-23, 2013 Hamburg

OWASP OWTF
Summer Storm

Abraham Aranguren

OWASP OWTF Project Leader
@7a_ @owtfp

abraham.aranguren@owasp.org

Agenda
• GSoC Overview

• What is OWASP OWTF?

• Status update on OWTF GSoC projects

• OWTF Reporting

• OWTF Multiprocessing

• OWTF MiTM Proxy

• OWTF Testing Framework

• OWASP Testing Guide with OWTF

• Conclusion

Agenda
• GSoC Overview

• What is OWASP OWTF?

• Status update on OWTF GSoC projects

• OWTF Reporting

• OWTF Multiprocessing

• OWTF MiTM Proxy

• OWTF Testing Framework

• OWASP Testing Guide with OWTF

• Conclusion

Google Summer of Code
(GSoC)

Overview

• OWASP got 11 slots from Google

• OWASP received 84 proposals

• 73 students (87%) could not be selected.

• Final slot breakdown:

• 4 - OWASP ZAP

• 4 - OWASP OWTF

• 1 - OWASP Hackademic

• 1 - OWASP ModSecurity

• 1 - OWASP PHP Security Project

GSoC Stats + Outcome

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

• 14 students showed interest (email)

• 11 (79%) students submitted a proposal

• 14 proposals were submitted (16% of 84)

• 5 OWTF proposals ended in the top 11

• 1 student was lost in de-duplication process
(accepted by another org)

• 4 OWTF proposals were finally selected (36% of
11)

OWTF GSoC Overview

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

OWTF GSoC student poll summary:

• “It’s python”

• “I like this project”

• “It’s a project I can do with my skills”

• “OWTF is the best project to learn about other
tools/security”

• “Other mentors/org didn’t reply” (!)

• “Quick feedback/encouragement/advice”

Why submit for OWTF?

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

• Reporting: Assem Chelli

• Multiprocessing: Ankush Jindal

• MiTM Proxy: Bharadwaj Machiraju

• Testing Framework: Alessandro Fanio
González

Selected OWTF Proposals

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

http://blog.7-a.org/2013/06/owasp-owtf-gsoc-selection-stats-and-poll.html

Without them 3 OWTF students would have been
lost (GSoC 1 dedicated mentor x student rule):

Andrés Morales, Andrés Riancho, Azeddine
Islam Mennouchi, Gareth Heyes, Hani
Benhabiles, Javier Marcos de Prado, Johanna
Curiel, Krzysztof Kotowicz, Martin Johns

THANK YOU for stepping up!

Dedicated OWTF mentors

What is
OWASP OWTF?

aka The Offensive (Web) Testing Framework

OWTF = Test/Exploit ASAP

OWTF’s Chess-like
approach

Kasparov against Deep Blue - http://www.robotikka.com

http://www.robotikka.com/
http://www.robotikka.com/

OWTF Plugin Groups (-g)
• web: Try to cover the OWASP Testing Guide

owtf.py http://demo.testfire.net (-g web: optional)  web only
owtf.py –l web  List web plugins

• net: Somewhat like nmap scripts
owtf.py demo.testfire.net (-g net: optional)  portscan + probe
NOTE: if a web service is found, web plugins will also run
owtf.py –l net  List net plugins

• aux: Somewhat like msfcli in metasploit
owtf.py -f -o Targeted_Phishing SMTP_HOST=mail.pwnlabs.es SMTP_PORT=25

SMTP_LOGIN=victim SMTP_PASS=victim EMAIL_FROM=sevena@pwnlabs.es
EMAIL_PRIORITY=no EMAIL_SUBJECT='Test subject' EMAIL_BODY='test_body.txt'
EMAIL_TARGET='victim@pwnlabs.es‘  Phishing via SET

owtf.pl –l aux  List aux plugins

http://demo.testfire.net/
http://demo.testfire.net/
http://demo.testfire.net/

Web Plugin Types (-t)
At least 50% (32 out of 64) of the tests in the OWASP Testing guide can

be legally* performed to some degree without permission

* Except in Spain, where visiting a page can be illegal 
* This is only my interpretation and not that of my employer + might not apply to your country!

OWTF Report = Chess-like Analysis
You need to understand this to use the OWTF report efficiently 

From Alexander Kotov - "Think like a Grandmaster":
1) Draw a list of candidate moves (3-4)  1st Sweep (!deep)
1) Draw up a list of candidate paths of attack = rank what matters

2) Analyse each variation only once (!)  2nd Sweep (deep)
2) Analyse [tool output + other info] once and only once

3) After step 1 and 2 make a move
3) After 1) and 2) exploit the best path of attack

Ever analysed X in depth to only see “super-Y” later?

Demo 1: Admin interface
Pre-Engagement: No permission to test  preparation

1) Run passive plugins  legit + no traffic to target
Sitefinity CMS found

2) Identify best path of attack:
• Sitefinity default admin password
• Public sitefinity shell upload exploits

Engagement: Permission to test  exploitation

Try best path of attack first

Demo 1: Outcome
1 minute after getting permission …

Demo 1: Outcome
5 minutes after getting permission …

Demo 2: Crossdomain
Attack preparation (pre-engagement safe)  preparation
1) Run semi-passive plugins  legit
Missconfigured crossdomain, fingerprint wordpress version

2) Identify best path of attack:
crossdomain + phishing + wordpress plugin upload + meterpreter

3) Replicate customer environment in lab
4) Prep attack: Adapt public payloads to target
5) Test in lab

Launching the attack  exploitation
1) Tested attack works flawlessly on the first shot
2) Pivot
3) Show impact

OWTF Financials: Ideas plz 
Funding granted so far (THANK YOU Brucon + Google!):
• €5,000 – Brucon 5x5
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
• $2,000 – GSoC ($500 x student)

What should we do with that money?

http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html
http://blog.brucon.org/2013/02/the-5by5-race-is-on.html

Status update
on

OWTF GSoC Projects

OWTF Reporting
by

Assem Chelli

Dedicated Mentor: Gareth Heyes (@garethheyes)
Co-mentors: Azeddine Islam Mennouchi, Hani

Benhabiles, Johanna Curiel, Abraham Aranguren

•Old report limitations

•Reporting goals

•Pre-implementation research

•Prototype voting/feedback

•Upcoming features

Reporting Agenda

Old Report != Sexy 

●Online sample: http://goo.gl/iZshVJ

Old report limitations
• Complicated + hard to understand

• Poor loading time of “big” reports (i.e. 30+ websites)

• Not cross-browser compatible (Firefox only)

• Inability to suit various screen sizes

• Not visually appealing :(

• Direct HTML generation from python code

Reporting Goals
• UI simplification + intuitiveness
• Better load time + responsiveness
• Cross-browser compatibility
• Improved screen size support (i.e. mobile users, etc)
• Improve visual appeal  with community backing
• Build a skin system  Users can choose/create skins
• Move HTML into template files:
!python = designer-friendly = more people can help us
• Optimise click flow + mouse movement

Pre-implementation research
Twitter bootstrap gives us:
•Browser compatibility
•Pre-configured layouts
•Pre-defined styles
• Icon sets
• jQuery plugin integration
•Responsiveness + Simplicity

Pre-implementation research
Jinja2 gives us:
•A python templating engine
•Python-like expressions
•Templates evaluated in a sandbox

Prototype Voting/Feedback

Demo 3:
Online Survey Results

Want to vote?   Shortcut: http://7-a.org + search “voting”
Survey:
https://docs.google.com/forms/d/1w613Y-rwPMw454k2oAd2MuOle8zDg6YNejaMLg29CUQ/viewform

http://7-a.org/
https://docs.google.com/forms/d/1w613Y-rwPMw454k2oAd2MuOle8zDg6YNejaMLg29CUQ/viewform

Demo 4: Voted Prototype

Upcoming Features (WIP)

● Implement skin system

● Implement chosen prototype

● Extraction of CSS/HTML into templates

● Sub-report loading via AJAX

● Default plugin vulnerability rankings

OWTF Multiprocessing
by

Ankush Jindal

Dedicated Mentor: Andrés Riancho (@w3af)
Co-mentor: Abraham Aranguren

●Multiprocessing goals

●Pre-implementation research

●Development challenges

●Net plugins demo

●Upcoming features

Multiprocessing Agenda

Multiprocessing Goals
●Reduce scanning time

●Port of OSCP scripts into OWTF  net plugins

●Scan multiple targets in parallel

●Rational usage of disk/RAM/CPU

●Stability + Reliability = !crash

●Identify + parallelise bottleneck components:

Plugin execution, Reporting

Pre-Implementation
Research●Tested candidate libraries:

●Results:

1.Shared memory led to incorrect results in legacy code

2.Multiprocessing performed better or approx. the same

3.Threading = GIL FUD on multiple-core machines 

●Conclusion:

Multiprocessing for plugins, Threading for smaller tasks

Library Multiprocessing Threading gevent
(distributed)

Shared Memory No Yes Yes

Challenges during
development●OWTF resets config on the fly via “SwitchToTarget”

Solved via memory separation in multiprocessing

●Concurrent DB queries + no shared memory + File DB:
Solved via dedicated DB process + messaging system + file locks for integrity

(Processes perform DB reads+writes via messages)

●Implemented ncurses interface to stop OWTF

●Debugging unusual behaviour on concurrent processes 

Process 1 Process 2

Config = Target 1 Config = Target 2

Demo 5: Net Plugins
Port of the OSCP scripts into OWTF:

●Ping sweep + DNS zone transfers + port scanning

●Port scanning via nmap using “waves” (--portwaves)
owtf.py --portwaves=10,100,1000 target.com

First scan “top 10” ports, then “remaining until top 100”, ..

●Firing relevant net plugins depending on ports open

Net plugins implement:

●Vulnerability probing of network services (i.e. ftp, smtp,..)

Upcoming Features
●Plugin profiling for better resource usage:
Monitor resources to determine “launchable” plugins depending on
[load + expected resource consumption]

●Reporter process:
To run in parallel + reduce report re-assembly iterations
(i.e. instead of re-assemble once x plugin execution)

●Identify + parallelise other bottleneck
components

OWTF MiTM Proxy
by

Bharadwaj Machiraju
Dedicated Mentor: Krzysztof Kotowicz (@kkotowicz)
Co-mentors: Javier Marcos de Prado, Martin Johns,

Abraham Aranguren

●MiTM Proxy Goals

●Pre-implementation research

●Development challenges

●Examples of working functionality 

●Performance benchmarks

●Upcoming features

MiTM Proxy Agenda

MiTM Proxy Goals
●Extended grep plugin coverage:

1) Data from manual browsing

2) Data from proxified tools

●Tool proxification (if launched from OWTF)

●SSL MiTM

●Proxy cache: Avoid redundant requests

●Request Throttling based on target responsiveness

(i.e. avoid unintended DoS)

●Intelligent request retries

(i.e. ensure HTTP response retrieval where possible)

Pre-Implementation
Research●Goal:

Select best python proxy framework  best starting point

●Test Cases:

Speed, HTTP Verb support, HTTP/1.1, HTTPS support, etc.

●Frameworks:

Twisted, Mitmproxy, Tornado, Honeyproxy

●Verdict: Tornado

Best [performance + feature-set + reusability]

Pre-Implementation
Research

MiTM Proxy

Pre-Implementation

Research Doc

Development Challenges
●Tornado: Is a python web framework (!proxy)

● SSL MiTM: on-the-fly certificate generation, etc.

● Proxy cache: Race condition handling

● Tool Proxification: Not all tools could be proxified

BUT Tool Proxification for tools with proxy CLI options IS working 

Pros Cons

Scalability: Tens of
thousands of connections

Not built to make proxy
servers

Server + Client = Proxy Client is more limited than
server. Solution: Use
tornado’s async curl client

Proxy SSL MiTM is working 

Proxy Cache is working 

Race-condition handling is working


Performace Benchmarks

Upcoming features
●Improved grep plugins: Run on all transactions

●Request Throttling based on target responsiveness

(i.e. avoid unintended DoS)

●Intelligent request retries

(i.e. ensure HTTP response retrieval where possible)

●Cookie based authentication

At proxy level = Ability to scan authenticated portions of a website.

●Plug-n-Hack support: Upcoming Mozilla standard

OWTF Testing Framework
by

Alessandro Fanio González

Dedicated Mentor: Andrés Morales Zamudio (@andresmz)
Co-mentor: Abraham Aranguren

Testing Framework Agenda
●Importance of testing
●Testing framework goals
●Pre-implementation research
●Development challenges
●Initial focus: Unit testing
●New focus: Functional testing
●Upcoming features

Importance of testing
●Improve code quality

●Ensure everything works as expected

●Prevent unintentional bugs:

While developing new features or fixing other bugs

●Provide stability to the project

Testing Framework Goals
●Writing OWTF tests = As easy as possible

●Ensure OWTF integrity after code changes:

1. Automated tests to verify OWTF modules behave as
expected (unit tests)

2. Automated tests to verify OWTF security test output is
as expected (functional tests)

Pre-implementation research
Goals:  Determine best starting point

1. Select best testing/mocking library  for unit tests

2. Select best mock web server  for functional tests

Tests:

1. Feature-set comparison among many mocking libraries

2. Reuse of Bharadwaj’s research (for mock web server)

Results:

1. Best mock library for OWTF = Flexmock

2. Best mock web server for OWTF = Tornado

Development Challenges

●Understand internal OWTF components

●Extend the testing library to complete features

●Make the testing framework easy to use:

Generate classes and methods dynamically, using
metaclasses and introspection

●Fix broken tests due to fast-moving codebase

Due to initial unit testing focus

Initial focus: Unit testing
Important metric for unit testing = code coverage

Test coverage:

Number of executed lines of code after running all tests

When we run the entire test suite:

1. An HTML code coverage report is generated

2. Lines executed x file can be viewed in the report

Current OWTF code coverage = 58%

New focus: Functional testing
Unit test approach Functional test approach

Pro: Fast Con: Slower

Pro: Isolated Con: Not isolated

Pro: Code coverage metrics (i.e.
are we at 100% or not?)

Con: No code coverage metrics

Con: Harder to write (i.e. you
kinda have to love/know TDD )

Pro: Easier to write (i.e. closer to
command-line usage)

Con: Code dependent (i.e.
refactoring = broken test)

Pro: Code independent (i.e.
refactoring != broken test)

Con: Difficult to create tests for
security edge cases (i.e. unusual
web server behaviour)

Pro: Easier to create tests for
security edge cases (i.e. unusual
web server behaviour)

Con: Can’t find bugs due to
third-party tools/incompatibilities

Pro: Will find bugs due to third-
party tools/incompatibilities

Demo 6: A testing example
Functional testing:

●Set the web server to return a custom robots.txt file,
and start the server

●Write tests (almost) as if you were using OWTF from
the command line: run the
Spiders_Robots_and_Crawlers plugin

●Assert that the URLs contained in robots.txt are in the
OWTF output

Unit testing:

●Show code coverage report from initial project focus

Upcoming features

Functional tests for:

1. web plugins: OWASP Testing Guide coverage

2. net and aux plugins: PTES coverage

●Automated Continuous Integration:

Run tests automatically after each commit

Questions?

OWASP Testing Guide
with

OWASP OWTF

Context consideration:
Case 1  robots.txt Not Found
 …should Google index a site like
this?

Or should robots.txt exist and be like this?
User-agent: *
Disallow: /

Case 1  robots.txt Not Found - Semi passive
• Direct request for robots.txt
• Without visiting entries

Case 2  robots.txt Found – Passive
• Indirect Stats, Downloaded txt file for review, “Open All in Tabs”

OWTF HTML Filter challenge: Embedding of untrusted third party HTML
Defence layers:
1) HTML Filter: Open source challenge
Filter 6 unchallenged since 04/02/2012, Can you hack it? 
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
2) HTML 5 sanboxed iframe
3) Storage in another directory = cannot access OWTF Review in localStorage

http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html
http://blog.7-a.org/2012/01/embedding-untrusted-html-xss-challenge.html

Start reporting!: Take your notes with fancy formatting
Step 1 – Click the “Edit” link

Step 2 – Start documenting findings + Ensure preview is ok

Start reporting!: Paste PoC screenshots

The magic bar ;) – Useful to generate the human report later

Step 1- Browse output files to review the full raw tool output:

Step 2 – Review tools run by the passive Search engine discovery plugin:

Was your favourite tool not run?
Tell OWTF to run your tools on: owtf_dir/profiles/resources/default.cfg (backup first!)

Passive Plugin

Tool output can also be reviewed via clicking through the OWTF report directly:

The Harvester:
•Emails
•Employee Names
•Subdomains
•Hostnames

http://www.edge-security.com/theHarvester.php

http://www.edge-security.com/theHarvester.php
http://www.edge-security.com/theHarvester.php
http://www.edge-security.com/theHarvester.php
http://www.edge-security.com/theHarvester.php
http://www.edge-security.com/theHarvester.php
http://www.edge-security.com/theHarvester.php

Metadata analysis:
• TODO: Integration with FOCA when CLI callable via wine (/cc @chemaalonso )
• Implemented: Integration with Metagoofil

http://www.edge-security.com/metagoofil.php

http://www.edge-security.com/metagoofil.php
http://www.edge-security.com/metagoofil.php
http://www.edge-security.com/metagoofil.php
http://www.edge-security.com/metagoofil.php
http://www.edge-security.com/metagoofil.php
http://www.edge-security.com/metagoofil.php

Inbound proxy not stable yet but all this happens automatically:
robots.txt entries added to “Potential URLs”
URLs found by tools are scraped + added to “Potential URLs”
During Active testing (later):
“Potential URLs” visited + added to “Verified URLs” + Transaction log

All HTTP transactions logged by target in transaction log
Step 1 – Click on “Transaction Log”

Step 2 – Review transaction entries

Step 3 – Review raw transaction information (if desired)

Step 1 - Make all direct OWTF requests go through Outbound Proxy:
Passes all entry points to the tactical fuzzer for analysis later

Step 2 - Entry points can then also be analysed via tactical fuzzer:

Manually verify request for fingerprint:

Goal: What is that server running?

Whatweb integration with non-aggresive parameter (semi passive detection):

https://github.com/urbanadventurer/WhatWeb

https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb
https://github.com/urbanadventurer/WhatWeb

Fingerprint header analysis: Match stats

Convenient vulnerability search box (1 box per header found ):
Search All  Open all site searches in tabs

Exploit DB - http://www.exploit-db.com

http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.exploit-db.com/
http://www.exploit-db.com/

NVD - http://web.nvd.nist.gov - CVSS Score = High

http://web.nvd.nist.gov/
http://web.nvd.nist.gov/

OSVDB - http://osvdb.org - CVSS Score = High

http://osvdb.org/
http://osvdb.org/

http://www.securityfocus.com - Better on Google

http://www.securityfocus.com/
http://www.securityfocus.com/

http://www.exploitsearch.net - All in one

http://www.exploitsearch.net/
http://www.exploitsearch.net/

Passive Fingerprint analysis

http://toolbar.netcraft.com - Passive banner grab,etc.

http://toolbar.netcraft.com/

http://builtwith.com

•CMS
•Widgets
•Libraries
•etc

http://builtwith.com/
http://builtwith.com/

http://www.shodanhq.com/

Search in the headers without touching the site:

http://www.shodanhq.com/
http://www.shodanhq.com/
http://www.shodanhq.com/

Passive suggestions
- Prepare your test in a terminal window to hit “Enter” on “permission minute 1”

What else can be done with a fingerprint?

Also check http://www.oldapps.com/, Google, etc.

Environment replication
Download it .. Sometimes from project page 

http://www.oldapps.com/
http://www.oldapps.com/
http://www.oldapps.com/

RIPS for PHP: http://rips-scanner.sourceforge.net/
Yasca for most other (also PHP): http://www.scovetta.com/

yasca.html

 Static Analyis, Fuzz, Try exploits, ..

http://rips-scanner.sourceforge.net/
http://rips-scanner.sourceforge.net/
http://rips-scanner.sourceforge.net/
http://rips-scanner.sourceforge.net/
http://rips-scanner.sourceforge.net/
http://www.scovetta.com/yasca.html
http://www.scovetta.com/yasca.html
http://www.scovetta.com/yasca.html
http://www.scovetta.com/yasca.html

Questions?

http://www.robtex.com - Passive DNS Discovery

http://www.robtex.com/
http://www.robtex.com/

http://whois.domaintools.com

http://whois.domaintools.com/
http://whois.domaintools.com/

http://centralops.net

http://centralops.net/
http://centralops.net/

http://centralops.net

http://centralops.net/
http://centralops.net/

Has Google found error messages for you?

 Check errors via Google Cache

https://www.ssllabs.com/ssldb/analyze.html

The link is generated with OWTF with that box ticked: Important!

https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html

https://www.ssllabs.com/ssldb/analyze.html

Pretty graphs to copy-paste to your OWTF report 

https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html
https://www.ssllabs.com/ssldb/analyze.html

Do not forget about Strict-Transport-Security!
sslstrip chances decrease dramatically:
Only 1st time user visits the site!

http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

Not found example:

Found example:

HTML content analysis: HTML Comments

Step 2 – Human Review of Unique matches

Efficient HTML content matches analysis

Step 1 - Click

Step 2 –Review Unique matches (click on links for sample match info)

Efficient HTML content matches analysis

Step 1 - Click

Want to see all? then click

HTML content analysis: CSS and JavaScript Comments (/* */)

HTML content analysis: Single line JavaScript Comments (//)

HTML content analysis: PHP source code

HTML content analysis: ASP source code

Questions?

If you find an admin interface don’t forget to ..
Google for default passwords:

Disclaimer: Permission is required for this

http://centralops.net

http://centralops.net/
http://centralops.net/

Is the login page on “http” instead of “https”?

Pro Tip: When browsing the site manually ..
… look carefully at pop-ups like this:

Consider (i.e. prep the attack):

Firesheep: http://codebutler.github.com/firesheep/
SSLStrip: https://github.com/moxie0/sslstrip

http://codebutler.github.com/firesheep/
http://codebutler.github.com/firesheep/
http://codebutler.github.com/firesheep/
http://codebutler.github.com/firesheep/
http://codebutler.github.com/firesheep/
https://github.com/moxie0/sslstrip
https://github.com/moxie0/sslstrip
https://github.com/moxie0/sslstrip
https://github.com/moxie0/sslstrip
https://github.com/moxie0/sslstrip

Mario was going to report a bug to Mozilla and found another!

Abuse user/member public search functions:
• Search for “” (nothing) or “a”, then “b”, ..
• Download all the data using 1) + pagination (if any)
• Merge the results into a CSV-like format
• Import + save as a spreadsheet
• Show the spreadsheet to your customer

Analyse the username(s) they gave you to test:
• Username based on numbers?
USER12345
• Username based on public info? (i.e. names, surnames, ..)
name.surname
• Default CMS user/pass?

Part 1 – Remember Password: Autocomplete
Good Bad

Via 1) <form … autocomplete=“off”>
Or Via 2) <input …
autocomplete=“off”>

<form action="/user/login"
method="post">
<input type="password"
name="pass" />

Manual verification for password autocomplete (i.e. for the
customer)

Easy “your grandma can do it” test:
1. Login
2. Logout
3. Click the browser Back button twice*
4. Can you login again –without typing the login or password- by re-

sending the login form?

Can the user re-submit the login form via the back button?
* Until the login form submission

Other sensitive fields: Pentester manual verification
• Credit card fields
• Password hint fields
• Other

Manually look at the questions / fields in the password reset form
• Does it let you specify your email address?
• Is it based on public info? (name, surname, etc)
• Does it send an email to a potentially dead email address you can

register? (i.e. hotmail.com)

Part 2 - Password Reset forms

Goal: Is Caching of sensitive info allowed?

Manual verification steps: “your grandma can do it”  (need login):
1. Login
2. Logout
3. Click the browser Back button
4. Do you see logged in content or a this page has expired error / the

login page?

Manual analysis tools:
• Commands: curl –i http://target.com
• Proxy: Burp, ZAP, WebScarab, etc
• Browser Plugins:

https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

HTTP/1.1 headers
Good Bad

Cache-Control: no-cache Cache-control: private

HTTP/1.0 headers
Good Bad

Pragma: no-cache
Expires: <past date or illegal (e.g. 0)>

Pragma: private
Expires: <way too far in the future>

Good Bad

https://accounts.google.com No caching headers = caching allowed

Cache-control: no-cache, no-store
Pragma: no-cache
Expires: Mon, 01-Jan-1990 00:00:00
GMT

HTTP/1.1 200 OK
Date: Tue, 09 Aug 2011 13:38:43 GMT
Server: ….
X-Powered-By: ….
Connection: close
Content-Type: text/html; charset=UTF-
8

The world

https://accounts.google.com/
https://accounts.google.com/
https://accounts.google.com/

Repeat for Meta tags
Good Bad

<META HTTP-EQUIV="Cache-Control"
CONTENT="no-cache">

<META HTTP-EQUIV="Cache-Control"
CONTENT=“private">

Step 1 – Find CAPTCHAs: Passive search

Offline Manual analysis:
• Download image and try to break it
• Are CAPTCHAs reused?
• Is a hash or token passed? (Good algorithm? Predictable?)
• Look for vulns on CAPTCHA version
CAPTCHA breaking tools
PWNtcha - captcha decoder - http://caca.zoy.org/wiki/PWNtcha
Captcha Breaker - http://churchturing.org/captcha-dist/

http://caca.zoy.org/wiki/PWNtcha
http://churchturing.org/captcha-dist/

Manually Examine cookies for weaknesses offline

Base64 Encoding (!= Encryption ) Decoded value

MTkyLjE2OC4xMDAuMTpvd2FzcHVzZXI
6cGFzc3dvcmQ6MTU6NTg=

owaspuser:192.168.100.1:
a7656fafe94dae72b1e1487670148412

Questions?

http://hackvertor.co.uk/public

http://hackvertor.co.uk/public
http://hackvertor.co.uk/public
http://hackvertor.co.uk/public
http://hackvertor.co.uk/public

http://hackvertor.co.uk/public

Lots of decode options, including:
• auto_decode
• auto_decode_repeat
• d_base64
• etc.

http://hackvertor.co.uk/public
http://hackvertor.co.uk/public
http://hackvertor.co.uk/public
http://hackvertor.co.uk/public

http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html

F5 BIG-IP Cookie decoder:

http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html
http://blog.taddong.com/2011/12/cookie-decoder-f5-big-ip.html

• Secure: not set= session cookie leaked= pwned
• HttpOnly: not set = cookies stealable via JS
• Domain: set properly
• Expires: set reasonably
• Path: set to the right /sub-application
• 1 session cookie that works is enough ..

Manually check when verifying credentials during pre-engagement:
Login and analyse the Session ID cookie (i.e. PHPSESSID)

Good Bad (normal + by default)

Before:
10a966616e8ed63f7a9b741f80e65e3c
After:
Nao2mxgho6p9jisslen9v3t6o5f943h

Before:
10a966616e8ed63f7a9b741f80e65e3c
After:
10a966616e8ed63f7a9b741f80e65e3c

IMPORTANT: You can also set the session ID via JavaScript (i.e. XSS)

Session ID:
• In URL
• In POST
• In HTML

Example from the field:
http://target.com/xxx/xyz.function?session_num=7785

Look at unauthenticated cross-site requests:

http://other-site.com/user=3&report=4
Referer: site.com

Change ids in application: (ids you have permission for!)
http://site.com/view_doc=4

Headers Enabling/Disabling Client-Side XSS filters:
• X-XSS-Protection (IE-Only)
• X-Content-Security-Policy (FF >= 4.0 + Chrome >= 13)

Review JavaScript code on the page:

<script>
document.write("Site is at: " + document.location.href + ".");
</script>

Sometimes active testing possible in your browser
(no trip to server = not an attack = not logged):
http://target.com/...#vulnerable_param=xss

http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html

http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00
http://blog.mindedsecurity.com/2010/09/twitter-domxss-ebug/%00A%00%00%00%ED%B9%90%C9%B5%00%00%E8%88%98%EF%8E%94%E7%BF%AD%00%00%00%00%00%00%00%00%00%00%00

Did Google find SQLi for you?

<!--#exec cmd="/bin/ls /" -->
<!--#INCLUDE VIRTUAL="/web.config"-->

1. Browse Site
2. Time requests
3. Get top X slowest requests
4. Slowest = Best DoS target

Google searches: inurl:wsdl site:example.com

Public services search:
http://seekda.com/
http://www.wsindex.org/
http://www.soapclient.com/

WSDL analysis
Sensitive methods in WSDL?
i.e. Download DB, Test DB, Get CC, etc.
http://www.example.com/ws/FindIP.asmx?WSDL

<wsdl:operation name="getCreditCard" parameterOrder="id">
 <wsdl:input message="impl:getCreditCardRequest"
name="getCreditCardRequest"/>
 <wsdl:output message="impl:getCreditCardResponse"
name="getCreditCardResponse"/>
</wsdl:operation>

Same Origin Policy (SOP) 101

http://www.ibm.com/developerworks/rational/library/09/rationalapplicationdeveloperportaltoolkit3/

1. Domain A’s page can send a request to Domain B’s page from Browser
2. BUT Domain A’s page cannot read Domain B’s page from Browser

Potentially Good Bad

Anti-CSRF token present: Verify with
permission

No anti-CSRF token

• Request == Predictable  Pwned  “..can send a request to Domain B” (SOP)
CSRF Protection 101:
•Require long random token (99% hidden anti-CSRF token)  Not predictable
•Attacker cannot read the token from Domain B (SOP)  Domain B ignores request

Similar to CSRF:
Is there an anti-replay token in the request?

Potentially Good Bad

Anti-CSRF token present: Verify with
permission

No anti-CSRF token

1) Passive search for Flash/Silverlight files + policies:

Flash file search: Silverlight file search:

Static analysis: Download + decompile Flash files

Flare: http://www.nowrap.de/flare.html
Flasm (timelines, etc): http://www.nowrap.de/flasm.html

$ flare hello.swf

SWFScan

SWFScan: http://www.brothersoft.com/hp-swfscan-download-253747.html

Static analysis tools

Adobe SWF Investigator
http://labs.adobe.com/technologies/swfinvestigator

/

Good news: Unlike DOM XSS, the # trick will always work for Flash Files

Active testing 
1) Trip to server = need permission
http://target.com/test.swf?xss=foo&xss2=bar

2) But … your browser is yours:
No trip to server = no permission needed

http://target.com/test.swf#?xss=foo&xss2=bar

Some technologies allow settings that relax SOP:
• Adobe Flash (via policy file)
• Microsoft Silverlight (via policy file)
• HTML 5 Cross Origin Resource Sharing (via HTTP headers)
Cheating: Reading the policy file or HTTP headers != attack

http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html

Policy file retrieval for analysis

Flash: http://kb2.adobe.com/cps/403/kb403185.html

CSRF by design  read tokens = attacker WIN

<cross-domain-policy>
<allow-access-from domain="*"/>
</cross-domain-policy>

Bad defence example: restrict pushing headers accepted by Flash:
All headers from any domain accepted

<allow-http-request-headers-from domain="*" headers="*" />

Flash / Silverlight - crossdomain.xml

Silverlight: http://msdn.microsoft.com/en-us/library/cc197955%28v=vs.95%29.aspx

CSRF by design  read tokens = attacker WIN

<?xml version="1.0" encoding="utf-8"?><access-policy><cross-domain-
access><policy>
 <allow-from http-request-headers="SOAPAction">
 <domain uri="*"/>
 </allow-from>
 <grant-to><resource path="/" include-subpaths="true"/></grant-to>
 </policy></cross-domain-access></access-policy>

Silverlight - clientaccesspolicy.xml

Need help?

Workshop exercise
1) Install swtftools:
wget http://www.swftools.org/swftools-0.9.2.tar.gz
tar xvfz swftools-0.9.2.tar.gz
cd swftools-0.9.2
sh ./configure
make
make install
whereis swfdump  Check that we have swfdump installed now
swfdump: /usr/local/bin/swfdump

Workshop exercise
(continued)
2) Analyse vulnerable file:
wget http://demo.testfire.net/vulnerable.swf  Download vulnerable file
swfdump -a vulnerable.swf > vulnerable.txt  Disassemble flash file
grep -B1 GetVariable vulnerable.txt|tr " " "\n"|grep '("'|sort –u  Get
FlashVars
("empty_mc")
("externalInterfaceVar")
("flash")
("font")
("fontTxtFieldExists")
("fontVar")
("getUrlBlankVar")
("getUrlJSParam")
("getUrlParentVar")  Used in this example
…

Workshop exercise (continued)
3) Verify using the “#” trick (payload not sent to target):

http://demo.testfire.net/vulnerable.swf#?
getUrlParentVar=javascript:alert(‘pwned!’)
Click on “Get URL (parent)” for example above

And you get:
XSS 

UI Redressing protections:
• X-Frame-Options (best)
• X-Content-Security-Policy (FF >= 4.0 + Chrome >= 13)
• JavaScript Frame busting (bypassable sometimes)

Good Bad

X-Frame-Options: Deny

Andrew Horton’s “Clickjacking for Shells”:
http://www.morningstarsecurity.com/research/clickjacking-wordpress

Krzysztof Kotowicz’s “Something Wicked this way comes”:
http://www.slideshare.net/kkotowicz/html5-something-wicked-this-way-comes-
hackpra
https://connect.ruhr-uni-bochum.de/p3g2butmrt4/

Marcus Niemietz’s “UI Redressing and Clickjacking”:
http://www.slideshare.net/DefconRussia/marcus-niemietz-ui-redressing-and-
clickjacking-about-click-fraud-and-data-theft

Special thanks to

Finux Tech Weekly – Episode 17 – mins 31-49
http://www.finux.co.uk/episodes/mp3/FTW-EP17.mp3
Finux Tech Weekly – Episode 12 – mins 33-38
http://www.finux.co.uk/episodes/mp3/FTW-EP12.mp3
http://www.finux.co.uk/episodes/ogg/FTW-EP12.ogg
Exotic Liability – Episode 83 – mins 49-53
http://exoticliability.libsyn.com/exotic-liability-83-oh-yeah

Adi Mutu (@an_animal), Alessandro Fanio González, Anant Shrivastava,
Andrés Morales, Andrés Riancho (@w3af), Ankush Jindal, Assem Chelli,

Azeddine Islam Mennouchi, Bharadwaj Machiraju, Chris John Riley,
Gareth Heyes (@garethheyes), Hani Benhabiles, Javier Marcos de

Prado, Johanna Curiel, Krzysztof Kotowicz (@kkotowicz), Marc
Wickenden (@marcwickenden), Marcus Niemietz (@mniemietz), Mario

Heiderich (@0x6D6172696F), Martin Johns, Michael Kohl (@citizen428),
Nicolas Grégoire (@Agarri_FR), Sandro Gauci (@sandrogauci), OWASP

Testing Guide contributors

All those OWTF students that tried to participate in the GSoC even if
they couldn’t make it this time 

Q & A

Contact/Links:

http://owtf.org
@7a_ @owtfp

abraham.aranguren@owasp.org

http://owtf.org/

	OWASP OWTF Summer Storm
	Agenda
	Folie 3
	Google Summer of Code (GSoC) Overview
	GSoC Stats + Outcome
	OWTF GSoC Overview
	Why submit for OWTF?
	Selected OWTF Proposals
	Dedicated OWTF mentors
	What is OWASP OWTF? aka The Offensive (Web) Testing Framework
	OWTF = Test/Exploit ASAP
	OWTF’s Chess-like approach
	OWTF Plugin Groups (-g)
	Web Plugin Types (-t)
	OWTF Report = Chess-like Analysis
	Demo 1: Admin interface
	Demo 1: Outcome
	Folie 18
	Demo 2: Crossdomain
	OWTF Financials: Ideas plz 
	Status update on OWTF GSoC Projects
	OWTF Reporting by Assem Chelli
	Reporting Agenda
	Old Report != Sexy 
	Old report limitations
	Reporting Goals
	Pre-implementation research
	Folie 28
	Prototype Voting/Feedback
	Demo 4: Voted Prototype
	Upcoming Features (WIP)
	OWTF Multiprocessing by Ankush Jindal
	Multiprocessing Agenda
	Multiprocessing Goals
	Pre-Implementation Research
	Challenges during development
	Demo 5: Net Plugins
	Upcoming Features
	OWTF MiTM Proxy by Bharadwaj Machiraju
	MiTM Proxy Agenda
	MiTM Proxy Goals
	Pre-Implementation Research
	Folie 43
	Development Challenges
	Proxy SSL MiTM is working 
	Proxy Cache is working 
	Race-condition handling is working 
	Slide 48
	Upcoming features
	OWTF Testing Framework by Alessandro Fanio González
	Testing Framework Agenda
	Importance of testing
	Testing Framework Goals
	Folie 54
	Folie 55
	Initial focus: Unit testing
	New focus: Functional testing
	Demo 6: A testing example
	Folie 59
	Questions?
	OWASP Testing Guide with OWASP OWTF
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Folie 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Folie 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Folie 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Special thanks to
	Q & A

