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[bookmark: _Toc234388915]Part I : Overview
OWASP AppSensor Project defines the concept of real-time attack-aware detection and response for software applications and provides guidance and example code. Part I provides a high-level overview of the concept and why it is different to traditional defensive techniques. We then describe the general approach to implementing AppSensor within application software projects.


Part I : Overview
Part I : OverviewChapter 1 : Application-Specific Intrusion Detection & Response
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[bookmark: _Ref222120711][bookmark: _Toc234388916]Chapter 1 : Application-Specific Intrusion Detection & Response
Purpose
Organizations are concerned about protection of their applications, the application users and related data. The concept of AppSensor is to reduce the risks to these by detecting malicious activity within an application, such as a user probing or attacking the application, to stop them before they can identify and exploit any vulnerability. 
This objective is possible because many software vulnerabilities can only be discovered as a result of trial and error by an attacker. By intervening early, almost immediately, and blocking, it could become economically infeasible to attack the application.
Dynamic defense
In the same way that users are benefitting from responsive design in user interfaces and bandwidth utilization, with concepts like progressive enhancement, mobile first and graceful degradation, applications themselves should, and can, alter their behaviour and posture in a pre-defined manner when under attack to defend themselves, their data and their users.
The application advantage
Detection is undertaken at the application layer where, unlike infrastructure protection devices, the software application itself has access to the complete context of an interaction and enhanced information about the user. The application knows what is a high-value issue and what is noise. Input data are already decrypted and canonicalized within the application and therefore application-specific intrusion detection is less susceptible to advanced evasion techniques. This leads to a very low level of attack identification false positives, providing appropriate detection points are selected.
Benefits to organizations and users
Application-specific intrusion detection and response is a comprehensive proactive, rather than reactive, approach that can be applied to applications throughout the enterprise. It reduces the risk of unknown vulnerabilities being exploited. The benefits can include:
· Knowledge whether your applications are under attack, how, and from where
· Certainty due to an extremely low false positive attack detection rate
· Fast, application and user specific, fluid responses
· Protection for software vulnerabilities that you are unaware of
· Defense against future unknown attack methods
· Early detection of unsuccessful and successful attempts to exploit vulnerabilities
· Insight into users’ accidental and malicious misuse.
The approach helps to defend organizations (e.g. increased system security, enhanced data protection, insight into attacks, identification of attempted espionage) and defend application users (e.g. privacy protection, malware infection prevention).
It greatly increases the visibility of suspicious events and actual attacks. This can provide additional information assurance benefits:
· Reduced information security risk for data and information systems
· Improved compliance
· Reduction in the impact of data breaches.
In turn, these can provide improved service levels and resilience and, for commercial organizations, competitive advantage.
Architects and developers, who have the most knowledge about the intent of an application and its inner workings, can use the techniques described in this guide to build more robust applications that can defend themselves, and provide valuable insight into application usage for other systems and processes.
AppSensor attack-aware applications with real-time response
OWASP AppSensor Project defines a conceptual framework, methodology, guidance and example code to implement intrusion detection and automated response. It is not a bolt-on tool or code library, but instead offers insight to an approach for organizations to specify or develop their own implementations – specific to their own business, applications, environments and risk profile – building upon existing standard security controls.
This AppSensor Guide describes how to build detection capabilities into applications to identify unacceptable malicious attacks. The idea is similar to the approach taken by high-street banks to physical security. They do not just rely on strong walls and doors, but also have camera surveillance, security screens, secure rooms, safes and alarm systems inside. In the same way, applications should have self-protection built in.
Many attacks are potentially obvious and not "user error". They require the use of tools and/or bypass of the user interface controls. Application software usage behavior can be thought of as a continuum of unacceptable to acceptable behavior – AppSensor is only concerned with identifying and responding to clearly malicious events, beyond the range of normal user behavior:


[bookmark: _Ref234401680]The Range of Acceptable Application Use
Figure ??: The range of user behavior illustrating that malicious attacks are very different to normal application use
[image: ]
Application-specific intrusion detection does not need to identify all invalid usage, to be able to determine an attack. There is no need for “infinite data” or “big data”. In the analogy of the bank, someone jumping over the counter is sufficient evidence; the bank does not need to wait until the robber starts using a thermal lance to drill through the safe door. Similarly in an application, receipt of modified data that the user cannot alter through normal usage should be enough to identify bad behaviour and there is no need to wait for a SQL injection payload to be prepared, or tested or executed, regardless of whether there is a vulnerability or not.
The application has full knowledge about the business logic and the roles & permissions of users – it can make informed decisions about misuse, and identify and stop attackers with an extremely low false positive rate. It also does this in real time.
Additionally, AppSensor can potentially make better use information from other security devices to contribute to its pool of information for attack detection, increasing the value of those other systems.
Implementing AppSensor is like defining a whitelist for a subset of application functionality, and noting exceptions to this whitelist (for the functionality/entry points included). We only need a sufficiently sized subset that covers the highest risks, or the most common things done by attackers. AppSensor does not need to detect everything or know about every attack vector.
It has also been demonstrated[endnoteRef:3],[endnoteRef:4] how AppSensor can be used to contain the effects of an application worm by detecting rapid escalation of functional usage, combined with an automated response that disables one part of thee site, to allow the remainder of the application to continue to operate, and freeze the corruption of data. It has also been shown[REFERENCE - MC at AppSec DC?] how a web application with access control detection points combined with an automated real time log out/lock out response seriously hinders automated vulnerability scanning software. So much in fact, that fuzzing data and entry URLs becomes almost impossible in any sort of reasonable timescales. [3:  Coates M, AppSensor: Real Time Defenses, OWASP DC 2009
https://www.owasp.org/images/0/06/Defend_Yourself-Integrating_Real_Time_Defenses_into_Online_Applications-Michael_Coates.pdf]  [4:  Coates M, Automated Application Defenses to Thwart Advanced Attackers 
http://michael-coates.blogspot.com/2010/06/online-presentation-thursday-automated.html] 

[bookmark: _Ref222029731]Technique adoption
The following use cases are most common:
· Detecting attacks (e.g. application or data enumeration, application denial of service, system penetration, fraud)
· Responding to attackers, including prevention
· Monitoring users (e.g. call center, penetration testing lab)
· Maintaining stability (e.g. application worm propagation prevention)
The Mozilla Foundation has established an integrated application IDS system across its enterprise-scale portfolio of web applications using AppSensor to identify application attackers.	Comment by Colin Watson: Add reference… http://www.linkedin.com/in/mcoates is perhaps not permanent enough?
Software assurance community
[bookmark: _Ref222114976]AppSensor was promoted to the US software assurance community in the Sept/Oct 2011 edition of CrossTalk (The Journal of Defense Software Engineering)[endnoteRef:5] in a concise overview of the concept and method of implementation. The article is available to download[endnoteRef:6] from the CrossTalk website but was subsequently summarized during 2012 on a page about Resilient Software[endnoteRef:7] in the Software Assurance (SwA) section of the US Department of Homeland Security’s website. [5:  CrossTalk The Journal of Defense Software Engineering
http://www.crosstalkonline.org/]  [6:  Watson C, Coates M, Melton J and Groves G, Creating Attack-Aware Software Applications with Real-Time Defenses, CrossTalk The Journal of Defense Software Engineering, Vol. 24, No. 5, Sep/Oct 2011
http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-Watson.pdf]  [7:  Resilient Software, Software Assurance, US Department Homeland Security
https://buildsecurityin.us-cert.gov/swa/resilient.html] 

The BITS (Financial Services Roundtable) Software Assurance Framework[endnoteRef:8] mentions software security intelligence as an emerging practice where “technology advancements include software and devices designed to monitor, and in some cases prevent, security threats within the production environment”. [8:  http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf 
BITS Software Assurance Framework, Financial Services Roundtable, 2012] 

AppSensor-like functionality elsewhere
We certainly cannot claim the following are using AppSensor or ever heard of it, but the following information alludes to the adoption of production enterprise-scale AppSensor-like functionality. Note that OWASP is not affiliated with any technology company, and OWASP does not endorse or recommend commercial products or services.
In a discussion about distributed denial of service attacks against financial institutions[endnoteRef:9], it was reported that “Some [financial institutions] also have implemented measures to turn off access to certain parts of their online sites, such as search functions, when DDoS activity is detected. These precautions, and others, have helped ensure sites are not completely taken offline by an attack, experts say.”. This includes application layer responses – not just network layer responses. [9:  Kitten T, New Wave of DDoS Attacks Launched, BankInfoSecurity.com, Information Security Media Group, 6 March 2013
http://www.bankinfosecurity.com/new-wave-ddos-attacks-launched-a-5584/op-1] 

A blog post “Monitoring of HTML and JavaScript entering an application by Etsy”[endnoteRef:10] by a vulnerability researcher on how a vulnerability he had identified was fixed before he had been able to verify it, and the related link[endnoteRef:11] to a presentation by Zane Lacke, Etsy’s Engineering Manager for Application Security, about web application security at scale including the point about “instrument application to collect data points” and their instrumentation library[endnoteRef:12],[endnoteRef:13] that runs on the Node.js platform and listens for statistics, from counters and timers. [10:  damontoo, Etsy Has Been One of the Best Companies I've Reported Holes To
http://www.reddit.com/r/netsec/comments/vbrzg/etsy_has_been_one_of_the_best_companies_ive/]  [11:  Lackey Z, Security at Scale: Effective Approaches to Web Application Security, Etsy
http://www.slideshare.net/zanelackey]  [12:  Etsy, Node.js Instrumentation Library
https://github.com/etsy/statsd]  [13:  Malpas I, Measure Anything, Measure Everything, Code as Craft, Etsy
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/] 

The US Defense Department announced they are funding cyber security research that include “developing active defenses – technologies that detect attacks and probes as they occur, as opposed to defenses that employ only after-the-fact detection and notification”[endnoteRef:14]. [14:  Ratnam G and King R, Pentagon Seeks $500 Million for Cyber Technologies, Bloomberg
http://www.bloomberg.com/news/2011-02-15/pentagon-seeks-500-million-for-cyber-research-cloud-computing.html] 

The principle of “cyber maneuver” in cyber security has been used to describe the defensive and offensive use of changing computing and information resources at machine speeds to achieve a position of advantage[endnoteRef:15],[endnoteRef:16]. [15:  Applegate SD, The Principle of Maneuver in Cyber Operations, Navy Center for Innovation Weblog, Navy Warfare Development Command, 6 June 2012
https://www.nwdc.navy.mil/ncoi/blog/Document%20Library/The%20Principle%20of%20Maneuver%20in%20Cyber%20Operations%20-%20Guest%20Briefing.pdf]  [16:  McRee R, MORPHINATOR & cyber Maneuver as a Defensive Tactic, HolisticInfoSec blog, 18 July 2012
http://holisticinfosec.blogspot.co.uk/2012/07/morphinator-cyber-maneuver-as-defensive.html] 

[bookmark: _Ref222891644]It was reported that Google Chrome’s security team built in a detection trap to identify the exploit attack being used[endnoteRef:17]. Furthermore, the Google Hack Honeypot (GHH)[endnoteRef:18] is a website that mimics vulnerable behavior and monitors attacker reconnaissance once it has been installed and indexed by search engines. The information in the generated attack database can be used to “to gather statistics on would-be-attackers, report activities to appropriate authorities and temporarily or permanently deny access to resources”. [17:  Naraine R, How Google Set a Trap for Pwn2Own Exploit Team, ZDNet, 9 March 2012
http://www.zdnet.com/blog/security/how-google-set-a-trap-for-pwn2own-exploit-team/10641]  [18:  Google Hack Honeypot
http://ghh.sourceforge.net/] 

Conclusion
AppSensor is not a perimeter defense and provides comprehensive visibility into attacks against applications, valuable intelligence, allowing real-time automated response. AppSensor implementation should be a baseline for application defense.

[bookmark: _Ref233966543][bookmark: _Toc234388917]Chapter 2 : Protection Measures
[bookmark: _Ref222040264]Intrusion detection and prevention fundamentals
[bookmark: _Ref231959580]AppSensor builds on the work of many researchers, but has taken the concepts of intrusion detection and prevention into the heart of application software. The most important work to date in the field of Intrusion Detection is Rebecca Bace’s book titled Intrusion Detection[endnoteRef:19]. Her NIST Special Publication on Intrusion Detection Systems[endnoteRef:20] mentions application-based Intrusion Detection Systems (IDS). The subsequent SP 800-94 Guide to Intrusion Detection and Prevention Systems (IDPS)[endnoteRef:21],[endnoteRef:22] mainly focuses on network-based, wireless, network behavior Analysis and Host-Based IDPS. These are all valuable sources of background information with many good referenced works, and are recommended reading to help understand the fundamental concepts, options, deployment and operational considerations, pros and cons.  [19:  Bace R, Intrusion Detection, Sams, 1999
ISBN-10: 1578701856, ISBN-13: 978-1578701858]  [20:  Bace R and Mell P, NIST Special Publication on Intrusion Detection Systems, NIST
http://www.21cfrpart11.com/files/library/government/intrusion_detection_systems_0201_draft.pdf]  [21:  Scarfone K and Mell P, SP 800-94 Guide to Intrusion Detection and Prevention Systems (IDPS), NIST, 2007
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf]  [22:  Scarfone K and Mell P, SP 800-94 Revision 1 DRAFT Guide to Intrusion Detection and Prevention Systems (IDPS), NIST, 2012
http://csrc.nist.gov/publications/drafts/800-94-rev1/draft_sp800-94-rev1.pdf] 

Wile most research has been undertaken relating primarily to the network layer, AppSensor takes IDPS concepts to the application layer as ISO/IEC 7498-2[endnoteRef:23] (twinned as ITU X.800[endnoteRef:24]) predicted in 1989. [23:  ISO/IET 7498-2:1989 Information Processing Systems - Open Systems Interconnection - Basic Reference Model - Part 2: Security Architecture
http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256]  [24:  Recommendation X.800 : Security architecture for Open Systems Interconnection for CCITT applications, ITU, 1991
http://www.itu.int/ITU-T/recommendations/rec.aspx?id=3102] 

Detecting attacks on applications
AppSensor can be used to perform:
· Attack determination
· Real-time response
· Attack blocking.
It can help to protect software applications against:
· Skilled attackers probing looking for weaknesses
· Misuse of valid business functionality
· Propagation of application worms
· Data scraping and exfiltration
· Application-layer denial of service (DoS)
· As yet unknown attack methods and exploits.
AppSensor helps defend securely designed and developed applications. It is not a shortcut to deploy security controls. AppSensor will not do these for you. If you have not specified, designed, developed, tested, deployed the application securely, you cannot benefit from AppSensor’s capabilities. Attackers will be able to easily identify and exploit weaknesses. If you have an obviously insecure application, concentrate on solving that first. You must have existing authentication, session management, authorization, validation, error handling and encryption services available and implemented in a robust manner.
Localized security controls are not sufficient. Functions like authentication failure counts and lock-out, or limits on rate of file uploads are localized protection mechanisms. These themselves are not AppSensor equivalents, unless they are rigged together into an application-wide sensory network and centralized analytical engine.
AppSensor is not about logging, or some form of logging utility. Logs may be a method of recording information but they are not fundamental to the concept. Application security logging should exist for many other purposes[endnoteRef:25] but could also be used as part of an AppSensor implementation. [25:  Application Logging Cheat Sheet, OWASP
https://www.owasp.org/index.php/Logging_Cheat_Sheet] 

The issue of vulnerabilities
Most importantly, AppSensor does not detect software weaknesses or vulnerabilities. AppSensor does not analyze your application source code or examine the application in its runtime environment. AppSensor protects against attackers trying to find weaknesses. You should be undertaking information security activities throughout the software development life cycle (SDLC) to prevent vulnerabilities being deployed in production code, and that supporting hardware and network infrastructure is secured.
Similarly AppSensor does not perform dynamic patching. There are clever integrations of web application firewalls with automated static analysis (source code review) and/or dynamic analysis (run time or penetration testing) to generate “virtual patches” for vulnerabilities discovered. These can be implemented in a web application firewall (WAF) while work is undertaken to remediate the source code if it is available. If there is a known weakness, solve it. AppSensor exists to help prevent attackers finding these, not stopping exploits you may be aware of.
[bookmark: _Ref233966556]Comparison with infrastructure protection mechanismsother defensive mechanisms
In AppSensor, intrusion detection and prevention capabilities are added to an application instead of functioning at a lower or, more generic level. By doing this, you get the detection and response capabilities of other systems, coupled with detailed business case specific data related to a specific application or set of applications.
[bookmark: _Ref233956567]AppSensor has been compared with more conventional alternatives using research and experimental techniques[endnoteRef:26] with more conventional alternatives by Pål Thomassen at the Norwegian University of Science and Technology in Tronheim. The thesis attempted to address four questions: [26:  Thomassen P, AppSensor: Attack-Aware Applications Compared Against a Web Application Firewall and an Intrusion Detection System, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Computer and Information Science, 2012
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:566091] 

1. What is the current state of application-based intrusion detection and prevention systems?
2. How does OWASP AppSensor compare to other IDPS technologies?
3. In the given scenario, what are the benefits of using AppSensor compared with trying to stop the attacks in a IDPS or WAF?
4. How hard is it to built AppSensor into an application?
[bookmark: _Ref234389122][bookmark: _Ref234389215]The paper primarily compares the use of Snort[endnoteRef:27], ModSecurity[endnoteRef:28] WAF using the OWASP ModSecurity Core Rule Set[endnoteRef:29] and the reference AppSensor Core implementation - see Chapter 20 : Fully Integrated (AppSensor Core) - to protect a demonstration online banking web application  in a lab environment subjected to attacks based on the OWASP Top Ten Most Critical Web Application Security Risks[endnoteRef:30]. The conclusions to these the four questions above includes the comment that “AppSensor shines in that in addition to detect the well known web application attacks it is also able to detect attack which exploits the internal workings of an application, such as failure in access controls mechanisms”. The full paper and conclusions should be read to understand the context of this statement. [27:  Snort, Sourcefire
http://www.snort.org/]  [28:  ModSecurity Open Source Web Application Firewall, Trustwave SpiderLabs
http://www.modsecurity.org/]  [29:  OWASP ModSecurity Core Rule Set Project, OWASP
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project]  [30:  OWASP Top Ten Most Critical Web Application Security Risks, 2013, OWASP
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project] 

Comparison with infrastructure protection mechanisms

The following technologies are often cited as providing defense to applications, but they have no knowledge of custom application knowledge or insight into the context of user’s actions. They do not provide application-specific protection, and if these are all you are replying on for application defense, your applications are dangerously exposed and you probably do not have insight as to whether your applications are really under attack. Some may be physical appliances, but they can also be software hosted locally or as a remote service.
Three questions that can be used to identify if a mechanism is AppSensor-like are whether the system/service/solution/mechanism/device can:
1. Determine an attack where a user is stepping through a multi-step business process in the wrong order?
2. Understand the difference between a user who has access to a particular document today but not tomorrow, due to a change in user’s role or a change in the information classification of the document?
3. Identify an attack that is an attempt to exceed an individual user-specific action threshold (e.g. payment transfer limit).
AppSensor can be used for all of these. Common non-AppSensor-like protective mechanisms that cannot do any of the above are described below.
These are often cited as providing defense to applications, but they have no knowledge of custom application knowledge or insight into the context of user’s actions. They do not provide application-specific protection, and if these are all you are replying on for application defense, your applications are dangerously exposed and you probably do not have insight as to whether your applications are really under attack. Some may be physical appliances, but they can also be software hosted locally or as a remote service.

Network Firewall	Comment by Colin Watson: All this text below here on the next 2-3 pages needs a good sanity and accuracy check. It might upset some people vendors, especially if quoted out of context.
Network firewalls control traffic source, destinations and ports. If an application needs say port 443 open to all internet users and no other ports open, a network firewall is the correct device. Similarly they might limit access to a particular application to only certain internal users. However, they have no insight into the application or the user context. A network firewall could be utilized to perform application-elected response such as blocking an individual IP address.
At this point it is also probably worth mentioning the use of HTTP over Transport Layer Security (TLS)/Secure Sockets Layer (SSL)[endnoteRef:31] for web applications. The correct use of TLS/SSL provides confidentiality and assurance in the integrity of data sent between two points. It can also provide some degree of identity assurance. However, it does not protect web applications at all. Malicious payloads and activities can be undertaken just as well using TLS as not. And in many cases TLS will prevent the inspection of the data while in transit. [31:  Transport Layer Security, Wikipedia
http://en.wikipedia.org/wiki/Secure_Sockets_Layer] 

Application Aware Firewall
Some network firewalls are rather confusingly called “application firewalls” or “application aware firewalls” or “next generation firewalls”. These only allow or deny traffic for individual and groups of users to and from defined IP addresses, ports and URLs for many common applications (e.g. Facebook, Twitter). It sounds a like AppSensor, but looks like a network firewall with some extra social media aware configuration options.
Traffic/Load Balancer
Traffic/load balancers are used to distributed network and/or application traffic across a number of servers. Some of these can have the ability to inspect traffic at the application layer (e.g. an understanding of HTTP for example), but they are limited to knowledge gained from the data stream, and have no inherent understanding of the application. Some of these devices can have custom rules written and thus have some application firewall capabilities (e.g. like a basic Web Application Firewall - see below).
Anti DDoS System
Network firewalls, switches, routers, traffic/load balancers and intrusion protection systems often include some measures to protect against distributed denial of service (DDoS) attacks which intend to prevent legitimate access to the targeted system. However specialist systems (often as outsourced services) are also available that prevent these attacks reaching your own network. These do not have knowledge of individual applications even if they are able to detect application protocol DDoS attacks.
Web Gateway
These devices scan incoming web traffic to an organizations’ end-users who are browsing the web. They may incorporate data on blacklisted websites, signatures for malware present in web page content, email messages and files, and even perform live malware analysis. Web Gateways do not protect your applications used by other people.
Intrusion Detection System (IDS) and Intrusion Prevention System (IPS)
As mentioned above (Intrusion detection and prevention fundamentals), typical IDS and IPS observe network traffic (NIDS) or activities on hosts (HIDS). They detect deviations from baseline behaviour but have no knowledge of application behaviour and thus have to use signature-based misuse detection or statistical based anomaly detection and are thus susceptible to a much higher level of false positives. While policies, a continuously updated database of known attacks, and information sharing between users has improved performance, they have little understanding of application protocols and none of application logic, or even what entry points or user data is acceptable. Intrusion is not always the same as attack. And due to these factors IDS and IPS are more prone to false positives for attacks against applications.
Data Loss Prevention (DLP)
Data loss prevention is concerned with the detection and prevention of the loss, leakage or exfiltration of targeted data types. The exploit has already been performed and this useful technique is not an application protection.
Application Firewall, Filter or Guard
These are usually protocol-specific application firewalls looking only at Layer 7 in the OSI[endnoteRef:32] stack. They tend to be good at examining one particular data type (e.g. XML, PDFs) or protocol (e.g. SQL, HTTP) and can include some element of self-learning about “normal” traffic, but often include many blacklist signatures. Some may be self-learning, include web behavioral analysis and have some mitigating capabilities, but in the end they are a generic solution to generic attacks. They are not application-specific. See also Web Application Firewall below. [32:  OSI Model, Wikipedia
http://en.wikipedia.org/wiki/OSI_model] 

Web Application Firewall
Many applications are web-based and there are now a number of commercial and open source HTTP protocol application firewalls, built upon earlier HTTP filtering techniques. They are generally referred to as “web application firewalls (WAFs). WAFs understand HTTP traffic and can be an excellent way to screen web applications from generic attacks and can be used for virtual patching. Some WAFs have application traffic self-learning capabilities, and others support custom attack and application logic rule building including support for scripting languages. WAFs also have capabilities to drop connections, or interact with network firewalls to block IP addresses. However, WAFs are sometimes left operating in detection-only mode due to concerns about false positives leading to denial of service to normal users.
Certain types of AppSensor-like functionality can be built into a WAF, and some of these might be much more efficiently undertaken by a WAF for both detection (e.g. HTTP protocol misuse detection, generic blacklist input validation, web application denial of service identification) and response (e.g. HTTP logging, proxying requests, IP address blocking). However, a WAF still does not have insight into the full capabilities of each application such as user session and access controls. The demonstration implementation in Chapter 24 : Leveraging a Web Application Firewall discusses some of these many possibilities further.
Use of AppSensor with infrastructure protection mechanisms
The above mechanisms may often be deployed as well as AppSensor. If such devices block, change or mask application traffic or data, it is important to consider how these might affect the ability of the application to detect an attack.
Often the mechanisms can provide inputs to AppSensor (as external “reputational” detection points). This is certainly almost always true for web application firewalls in front of web server farms, database monitoring/firewalls in front of database servers, and for other similar application firewalls, filters and guards.
Application protection mechanisms
Applications must have their own in-built security controls such as services for authentication, session management, authorization, input validation, output validation, output encoding, and cryptography. They may also have discrete functionality that behaves very similarly to “attack response” such as:
· Counting multiple failed authentication attempts to lock a user account
· Detecting the use of the TRACE HTTP method to block requests
· Checking the IP address during a session and terminating the session if the IP address changes
· Displaying a message to the user about invalid input
· Logging unexpected requests
· Investigating suspicious incidents at a later date.
These alone are not sufficient to be considered AppSensor. These are typically be implemented as isolated processes and some may be undertaken reactively to events or performed largely in a manual way. AppSensor centralizes and formalizes this approach. 
AppSensor is about implementing proactive measures to add instrumentation and controls directly into an application in advance so that all these events (and more) are centrally analyzed, using all the knowledge about the business logic and the roles & permissions of users, responding in real time. 
AppSensor defining characteristics
AppSensor does not act as a security silver bullet for all the reasons above and more. AppSensor is another technique, with some unique benefits, that contributes to an overall software security assurance program. It also relies on other infrastructure defenses, but those are platform and architecturally specific.
So what properties would a system have to say it is AppSensor-like? The fundamental requirements are the ability to perform four tasks:
· Detection of a selection of suspicious and malicious events
· Use of this knowledge centrally to identify attacks
· Selection of a predefined response
· Execution of the response.
These tasks are fairly generic and can therefore be applied in many different ways to suit the systems architecture and an organization’s policies, development practices and cultural preferences. AppSensor can often be completely contained within the application itself, but that is not the only way. 
Applications of greater complexity are unlikely to have all these components built into the application’s code itself. For example:
· Applications deployed across clustered servers
· Distributed applications
· Applications where a significant part of the business logic is external to the application (e.g. a mobile app that communicates with a central server)
· Detection point sensors deployed in related applications (e.g. databases, file integrity monitoring systems, anti-virus systems) and infrastructure components (e.g. web application firewalls, network firewalls).
If there is no capability to modify the source code or build AppSensor in from the start of a development, AppSensor concepts may all have to be externalized such as in a web application firewall (WAF) or logging system that communicates to a network firewall.
Different implementation models are discussed further in Parts II and IV.

[bookmark: _Toc234388918]Chapter 3 : The AppSensor Approach
Stop! Specify, design, build, deploy and operate secure applications first
Do not progress any further until you have read this. In Chapter 1 we said, “AppSensor helps defend securely designed and developed applications”.
If in any doubt, make sure you already integrate security into all your software acquisition and development practices using the techniques described in the Software Assurance Maturity Model[endnoteRef:33] (SAMM), other software assurance frameworks. Consider the guidance listed by DACS/IATAC[endnoteRef:34], ENISA[endnoteRef:35] and OWASP[endnoteRef:36], such as from BITS[endnoteRef:37], CMU[endnoteRef:38],[endnoteRef:39],[endnoteRef:40], CERT[endnoteRef:41], ISO/IEC 27034[endnoteRef:42], NIST[endnoteRef:43], SAFECode[endnoteRef:44], and the DoHS/SwA Forum[endnoteRef:45],[endnoteRef:46], and publicly available information about actual assurance programs (e.g. Microsoft SDL[endnoteRef:47], Oracle SSA[endnoteRef:48] and the ongoing BSIMM[endnoteRef:49] study). Practices should commonly include, but are not limited to: [33:  Software Assurance Maturity Model Project (SAMM). OWASP
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model]  [34:  Software Security Assurance State of the Art Report, DACS/IATAC
http://iac.dtic.mil/iatac/download/security.pdf]  [35:  Secure Software Engineering Initiatives, ENISA
http://www.enisa.europa.eu/act/application-security/secure-software-engineering/secure-software-engineering-initiatives]  [36:  Secure SDLC Cheat Sheet, OWASP
https://www.owasp.org/index.php/Secure_SDLC_Cheat_Sheet]  [37:  BITS Software Assurance Framework, Financial Services Roundtable
http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf]  [38:  Team Software Process for Secure Systems Development (TSP Secure), Software Engineering Institute, Carnegie Mellon University
http://www.cert.org/secure-coding/secure.html]  [39:  Capability Maturity Model Integration (CMMI), Software Engineering Institute, Carnegie Mellon University
http://www.sei.cmu.edu/cmmi/]  [40:  CMMI for Acquisition, v1.3, Technical Report CMU/SEI-2010-TR-032, Software Engineering Institute, Carnegie Mellon University
http://www.sei.cmu.edu/reports/10tr032.pdf]  [41:  Resiliency Management Model, v1.0, CERT
http://www.cert.org/resilience/rmm.html]  [42:  ISO/IEC 27034 Application Security
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44378]  [43:  SP 800-64 Rev2 Security Considerations in the Information System Development Life Cycle, NIST
http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf]  [44:  Software Assurance Forum for Excellence in Code (SAFECode)
http://www.safecode.org/]  [45:  Software Assurance, Cyber Security Division, Department Homeland Security
https://buildsecurityin.us-cert.gov/swa/]  [46:  Practical Measurement Framework for Software Assurance and Information Security, v1.0, 2008
http://www.psmsc.com/Downloads/TechnologyPapers/SwA%20Measurement%2010-08-08.pdf]  [47:  Microsoft Security Development Lifecycle (SDL)
http://www.microsoft.com/security/sdl/]  [48:  Oracle Software Security Assurance (OSSA)
http://www.oracle.com/us/support/assurance/]  [49:  Building Security In Maturity Model (BSIMM)
http://bsimm.com/] 

· Creation and maintenance of coding and development standards
· Role-specific training
· Source code control and protection
· Security requirements
· Architectural and design reviews
· Source code review
· Security testing
· Infrastructure hardening
· Secure application deployment
· Backup and recovery processes
· Vulnerability assessment and penetration testing
· Patch management program
· Incident response plan.
The objective must be to identify and treat vulnerabilities before software is released into production environments, and to ensure those environments are secure and continue to be maintained in that manner.
Other preliminary requirements
If your application has known vulnerabilities fix those first. Do not attempt to use AppSensor to prevent the exploitation of vulnerabilities you are aware of – a single specially crafted payload, maybe perfected elsewhere, could be sent to your application to exploit it, regardless of whether you use AppSensor or not.
Similarly, ensure the supporting network and application’s host infrastructure (e.g. servers, workstations devices, other hardware as appropriate) are hardened, administrative access requires strong authentication, appropriately authorized ingress and egress network firewall rules exist, and that all system components have relevant security patches tested, deployed and verified.
Before embarking on the adoption of AppSensor, organizations must decide what needs to be protected and with how much effort. This can normally be linked with the outputs from an existing risk assessment processes. Identification and risk assessment will provide insight into the applications, but most importantly allows you to rank them based on your own business-relevant criteria. The criteria may be from the organization’s viewpoint, but it is sometimes necessary to take into account the value of the data and system from other perspectives such as its users, other parties and society.
The application risk assessment should also identify common dependencies such as shared components, identical data access, common hosting or inter-related back-end systems which may mean all applications need to be considered at the greatest risk classification. An understanding of the dependencies and inter-relationships is necessary to ensure AppSensor detection points are selected and applied appropriately, and in the most efficient manner. Although it is usual to treat each application as a single item, in some cases, it may be possible to partition an application into sections, with different risk ratings, and this could be used to allocate AppSensor detection points in a more targeted manner.
One possibility to consider is whether the application can be partitioned into public areas, authentication, private areas for authenticated users and perhaps back-office functionality such as a web-based content management system or other website administration functionality. AppSensor defends against an attacker who might be able to find a vulnerability; for an unknown vulnerability, you do not know the likelihood nor impact, but you should know the exposure. Derive the impact from the risk assessment for the whole application.
[bookmark: _Ref222975471]Architecture
Conceptually, AppSensor can be considered to comprise of two modules, a detection unit and a response unit. The detection unit is responsible for identifying malicious behaviour based upon defined policies. Detection points can be integrated into presentation, business and data layers of the application. The detection unit reports activity to the response unit. The response unit will take an action against the user. The action taken will depend upon whether the event is a suspicious situation or is obviously an attack.
AppSensor should be integrated into an application such that a specific exception will be thrown whenever the application detects a suspicious or attack event. AppSensor’s detection unit should be aware of the exception thrown, and catalog the event together with relevant details. The response unit will take action against the user responsible using techniques such as a user warning, account lockout, application administrator warning, etc. Consequently AppSensor must have appropriate rights and hooks within the application to perform such response actions.
Although we will be discussing AppSensor on its own as if it is something separate to the application, the concept is often highly integrated within an application’s source code. Other architectures are certainly possible, may have certain benefits, and are discussed in Part IV : Demonstration Implementations. ???Section???. When reading “AppSensor”, consider it to mean “those parts of the application and related systems that perform attack detection and response functionality”, regardless of how/where it is performed.
The process
AppSensor can be applied to existing application code, or built into the requirements for new projects, whether developed in-house or out-sourced. The planning stages are probably the most time-consuming aspect of implementing AppSensor.
AppSensor has a very low false positive detection rate. The implementation must ensure that this is not compromised by adding inappropriate detection points, or designing them in a way that leads to a greater number of false positives. The method presented also tries to build in consideration of business operations and usability, so that not only is a low false positive rate maintained, but processes are not unduly disrupted and the users are not subjected to difficulties through simple human error.  In other words, building in a degree of human fault tolerance.
Although AppSensor works best within the authenticated portion of an application, it is also possible to apply the principles to other areas. In the latter, the range of "normal behavior" may be wider, the identity and location of users may be harder to pinpoint and some detection points may no longer be necessary. But the same benefits are possible.
AppSensor's individual detection point ideas are not necessarily novel, but extend common security principles. Some similar ideas may already exist in an application, but these will typically be implemented as isolated processes and some may be undertaken reactively to events or performed largely in a manual way.  Some examples of these include:
· Counting multiple failed authentication attempts to lock a user account
· Detecting use of invalid HTTP methods to block requests
· Checking the IP address during a session and terminating the session if the IP address changes
· Logging unexpected requests
· Investigating suspicious events at a later date.
AppSensor focuses and formalizes this approach. AppSensor is about implementing proactive measures to add instrumentation and controls directly into an application in advance so that all these events (and more) are centrally analyzed and responded to. It is necessary to build applications securely in the first place, and understand the risks the application faces. If you have centralized and standardized modules for input and output validation, authorization and security event logging, these can provide a head start which can be extended to included AppSensor-like capabilities.
In general, the four stages necessary to adopt AppSensor are planning, implementation, deployment and operation. These should be incorporated into existing software acquisition and development practices, and are not meant to map to any particular software development life cycle.
Roles
The types of personnel involved in these stages for in in-house development process are dependent on each organization’s structure and culture.
· Business owners will need to determine and approve the level of resources to commit for each application and also the rules of engagement for responding to attack events
· Designers, architects and lead developers will have to consider how the agreed approach can be implemented by development, network and operational teams
· Developers and testers will need to undertake verification activities to ensure the AppSensor design has been implemented and tuned correctly, so that it does not affect normal usage and does not have any adverse side-effects
· Operations, development leads and others as required will monitor AppSensor activity and respond to relevant alerts.
Where development is outsourced, there will be additional involvement from procurement and legal roles during the planning stage in particular, and the implementation stage will largely relate to the outsourced development provider. 
Part III : Making It Happen describes the process of adopting AppSensor in greater detail. But in the next chapter further detail is provided on the necessary components.


[bookmark: _Toc234388919]Chapter 4 : Conceptual Elements
Introduction
The primary elements that need to be considered when adopting AppSensor are detection points, possible response actions available when an attack is identified, and the thresholds at which these occur. These are considered briefly here to provide background to the subsequent more detailed discussions of the methodology in Part III : Making It Happen. The Glossary should also be referred to.
Approach
The commonly cited process model for IDPS comprises information sources, analysis and response. Analysis approaches are usually either misuse detection or anomaly detection:
· Misuse detection identifies specific malicious activity (single or multiple events) by comparison with predefined attack patterns (also known as signature-based detection)
· Anomaly detection identifies unusual activity that is outside normal legitimate bounds.
AppSensor does not fit cleanly into either of these since it does not attempt to define numerous attack patterns (misuse detection) but instead primarily focuses only on blatantly malicious events but can also include predefined extreme trend aberration limits. This actually provides a unique benefit in that previously unknown attacks can also be detected, that is unavailable in any other defensive mechanism regardless of cost.
The approach pursued in this book and the demonstration code examples relate to defining application-specific events with related thresholds for attack detection and response. Statistical models also have strengths and weaknesses; as does machine learning, but these are not considered here.
Detection
We need to understand what constitutes an attack, and how threats go about identifying, and probing targets, developing exploits and executing the exploit to achieve the desired result (e.g. data extraction, code/data addition, modification or deletion, denial of service). Although reports on application vulnerability prevalence from static (source code) and dynamic testing, and information from actual breaches of confidentiality are useful, there are other projects17,[endnoteRef:50],[endnoteRef:51],[endnoteRef:52],[endnoteRef:53],[endnoteRef:54] providing tools and invaluable data about how attackers perform reconnaissance before the creation and deployment of an exploit. [50:  DShield.org Web Application Honeypot
http://code.google.com/p/webhoneypot/]  [51:  Distributed Web Honeypot (DWH) Project
http://projects.webappsec.org/w/page/29606603/Distributed%20Web%20Honeypots]  [52:  Glastopf Web Application Honeypot
http://glastopf.org/]  [53:  High Interaction Honeypot Analysis Toolkit (HIHAT)
http://hihat.sourceforge.net/]  [54:  Riden J, McGeehan R, Engert B and Mueter M, Know your Enemy: Web Application Threats - Using Honeypots to Learn About HTTP-Based Attacks, The Honeynet Project, 2008
http://www.honeynet.org/papers/webapp] 

[bookmark: _Ref222911652][bookmark: _Ref230580761]The Common Attack Pattern Enumeration and Classification (CAPEC)[endnoteRef:55], a dictionary of common approaches used to attack software, can be used to identify attack patterns. The results[endnoteRef:56] from the 2011 ModSecurity SQL Injection Challenge[endnoteRef:57] revealed that although it only took a matter of hours for attackers to find an exploit (evasion of a WAF using a negative security model to protect a known vulnerable web application), the number of requests submitted in this time was in the 100s. [55:  Common Attack Pattern Enumeration and Classification (CAPEC), The Mitre Corporation
http://capec.mitre.org/]  [56:  ModSecurity SQL Injection Challenge: Lessons Learned, Anterior blog, Trustwave SpiderLabs, 26 July 2011
http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html]  [57:  SQL Injection Challenge, ModSecurity
http://modsecurity.org/demo/challenge.html] 

[bookmark: _Ref220745322]Suspicious or an attack?
When detecting malicious activity, the application must distinguish between two possible scenarios.
Firstly, the some detected activities might equally have been caused by an unintentional user mistake, or by a crafty attacker snooping around or seeking to mask their other attacks. Since the detected activity could result in an undesirable system response, it is important not to disregard this type of activity altogether. This type of event will be referred to as “Suspicious” because it might be an attack. Examples of suspicious events are:
· Data is submitted for a username that includes the two characters ‘; at the end – this could simply be the result of the user accidentally hitting these tow keys on their keyboard when attempting to press enter, or it could be an attempt to discover a SQL injection vulnerability on the log in page.
· A web form is submitted from the middle of a multi-step check-out process without the previous steps being completed – the user might have bookmarked a web page and gone back to that, or it could be a forced browsing attempt to bypass business logic and perhaps obtain goods without payment.
Secondly, the event could be clearly an intentional malicious activity. These types of actions will never occur as the result of a user’s mistake, are not permitted normal operations, and are therefore highly likely to be an attack against the application. This type of event will be referred to as an “Attack”. Examples of attack events are:
· Data is submitted for a parameter’s containing 0 OR 1=1--‘ in the value which is normally an integer – This is clearly a SQL injection attack regardless of whether it is successful or not, and would never occur as the result of some sort of user error.
· Hundreds of files are uploaded for a user’s avatar image in their profile – an individual user will never do this and it indicates some form of automated attack.
It is important to accurately classify detected events as suspicious or attacks so that the responsive action is not unjustly performed against a non-malicious user. Another way to think about these two categorizations is to ask the following questions:
· Is it impossible for the event to occur as the result of a typographic error, or a copy & paste mistake, or an inadvertent key press by the user?
· Does the user have to leave the normal flow of the application to perform the activity?
· Are additional software tools or special knowledge needed to perform the identified activity?
If the answer to at least two of these is “yes”, it is almost certainly an attack event. 
User identification
The AppSensor technique in general works best where the user can be identified, such as within the authenticated part of an application, or where the “user” is a defined external application, service or other systems. However, system trend type detection points (see later), do not track individual users at all – they track groups of users – and are therefore always candidates for use regardless of knowledge about an individual attacker’s identity.
But even in the case of a highly distributed attack, AppSensor could be used to identify if an attack is under way and will provide insight into the attack, making it a useful operational tool.
In general, the normal approach is to use passive identification techniques: 
1. Prioritize tracking exceptions by known users when possible (most granular) – this works in authenticated-only sections of the application
2. Consider tracking both known and unknown users in places where authentication is not required, but use the preference of user tracking – works in all locations
3. Utilize system user exceptions in cases where the action is not user-specific or it should be tracked across the whole system, not per-user.
Consider just doing the first of these initially, but design for the case of unknown and system users. Some frameworks may enforce a session identification value even for unauthenticated users. In other situations it may be possible to consider hardware identifiers, or certificates, or a combination of HTTP headers[endnoteRef:58] such as User-Agent Accept-Language with the remote IP address (and possibly X-Forwarded-For or Via) for web requests, or user-agent fingerprinting techniques[endnoteRef:59],[endnoteRef:60]. Some of these could be spoofed by the user. Also remember that for web systems, requests from a single user at a fixed location can be drawn randomly from a larger pool of IP addresses, and requests from a single user’s mobile device can change source network repeatedly due to switching between mobile network base stations and from mobile network to WiFi and vice versa. [58:  Header Field Definitions, Hypertext Transfer Protocol HTTP/1.1, W3C
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html]  [59:  Panopticlick research project, Electronic Frontier Foundation
https://panopticlick.eff.org/]  [60:  JavaScript Browser Fingerprinting, Business Info Web Security Applications and Experiments
http://www.businessinfo.co.uk/labs/probe/probe.php] 

Not all types of event detection always need to identify individual users (e.g. system trends). Additionally AppSensor does not necessarily need to be perfect – just good enough to identify an attack with an appropriate degree of certainty. This level of confidence will depend upon the type of application, degree of assurance required and the types of response actions possible.
Ensure the user identification techniques proposed are permitted in the relevant jurisdictions and if user opt-in is required, or opt out allowed.
Sensors
Detection points are instrumentation sensors, normally embedded directly within the application code. While it is possible, and sometimes very desirable, to have detection points in other systems, for the purposes of the current discussion we will mainly focus on in-code detection points.
AppSensor can be thought as an input validation pattern for applications. In traditional IDS information may come from network traffic and host logs. In AppSensor’s case, the information will typically originate from data input validation practices undertaken by the application. This input validation should be being undertaken anywhere trust boundaries are crossed. So if something is going to be consumed; it must be validated. During the input validation it either passes the criteria the programmer had in mind; or it fails and an exception is thrown – that exception being thrown contains valuable information.

[NO Remember the detection code should already be there in an existing securely coded application; we are simply adding the instrumentation to collect that information together, and act on it.]

Mini code example???
[bookmark: _Ref205887214]The best detection points are your own custom ones, designed and optimized specifically for how your application works and the risks it faces. But AppSensor has identified over fifty examples which can be used as the basis for your own custom detection points, used “as is” or used as something to help stimulate ideas. The AppSensor detection points are defined with descriptions, considerations and examples on the OWASP website[endnoteRef:61], are reproduced in the Detection Points section of Part V : Reference. [61:  AppSensor Detection Points, AppSensor Project, OWASP
http://www.owasp.org/index.php/AppSensor_DetectionPoints] 

Thresholds to determine an attack
As discussed above, attack determination must take into account whether each detected event is simply suspicious or actually an attack event. When developing a response policy, it is vital to determine the appropriate thresholds for response actions. The objectives are to select thresholds and response actions that:
· Deter malicious activity
· Prevent determined attackers from successfully identifying vulnerabilities
· Minimize the impact when any false positives are recorded (non-malicious activity)
In general, attack determination should use the approach:
· React immediately to malicious events
· Monitor suspicious events.
This means that every time a detection point that represents a malicious activity is activated, the response should be activated immediately (i.e. the threshold is “1 event”). And typically, a response should be undertaken for a small number of detection point activations that represent suspicious activity (i.e. the threshold is for example “3 events”). These always need to be customized to meet the specific needs of the organisation and the application itself. The simplest implementation would be to consider the total number of activations across all detection points, but more granularity in response can be obtained when thresholds are be defined per detection point, per type of detection point or per group of detection points.
Response
Action and inaction
A response policy should be established which sets specific thresholds and response actions based on the detected actions of each user (or all users in a group, or all users). In AppSensor a response is a change in application behavior; it is not any form of retaliation. The response aims to defend the application, its users and everyone's data:
· Organization data
· User data (sometimes including PII/personal data)
· Data belonging to other parties (e.g. suppliers, customers and partners).
Detection of events is not useful without an automated response to deter and prevent a successful compromise. Some of the most commonly implemented response actions and their pros and cons are shown below.


Figure ??: Pros and Cons of the Most Commonly Implemented Response Actions
	Response action
	Aspect
	

	User Notification
	Description
	Provide a visual warning message to the user to deter further attack activity. For example “A security event has been detected and logged”.

	
	Pros
	May deter a casual attacker by alerting them that their activities are being monitored.

	
	Cons
	Will not deter a determined attacker and provides the attacker with some knowledge of what events are being detected as malicious.

	Account Logout
	Description
	Log the account out.

	
	Pros
	Causes difficulty with to most automated attack tools since the session will be interrupted after a small number of interactions. Logging out the user also provides a clear indication that the performed actions are being monitored and the application is responding to attacks.

	
	Cons
	Automated tools can be modified to automatically re-authenticate to bypass this response action.

	Account Lockout
	Description
	Lock the user account. The user account could be permanently locked, unlocked automatically after a pre-set period (e.g. 30 minutes), or unlocked manually after the user has contacted the help desk.

	
	Pros
	Locking the account will cease the attack activity (if authentication is required).

	
	Cons
	If the organisation or application does not control the creation of accounts, then the attacker could generate numerous accounts and use each one until it is locked.

	Administrator Notification
	Description
	Notify the administrator via email or other methods of the malicious activity.

	
	Pros
	An administrator could take additional actions or enable additional logging capabilities in real time. Notification is especially effective for system trend events which require human analysis.

	
	Cons
	If used too often, this notification could become another type of information overload which is mostly ignored.



Response selection
The definition of thresholds is inherently tied to the selection of response actions. The thresholds and response actions must be customized to meet the specific needs of the application, and normal user behavior. Two contrasting examples are:
· A highly sensitive application operating within a restricted environment may be configured such that even the most subtle suspicious activity is considered to be an attack (all have threshold “1”) where lockout and administrative notification is appropriate
· A public website is regularly scanned by search engines each indexing hundreds pages/day and must not be blocked as it might otherwise affect customers arriving from natural searches, but some sort of limits need to be imposed to prevent competitors copying data off the site to undertake daily price comparisons; some source IP addresses might be excluded from response actions or have very high thresholds, whereas other sources of unauthenticated users have lower thresholds before rate limiting or blocking responses are activated.
The power of AppSensor is its placement within the application for detection, and its ability to respond to malicious activity in real time. The most common response actions are user warning messages, log out, account lockout and administrator notification as noted above. However, since AppSensor is connected into the application, the possibilities of response actions are limited only by the current capabilities of the application, or what it is extended to be able to do. Other ideas for response actions are documented on the OWASP website[endnoteRef:62], are summarized in the ResponsesResponses section of Part V : Reference. [62:  AppSensor Response Actions, AppSensor Project
https://www.owasp.org/index.php/AppSensor_ResponseActions] 


The AppSensor Pattern
The above ideas are summarized in the following conceptual elements:
	Detection Point
	A specific point during the execution of a program that allows event generation.

	Event
	An observed occurrence in an application that is monitored and analyzed to determine attacks.

	Event Manager
	This collects event notifications from the detection points and polls the event analysis engine for any appropriate response actions to execute.

	Event Analysis Engine
	Used for the analysis and processing of incoming event data to compile, store and process them to determine if an attack has occurred.

	Event Store
	The storage mechanism for events.

	Attack Store
	Storage mechanism for attacks, which are produced by the analysis of events.

	Response
	The action taken as a result of attack recognition.

	Reporting Client
	An application that provides data visualization e.g. a dashboard.



The terms are defined more fully in the Glossary and are illustrated in the figure below.


Schematic Arrangement of Conceptual Elements
[image: ]

Part II : Illustrative Case Studies
Chapter 10 : Case Study of B2B Web Services

[bookmark: _Ref222125505][bookmark: _Toc234388920]Part II : Illustrative Case Studies
On the following pages we have provided example approaches that could be used for a range of different software applications.



[bookmark: _Toc234388921]Chapter 5 : Case Study of a Rapidly Deployed Web Application
A minimal AppSensor implementation for a small tightly-build web application that already has a strong input validation module.
	Background
	An entrepreneurial micro business has developed a web product to help financial service companies. All web application functionality requires the users to be authenticated. There are no public parts of the application except for the log in page.
The company will publish the web product to market as soon as possible but also needs to demonstrate robust defenses to its customers who will want to perform their own penetration testing.
The business’s own development team has created a parameter input validation framework that checks every single request’s URL, parameter names and parameter values. The web application’s entry points are known and are defined in an existing database table which is updated at each release. The team have decided to use AppSensor-like capabilities to warn them about forced browsing to invalid URLs, missing mandatory parameters, the submission of additional or duplicated parameters, and invalid parameter value data types.
Note that additional input validation exists, but initially this will not be linked into the attack detection and response system. Just URL, parameter names and value data types.

	Objectives
	1. Immediately identify any non-normal use of the application
2. Slow down an attack using compromised user credentials

	Detection points
	The detection points only need to be added within the existing global input validation module. The detection points selected are shown below. All exist within the application code.
	Area
	ID
	Scope
	Detection Description
	AppSensor Refs

	Request
	i
	Every request
	Invalid URL
	ACE3, IE2

	
	ii
	Every request
	Invalid parameter names
	RE5, RE6

	
	iii
	Every request
	Invalid parameter value type
	RE8, IE2


R01 also occurs for “404 not found” responses.

	Response actions
and thresholds
	All events share the same response. Thresholds are all one (i.e. immediately, so there is no need to undertake counts over time periods). Only one SMS alert will be sent per request/response cycle (e.g. not per parameter).
	ID (from above)
	Threshold
	Response Description
	AppSensor Refs

	i, ii, iii
	Any 1 event
	Log out authenticated user and send SMS alert to development team
	J, B


This will require the ability to:
· initiate a response for each detection point event
· terminate sessions and log out users, and send SMS alerts
· whitelist certain IP addresses to suppress the response actions (e.g. external vulnerability scanner, the company’s own penetration testers)
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Detection of attempted and actual tampering.
	Background
	Gas and electricity smart meters are beginning to replace traditional meters and allow remote usage monitoring, configuration and can offer some benefits to both the supplier and consumer. Remote connectivity may use an embedded SIM card to connect with a mobile network provider, or in the case of broadband-connected home, utilize the existing WiFi connection. Customers often have concerns about privacy, confidentiality of data, difficulties in changing their supplier and health due to the use of mobile phone and WiFi technology.
Mobile technicians connect to smart meters using an infrared optical port which is more reliable in the many different locations that the meters can be installed in. The technicians use security codes to authenticate and then may alter the configuration or collect information. The long highly-random security codes could be identified by brute force and dictionary attacks.
The same functionality is also available remotely, but the optical port is much more exposed.

	Objectives
	1. Identify attacks against authentication functions
2. Detect other extremely unusual activity

	Detection points
	The detection points must be built in to the meter’s logic.
	Area
	ID
	Scope
	Detection Description
	AppSensor Refs

	Optical port
	i
	Every auth attempt
	>10 attempts per minute
	AE3

	
	ii
	Every auth attempt
	6 failed security codes
	AE2

	Configuration
	iii
	Each access
	Updated
	UT1

	Configuration
	iv
	Every flash image 
	Update received
	-

	Communications
	v
	Each outbound connection
	Connection made to unapproved destination
	IE2

	Cover
	vi
	Enclosure opened
	Physical tamper switch to detect enclosure removal
	RP2




	Response actions
and thresholds
	The automated response actions must not disrupt consumers’ supplies under any circumstance. Logging an alert messages to the supplier’s head-end systems are the only response actions.
	ID (from above)
	Threshold
	Response Description
	AppSensor Refs

	(All)
	1 event
	Log locally
	A

	i, ii, iii, v
	Any 3 events
	Alert message to head-end system with copy of configuration and recent log items
	B

	iv, v
	1 event
	Alert message to head-end system
	B


These require local logging and alert message signaling capabilities. Non singular event thresholds refer to rolling 24 hour periods. No more than one alert message to be sent in any 60 minute period.
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Detection of collusion between financial market traders.
	Background
	The operator of a financial treading tool is concerned about collusion between buyers, between sellers and between buyers and sellers. They may attempt to manipulate prices to inflate them, perform insider trading, and undertake accommodation trading.
The company cannot track user-user communications through other channels (e.g. instant messaging, telephone, email and SMS) but has complete insight into the activities undertaken using the software application developed internally.
By building detection capabilities directly into the software application, it negates the requirement for centralized collection, logging and analysis. 

	Objectives
	1. Detect signs of collusion for further investigation
2. User-specific monitoring but must take into account the actions of other users

	Detection points
	All detection points are related to trading activities. Detection point iii requires an examination of multiple group relationships to identify similar patterns.
	Area
	ID
	Scope
	Detection Description
	AppSensor Refs

	Trading
	i
	Every trade
	Unexpectedly low price
	-

	
	ii
	Every trade
	Unexpectedly high price
	-

	
	iii
	Every trade
	Similar actions taken by pairs or groups of users
	-

	
	iv
	Every trade
	High trading speed
	UT2

	
	v
	Every trade
	Unexpected trading pattern
	UT4


Many other types of fraud detection could be implemented in a similar in-application manner.

	Response actions
and thresholds
	No disruption to trading is permitted. All actions are recorded to an audit trail.
	ID (from above)
	Threshold
	Response Description
	AppSensor Refs

	i, ii, iv
	Any 10 events
	Alert anti fraud team
	B

	iii, v
	1
	Alert anti fraud team
	B


The thresholds can be adjusted on a per-user basis so that suspected misbehavior can be watched more closely.
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This example illustrates an initial standalone implementation where the development team have embedded the detection points into their own business-to-consumer (B2C) ecommerce website source code.
	Background
	The retailer’s ecommerce channel accounts for 25% of their turnover. The website is comprised primarily of a product catalogue, shopping basket and check-out system, customers must register to check-out & pay, but can then also manage their accounts, submit reviews and take part in focus group discussions. 
The website is custom built and maintained in-house. The application has been through a number of changes to remove vulnerabilities. There are no generic input validation and exception handling modules.

	Objectives
	1. Identify generic attacks as soon as possible so they can be monitored.
2. Detect specific attacks against the custom logic in the product catalogue, shopping basket, checkout and payment functions
3. Identify attacks against database content

	Detection points
	In this initial implementation, the development team want to limit the number of detection points to less than ten, albeit some of these will occur in multiple instances. For example all requests will have some generic blacklist detection points, and all database query results sets will be validated against expected record count ranges (e.g. always none, always one, 2-10, 11-100 and 101+). The detection points selected are shown below. All exist within the application code, except for the last one which is implemented as triggers in the database that initiate a special web service call to the application.
There are no site-wide (all user) thresholds.
	Area
	ID
	Scope
	Detection Description
	AppSensor Refs

	Request
	i
	Every request
	Invalid/incorrect HTTP verb
	RE1, RE2, RE3, RE4

	
	ii
	Every request
	SQL injection attempt
	CIE1

	
	iii
	Every request
	Cross-site scripting (XSS) attempt
	IE1

	Catalogue
	iv
	Product display
	Product value mismatch
	IE4

	Basket
	v
	Basket handling
	Basket value mismatch
	IE4

	Payment
	vi
	Payment authorization
	Card authorization failure
	(Custom)

	
	vii
	Order completion
	Price mismatch between order & payment
	IE4

	Database
	viii
	Every SELECT query
	Returned record set size incorrect
	CIE2

	
	ix
	-
	Database table integrity fault
	IE5


The events are logged into a database application log table.

	Response actions
and thresholds
	The response actions were selected to block blatant abusers of the site and use alerting to operations staff for most other detected events. Threshold comparisons (per IP address and per user) will only include events in the previous 24 hours.
	ID (from above)
	Threshold
	Response Description
	AppSensor Refs

	i, ii, iii
	Any 1 event
	Block request
	G

	
	Any 3 events by user
	Log out authenticated user
	J

	
	Any 6 events by user or and individual IP address
	Block IP address (and customer account if known) for whole site (manual reset by website administrator)
	L, K

	iv, v
	Either 1 event
	Alert operations staff
	B

	
	Any 2 events
	Block IP address for dynamic areas (1 day auto-reset)
	I

	vi
	3 events
	Alert operations staff, and redirect back to shopping basket summary
	B, G

	vii
	1 event
	Alert operations staff, put order on hold, and block future order check-out for the customer (manual reset)
	B, D, I

	viii
	1 event
	Alert operations staff, abort the current process, display an error page, and block the customer account (manual reset)
	B, G, E, K

	ix
	1 event
	Alert DBA and operations staff
	B

	(All)
	1 event
	Increase application logging granularity and indicate on monitoring dashboard
	A, C


This will require the ability to:
· count detection points events for each threshold per IP address, and per user, and do this for every request
· change application logging level, raise alerts to operations staff, change the status of an order, terminate website user sessions, redirect responses, block individual requests, disable check-out functionality for individual users, block access to the whole website for an IP address and for individual IP addresses, reset blocks
· display a monitoring dashboard
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AppSensor applied to a system that has a small number of strongly authenticated (system) user accounts.
	Background
	A manufacturer exposes selected suppliers to its acquisition systems via web services.
The permitted web service request source locations are controlled by network firewall rules which are monitored and which have robust change control processes. Additionally customers must have a current, valid and non-revoked X.509 certificate.
Security requirements were defined at the start of the implementation of the services, and were verified during design reviews, static code analysis (code review), dynamic testing. An independent specialist security company undertakes penetration testing at each release. There is ongoing external and internal vulnerability assessment scanning daily.
Suppliers have strict security obligations placed on them and their development processes. However, the manufacturer is concerned about misuse of the web services by a rogue insider within any of the supplier organizations.

	Objectives
	1. Block clearly malicious requests to allow time for further investigation

	Detection points
	The detection points are primarily built into the application’s input validation module, but detection points i and ii rely on an internal logging module. Checking the result of the XML parser vi is a separate output validation step that had to be added.
	Area
	ID
	Scope
	Detection Description
	AppSensor Refs

	Requests
	i
	Every request
	Invalid entry point
	ACE3, IE2

	
	ii
	Every request
	High rate requests
	UT2

	XML parsing
	iii
	Every request
	Does not match schema
	IE4

	
	iv
	Every request
	Invalid signature
	IE4

	
	v
	Every request
	Invalid values/attributes
	IE2

	
	vi
	Every request
	Parser error returned
	CIE2




	Response actions
and thresholds
	Suppliers are not allowed access to the production systems until their methods of interaction have been tested and approved. The threshold before response is therefore strict.
	ID (from above)
	Threshold
	Response Description
	AppSensor Refs

	(All)
	Any 3 events
	Terminate request, log user out, lock user account, raise syslog event, and send email alert to service owner and operations team
	G, J, K, C, B


The threshold comparison reviews all events in the previous 7 day period.
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In this section the process of planning, implementing and operating application-specific intrusion detection and response. This process is technology agnostic. Success comes down to many details and it should be adapted to an organization’s own culture, its working practices and, most importantly, the risks it faces.


Part II : Illustrative Case Studies
Part III : Making It HappenChapter 11 : Case Study of a Something Else???
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The process to implement AppSensor should not be long and complex, and it is important to focus on a minimal set up that provides sufficient detectability of attacks. There is no need to be overwhelmed by all the attacks possible – keep in mind AppSensor should not be trying to detect all malicious behavior. AppSensor only needs to detect enough obviously malicious behaviour to make a decision about the intent of a user.
The illustrative case studies in Part II can also be used as short-cut design patterns. Further inspiration is available in Chapter 1 : Application-Specific Intrusion Detection & Response - Technique adoption, and in the examples of Part IV : Demonstration Implementations. The remaining content of this Part III should be considered to learn more, implement a more formal process, gain a deeper understanding, and learn from experience gained with actual production implementations.
Process, culture and technology agnostic
In this guide, no particular development methodology is required or assumed. The suggested process can be adapted to local methods and culture, and to suit each organization's business processes. For many organizations, the steps can be built into applications through a process of continual improvement and are well-suited to Agile methodologies.
The methodology described here also does not identify which technologies should be used. If in doubt, initially use what you know best and are familiar with.
Begin with a pilot application
Organizations often use a pilot application first to learn the techniques and build up knowledge and experience. This could be an internal application only used by developers or created as a proof-of-concept trial. Consider utilizing non-disruptive response actions only and log everything. However do give consideration to the issues raised in this Part III to help ensure a successful, and extensible, pilot.
Suggested method
We have seen in Part I how AppSensor allows real-time detection and response to be built in to application. Whenever possible, AppSensor capabilities should be defined in project requirements from an early stage. For existing applications, the additional coding must should be subject to the same secure development process as another other software changes. This includes risk analysis, design and code review and testing, operational enablement, etc.
The recommended approach is to include the following aspects within your own software development practices, however they are structured and ordered:
· Design
· Strategic requirements
· Detection point selection
· Response action selection
· Threshold definition
· Implementation
· Verification
· Deployment
· Operation
Such a processThis method leads to the creation of requirements, user stories andspecifications, test cases. For more formal development practices and for procurement documentation, further reference materials and may be required such as schedules of detection points , thresholds and responseswhich can be used in procurement documentation and as reference materials during development processes.
The following two chapters (13 and 14???) describe the most typical AppSensor implementation and chapter 15??? describes how these might be integrated with software acquisition processes. Chapters 16 and 17??? can be read to provide additional ideas and considerations for a more formal approach and/or complex AppSensor deployment.
Implementation issues are also discussed in the comparative research and experiment undertaken independently by Pål Thomassen “AppSensor: Attack-Aware Applications Compared Against a Web Application Firewall and an Intrusion Detection System”25. This paper also includes a large number of useful references for further reading.
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The design stage includes identifying strategic considerations, sensor selection and positioning, and determination of the appropriate type of response to block or mitigate attacks based on an analysis of business risk, process criticality and user experience requirements.
[bookmark: _Ref222122637]Management support
The implementation of AppSensor should not be undertaken in isolation from other information security initiatives. Consideration should be given to the effects on all users and especially any legal, regulatory and contractual obligations. Clearly low-risk, internal only applications with a small user base may well have many fewer considerations, but even with these aspects like monitoring of staff could be an issue. In all cases the event data is likely to be valuable and could contain intellectual property.
Existing change management processes that include security, privacy and compliance risk assessment should be leveraged to gain management understanding and support. After all, implementing AppSensor should be a success story, so give everyone a chance to get on board!
Organizational policy
It is helpful to agree some sort of high-level guidance on what is deemed to be acceptable –determined by a range of appropriate stakeholders such as business and product managers, development management, software architects, lead developers and legal/compliance officers. The stakeholders could include representatives from human resources, customers or partner organizations depending upon the types of users. This is necessary even if a very Agile development method is used. Theis “policy” should consider the organization's risk tolerance and the desired user experience (e.g. acceptability of changes to service level and function availability, reduced usability).  
Remember "users" are not always people and can be other information systems. The selected response actions will also depend on the purpose of the application such as whether it is a sales channel, a marketing asset, a service for citizens, a mission critical process or safety critical system.
A policy is mainly focused on the acceptable responses, but in turn this can help define what type of attack detection is required. Here are some different, and sometimes contradictory, points of view various organizations may have:
· Only allow a few security events that are obviously attacks or several minor events which are just suspicious
· Do not prevent users doing anything, but log, monitor and alert fervently
· Never log out or lock out site administrators, but ensure they are aware of all suspicious and attack events, and know that their own activity is being recorded in tamper-evident audit logs with any AppSensor alerts being sent to their supervisors
· Any two attacks each with more than 75% certainty that it is an attack must log the user out and lock their account immediately, and this can only be reset by two administrators from different locations acting together
· Never disable any functionality
· Authenticated administrators who have access to the most functionality and the greatest data access permissions should have the strictest thresholds before a response action is undertaken
· Active (against the user) responses will only be used for (malicious) users external to the corporate network
· Active responses will only be used for (malicious) users internal to the corporate network
· Application functionality will not be changed unless the user's source location is in a higher-risk country
· Ensure the (malicious) user is oblivious to the response actions being taken
· Nothing must be done which might affect WCAG 2.0 Level AA Conformance
· Public unauthenticated users are the least trusted and should have the most strict thresholds (i.e. lowest number of events before an attack is determined).
Some requirements can be gleaned from existing application requirements. For example, it may be necessary to ensure that the response actions do not:
· Undermine advertising claims about service provision (e.g. capacity, rate of use)
· Contradict the organization’s culture, mission or approach
· Contravene contractual obligations such as service level agreements (e.g. uptime)
· Conflict with a corporate policy or other mandate
· Break a regulatory requirement
· Perform any illegal act in the jurisdiction of the application and/or the users.
It can be productive to discuss the examples above in a workshop-style discussion to help define some high-level policies before attempting to specify appropriate detection points, responses and related thresholds. The facilitator should be able to steer the group so that all the aspects are covered.
The important point to re-emphasize is that AppSensor-like functionality must never affect normal users. Therefore any concerns about the effect on (normal) users can often be discounted, to allow the group to focus on what the business considers is unreasonable and at what point it should take action and how. An organization’s information security policy and incident response plan may help determine the approach, but often consideration of application response is unlikely to have occurred previously.
Another approach to developing a high-level policy is to work through the main entry points or functionality for the target application(s) and, from the perspective of each user role, write some general rules for response that are allowed and appropriate. Take into consideration the effect the response actions might have on users and other systems, as well as the particular application. At this stage it is better to focus less on technical issues such as “how do we do this”, and more on user experience and business risk viewpoints. 
Try to define 5-10 rules that apply to all users. However it is likely there will be demands for greater granularity in the response actions, and you may want to allow for this in your designs and outsourced software specifications.
[bookmark: _Ref222127085]Architecture
Another factor in what is achievable using AppSensor is how the functionality can be implemented. The architecture of the target application(s), environments, availability of source code all influence what is possible. Code can be completely custom-built or it could consume demonstration code produced for the OWASP AppSensor Project. For a new application, AppSensor functionality can be defined in requirements documentation for in-house (e.g. functional specifications) or out-sourced development (e.g. ITT, RFP, functional specifications). See also Chapter 15 : Software Acquisition Processes.
The key components required are:
· Detection points within the execution path of an application’s program that allows event generation when a tracked observable occurrence takes place
· Event store to record events
· Event analysis engine that analyses incoming event data to determine whether an attack is taking place, based on a specified policy (of detection point activity and related time-dependent thresholds)
· Event manager that monitors the event analysis engine for any appropriate response actions to execute
· Responses taken as the result of attack recognition
· Reporting client for visualization of data stored in the event analysis engine.
The detection points generally need to be located within the application code base, and where there are existing modules performing input valid and output validation, this can reduce the impact of additional code. In certain cases there may be sufficient event information in application logs, and those could be used for attack determination by some sort of event analysis engine. But the use of existing logs alone is unusual and if the granularity of event information is so good, the detection points probably already exist. 
Attack determination logic will need to be developed. This would typically be in local code, using a standalone service engine or using some form of events and log management system such as for Security Information Event Management (SIEM) and fraud detection systems. If source code is not available or cannot be changed, consider whether application logs can be used as a source of event data – but these are not normally adequate. Otherwise consideration could be given to externalizing the detection to a proxy (e.g. a proxy such as a web application firewall, filter or guard). For more inspiration see the example implementations in Part IV : Demonstration Implementations.
Where necessary, integration with other systems must be considered as early as possible. These may include:
· Network firewalls and traffic balancers used for blocking response actions
· Intermediate network points (e.g. local stations, aggregators, collectors, proxies, load balancers)
· Application firewalls as detection points and/or response actions
· Electronic mail and other messaging systems for alerts
· Systems providing information as reputational detection points
· Related applications as detection points
· Operational monitoring and management information systems.
For inter-system communication, ensure there is adequate system identification assurance and that sufficient protection for the confidentiality and integrity of messages exist.
Detection point selection
A full list of example detection points is included in Figure 29 in Part V : Reference - Detection Points - Listing. At first consider implementing just 5-10 detection points for most applications. In many cases a “single” detection point could actually monitor many different URLs (e.g. input validation exception in a centralized module that checks every parameter name and value).  In other cases a single generic type of detection point may need to have multiple specific instances (e.g. validating the output of database queries).
Detection points for these types of event are considered to be very good attack identifiers and should be considered first:
· Authentication failures (e.g. password change failures, re-authentication failure)
· Authorization failures (e.g. resource or action requested with insufficient privileges)
· Client-side input validation bypass (e.g. data format mismatch or missing mandatory values)
· Whitelist input validation failures (e.g. invalid data type or data length/range)
· Blatant code injection attack (e.g. common SQL injection strings)
· High rate of application use (e.g. requests/pages/views/windows per 5 minutes).
Part II : Illustrative Case Studies provides additional inspiration for detection points. Many additional ideas for detection point selection are provided in Chapter 16 : Advanced Detection PointsChapter 16 : Advanced Detection Points.
Document the aims and requirements of each detection point selected like any other software requirement.
Thresholds and responses
If possible, begin implementation of AppSensor in areas of the application where users are already authenticated such as customers, clients, colleagues or citizens. By default, use the following attack detection thresholds:
· 3 events due by any detection points activated by a single user in a 24 hour period
· 6 events due by any detection points activated by a single user in a 4 hour period
And, initially perhaps only consider the following responses:
· Account log out
· Account lock out for a fixed time period
· Administrator notification
We can then combine the thresholds and actions. For example:
· If any 3 detection points are activated in 24 hours, create a support event ticket and send an email alert to operations team
· If any 6 detection point are activated in 4 hours, log the user out and lock the account for 2 hours
To begin with No. 2 above could also be a support ticket and alert response until the number of such situations becomes known and confirmed that it does not affect any normal application usage.
Part II : Illustrative Case Studies shows other thresholds and responses. Many additional ideas and considerations are provided in Chapter 17 : Advanced ThresholdsChapter 17 : Advanced Thresholds, where the use of existing application functionality for responses is also discussed.
Planning for operation
In whatever way the threshold and response selection are implemented, ensure they can be easily customized through future configuration changes rather than code modification. Example alterations that should be allowed for are:
· Amending an existing attack detection threshold (e.g. the number of events and/or the time period)
· Amending the response action of an existing threshold (e.g. to another one or more supported actions)
· Adding new thresholds across single, all or any group of detection points (e.g. any N events across detection points A and B only in period P)
· Deleting an attack detection threshold
It may also be necessary to clear or reset all event data. Some broader issues to consider when considering the implementation are:
· Should there be an option to overrule all responses so that they log only?
· Could this "log only" option for certain source locations (e.g. an IP address) which applies to only certain strongly authenticated users and is of limited time duration, raises administrative alerts when set, removed or expires, and includes a process for management approval?
· Can AppSensor data be exported into risk management and vulnerability management systems?
· Can AppSensor data be exported in real time to security integration manager (SIM) systems?
An AppSensor implementation that detects attacks in real time is likely to cause significant difficulties for functional and security testing. The “log only” concept mentioned above could be utilized for these situations. Avoid the use of a “non-production” setting since the implementation also has to be verified prior to release. Further considerations are discussed in the advanced discussions in Chapter 16 : Advanced Detection PointsChapter 16 : Advanced Detection Points and Chapter 17 : Advanced ThresholdsChapter 17 : Advanced Thresholds.
Implementation
Altering existing code always introduces risks, and future maintainability must be considered. Where possible build for an extensible architecture so that the minimum amount of effort is used for changes to other applications or during the design and implementation of AppSensor for new applications. Consider if a service-orientated approach can be designed, such as illustrated in the example implementation described in Chapter 19 : Web Services (AppSensor WS)Chapter 18 : Web Services (AppSensor WS).
The implementation is always application, framework, language, deployment and architecture specific. The detection points are usually highly integrated within the application, but the event store, event analysis engine, attack detection and response selection may be less so. The types of response actions chosen may mean changes to the application code unless they are all externalized.
For all code modifications, ensure these follow the same software development life cycle practices as other application code, including secure coding practices. In particular, assume tuning of all settings and thresholds will be required. Develop test cases or unit tests for each detection point, threshold activation and response.
For outsourced development identify who owns code and any intellectual property.
Threshold and response selection configuration settings must have sufficient protection to prevent them being modified by the application itself or by unauthorised users. Consider restricting knowledge about the precise detection points and configuration.

[bookmark: _Toc234388931]Chapter 14 : Verification, Deployment and Operation
Verification
Ensure AppSensor's correct implementation will be verified (the correct detection points are activated, event data are recorded, attack detection occurs as planned and the correct responses take place) through the use of testing processes at launch and periodically thereafter. Unit tests should have been created during the specification or design stages, but a mixture of approaches is recommended:
· Uunit tests written for the AppSensor functionality
· Uusing example attacks
· Rrunning a crude application security scanner against the application
· Mmimicking the behavior of desirable search engine robots.
Any settings that can be used to override AppSensor behaviour (e.g. to change all actions to “log only”) must also be tested.
It is also useful to have AppSensor enabled during usability testing so that any concerns about the impact on normal application usage can be addressed.
Do not attempt to verify AppSensor by testing the implementation with known one-shot attacks (e.g. exploits of known weaknesses). AppSensor does not protect vulnerable applications. Its purpose is not to detect every attack possible, but only to detect enough to identify a user as an attacker, and then respond in an appropriate manner.
Deployment
Ensure existing change control processes are utilized for deployment. Build in time to allow tuning of the system, especially to configure response thresholds.
AppSensor event timestamps must be synchronized with trusted time sources to allow cross-system event correlation and to support incident investigations.
More…Re-run verification checks to ensure the deployed application responds in the same manner as in non-production systems. Other additional defenses in production change or could mask information that would be identified as malicious events by the AppSensor detection points.
Operation
Monitoring
Where possible, incorpiorate event and attack data into centralized logging and monitoring systems. Data signaling is context-specific but could be shared using protocols/formats such as:
· Signalling?
· Common event format (CEF) over syslog
· http://cybox.mitre.org/
· ANSI C12.22 message services for smart grids.
Operational tuning
Attack detection thresholds and responses will need to be amended during operation. This may be due to selecting incorrect values during the planning stage, or caused by unknown information about the application, or as the application’s functionality or usage changes over time.
The work to ensure the thresholds and response configuration can be configured separately from the code will be vital here. All changes should of cause go through relevant risk assessment and change management processes to ensure they do not have an adverse effect on normal users, the security of the application and its data, any compliance or other business mandates.
Review, change control and remodelling
There should be a periodic review of the AppSensor implementation to ensure it is operating correctly. Consideration of AppSensor should be built into change management practices so that software releases do not adversely impact upon AppSensor and that opportunities for additional detection points can be considered.
Control validation
Periodically run AppSensor unit tests against the production environment to ensure the defensive measures are in place and working as expected.
Incident management
Consider how event and attack data from AppSensor should be incorporated into centralized incident identification and management processes, and update the incident response plan to take into account the automatic actions undertaken by AppSensor.
When application security incidents occur, consideration should always be given to how the root cause could have been prevented. The first reaction should not be to alter AppSensor detection points, thresholds and responses to match a particular attack. It is certainly valid to consider how the incident circumvented all controls, and whether the attacker could have been detected sooner, but the root cause is usually related to activities earlier in the SDLC.
[bookmark: _Ref222126872]
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Specification

Third party code

Contracts

Legal project
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Approach
Even in more advanced implementations, the aim should be for simplicity not complexity. It is important not to be overwhelmed by the many choices available and the illustrative case studies in Part II : Illustrative Case Studies show how detections points can be used in example implementations.
Additional code increases complexity. However if an existing application has already been developed with security built in, obvious locations for detection points are likely to already exist (e.g. input validation, exception handing, logging) and similarly some local response actions may already be being used (e.g. reject the input, ask the user to re-enter text, log the user out, etc).
We will consider the detection requirements to create an initial model, look at how to optimize this model and check it using attack analysis before considering the response actions in Chapter 17 : Advanced Chapter 17 : Advanced .
The analysis is suitable both for consideration during procurement, as well as development processes.  Outsourced development and services could be asked to implement AppSensor and provide access to the event data.
Inspirational detection points
Many standard example detection points have been documented. The detection point IDs and titles are summarized in Figure 29 in Part V : Reference - Detection Points - ListingListing. They are also arranged in various Categorization of detection points categorizations as well as their primary exception categories Request Exceptions (RE), Authentication Exceptions (AE), etc.

Each example detection point type is described in more detail in the subsequent 

Detailed description of detection points  (Figures 34-45???). Some of the terminology, considerations and examples tend to be web application biased due to the significant proportion of software applications that are now delivered in this manner. However, the approaches can be used in many other sorts of architectures and just need to be viewed in an alternative manner.
Detection point requirements
Given the strategic requirements such as a policy and architectural approach (discussed in the previous chapter), the scope of the selected application(s) must be understood. Existing applications should have documentation relating to their structure and functionality; these may be some of the artefacts produced during design and/or risk assessment processes. Where possible ensure the following are known:
· The different roles users fall into, and how these are allocated
· All the valid application entry points (e.g. for desktop applications all user interface controls, for web applications whether POST and/or GET should be used and whether SSL/TLS is mandatory, optional or prohibited)
· Which of the entry points change state
· Which users/roles have access to these entry points
· The broad functionality blocks and trust boundaries (e.g. data flow diagrams)
· The various inputs for each entry point (form, URL query string and path parameters, HTTP headers including cookies), and their data types and acceptable values
· Which of the inputs may be manipulated by users and whether the interface for doing that is constrained (e.g. radio buttons and select elements) and whether there is any client-side validation for any of the elements
· Whether there is functionality relating to authentication and session management.
Additionally, access to source code of an existing application can aid detection point selection and positioning, since there will be greater knowledge about data flow and security mechanisms that already exist.
Firstly we need to identify possible (candidate) detection points. The candidate detection points can be selected using application risk classification, threat assessment (e.g. attack surface modeling, threat analysis, misuse/abuse cases, common attack patterns) or combinations of these.
A broad brush approach to select candidate detection points is to base it solely on the category types most appropriate for various application risk ratings. For example: “All Class X applications will have whitelist input validation detection points”. Risk is organization dependent and may change as threats alter. However, this type of approach is not recommended until a number of applications have been "instrumented" so that the organization has sufficient experience, and has been able to adjust the detection points to match its own risk needs. The knowledge can then be applied to target other applications in the organization’s portfolio with a similar risk profile. It is a good way to extend a tried and tested approach to similar applications in a portfolio.
The actual threats, possible vulnerabilities and the potential impacts can also be used to select candidate detection points. Remember it is not always the best approach to use AppSensor to detect individual specific attacks - keep in mind the need to look for clearly malicious general behaviour (before the vulnerability is found and an exploit created). In an earlier implementation guide[endnoteRef:63] there is a multi-part chart cross-referencing the detection points with two well-known classifications: [63:  Watson C, Attack Detection and Response with OWASP AppSensor - An Implementation Planning Workbook, v0.3, August 2011
http://www.owasp.org/index.php/File:Appsensor-planning.zip] 

· [bookmark: _Ref222911672]Web Application Security Consortium (WASC) Threat Classification[endnoteRef:64] [64:  Threat Classification, v2.0, Web Application Security Consortium
http://projects.webappsec.org/Threat-Classification] 

· Attacks
· Weaknesses
· OWASP Top Ten 2010 - The Ten Most Critical Web Application Security Risks
These can be used with individual application threat assessments and other forms of risk analysis to identify candidate detection points from the standard examples. Consideration should also be given to additional custom detection points for specific business logic threats that have been identified.
Model creation
Once there is a list of candidate detection points they should be specified further to define:
· Ppurpose 
· Ggeneral statement of its functionality
· Ddetails of any prerequisites
· Rrelated detection points.
The examples and considerations in the schedule of example detection points (Part V : Reference) can be used as a guide here.  You may require multiple versions of the same detection point e.g. IE3 whitelist validation of parameter names, IE3 whitelist validation of IP addresses, etc.
For each point begin a specification sheet like the examples in Figure 46 and Figure 47 in Part V : Reference - Detection Points - Detection point specification sheets.  These should identify the AppSensor identity code and the more specific purpose for the particular application.
The "Series" number in the figures will be used as the starting point numbering for sequential numbering of each detection point instance e.g. IE1-1001, IE1-1002, etc.  It is possible to have identical AppSensor detection point identity codes (e.g. IE1) but with different purposes (e.g. the whitelist is source IP addresses rather than parameter values) and those should have a different series numbering e.g. 1000, 2000, etc.
At this stage, these specification sheets should be independent of where the detection points will be located, and should not include any consideration of response actions.
Aggregating detection points need slightly different specification.  The trend and comparison period for each detection point must also be identified.  For example these might include both technical and business tests:
· 5 different usernames tried in 30 minutes (AE1)
· The source location changes to any other continent (SE5)
· Number of orders placed in 1 hour (UT1)
· Number of logouts in 5 minutes (STE1)
· Number of new site registrations in 15 minutes (STE3)
· Number of shopping carts abandoned in 1 hour (STE3).
Once the draft specification sheets are complete, it can be useful to also create a high-level overview of the application showing the main processing blocks/functionality perhaps in the style of a data flow diagram. Then, using a list of the site's functionality and/or different usage scenarios together with the specification sheets, mark up the approximate positions of the various detection points identified.  Many usage scenarios will have very similar data flows and can be grouped together.
Example high-level data flow diagram annotated with potential detection points
Initial requirements for one process
[image: ]

Identify other systems the application exchanges data with and optionally include an indication of known trust boundaries. Examine the charts and look for additional detection point requirements. For example, consider input validation and the number of returned records (CIE2).
These should begin to show how it makes sense to undertake the discrete generic pre-processing detection points in centralized functionality since it will be common to almost all requests.  The discrete business layer detection points will be associated with particular application functions.
Create a summary sheet that defines the proposed detection point locations for each type such as the examples in Figure 48 and Figure 49. In these two, whitelist input validation (a discrete business layer detection point) may occur in very many locations in the application code, and discrete generic pre-processing detection points are likely to exist in very much fewer, and possibly a single, locations. The content of these schedules is entirely dependent on what is necessary for your own organisation, and in some cases not everything will be finalized at this stage.
We now have our initial AppSensor model comprising the specification sheets and optional diagrams.
Optimization
The candidate detection points should now have initial specifications.  It is necessary to make sure the purposes and descriptions created perform correctly.  Beginning with the specification sheets and data flow diagrams, optimize the detection point model in three ways:
· To maintain a low false positive rate through adjusting the sensitivity
· To consider relationships with other systems and the effects these may have on detection points
· To determine if any detection points can be removed to eliminate overlaps and duplicates.
Low false positive attack detection rate
During this stage, consider what could go wrong with input data. Ensure that the detection points are tuned to detect malicious behavior and not just user errors – some could be specified in a way that leads to more false positives.  In Figure 1, the range of user behavior was used to illustrate that malicious attacks are separate to normal application use. Figure 5 below shows how this approach can be applied to individual input values where the type and format of an acceptable value may have some tolerance between what is acceptable and what is unacceptable:
[bookmark: _Ref234401484]The spectrum of application usage for user input
Normal application use means validation needs to cater for a range of acceptable user data values
[image: ]

Some "invalid" user data examples are shown in Figure 6 on the following page.  Users may copy and paste information into form fields, or put the data in the wrong field, or use an unexpected format such as when entering a phone number.  Applications should allow some degree of variation in user behavior and thus allow for normal user error.
We must check that our proposed detection points will not inadvertently flag what might be normal behavior as an attack.  For each detection point, examine possible scenarios where the detection point might be fired by normal, or non-malicious use.  This will help tune the system helping us choose appropriate response actions (later).  For each detection point consider:
· Automated non-malicious systems (e.g. web crawlers)
· Human error (misunderstanding, typographical)
· Input device errors (e.g. conversion of voice to text, truncation of a URL in a link sent by email)
· Specificity of error threshold (e.g. space, hyphen and parentheses characters in a telephone number, past/future application changes (e.g. old URLs, changes to forms)
· Network configuration and architecture.
For example, an application's entry points are well defined and a detection point is chosen to be activated when a request is made for any other URL (e.g. force browsing, URL whitelisting).  The application may be able to monitor HTTP “not found” (response status code 404) errors and other invalid URLs using an internal module or it could consume such data from another device (e.g. web server logs or a web application firewall) if this can be done in real time.  But in a public application, you are likely to receive a large number of non-malicious 404s and these will not normally be attacks. The ability for AppSensor to maintain a low false positive rate in this example this depends upon the way the detection point and response are specified.
Another example would be an invalid ID parameter.  If the options are provided to the user in a constrained interface element like a form select element, it is more suspicious than if there are some unexpected characters in a form text element.
[bookmark: _Ref234401778]Some data unacceptable data values will be much more likely to indicate a malicious user
Acceptability is organization and application dependent
[image: ]

Some examples for detection points which could be susceptible to these types of sensitivity problems are expanded upon in ???.  Consider these in the target application(s) and the way in which the input aspect (URL, headers, parameter name or value) might conceivably be provided by the user.
The actual context is also important. If a data entry form has some presentation-layer (client-side) validation in addition to equivalent matching server-side validation, and the submitted data includes problems which the presentation-layer validation should have caught, the acceptability of the inputs may be different.  If we assume type and format and lengthy validation on the client side, the above diagram changes considerably as shown in Figure 7.
[bookmark: _Ref234401860]Application-layer knowledge increases the ability the ability to differentiate between normal and malicious input
[image: ]

Relationships with other systems
Similarly, if a request or data are received from a trusted information system, the standard of tests to validate the data could be stricter. XML data which has been validated by an XML Firewall should be of higher quality, and less prone to human errors, than that in an RSS feed pulled directly from another website. Do not trust either source completely, but consider the seriousness of a detection point being activated from a more reliable source.
Therefore consider the original source of data being processed. Was it user-generated content, was it retrieved from a reliable source, and if the latter do we know what verification has already been performed? This analysis may lead to the creation of additional detection point instances of the same detection point identity code, but they have different requirements and are used on different types of input.
Overlaps and duplicates
Finally, we want to remove any duplication of effort - using the same detection point more than once on the same input or using another detection point which does not add any further value.  
This process is undertaken by examining the model to check that detection points with the same functionality are not being repeatedly called on the same data.  Note that the same detection points may correctly occur many times within the processing of a request such as when each parameter value is checked against a whitelist.
It is also possible that the way some detection points have been specified in a manner which negates the need for others. Check whether a very specific detection point is already tested in a less specific detection point.  For example if AE10 (adding additional POST variables) is proposed for the application's authentication module and broad request validation includes RE5 (additional/duplicated data in request) it may be possible that AE10 is not adding any further detection.  Provided these are given identical priority, there is no need for both, or the RE5 could be modified to capture the functional area or purpose, which might them be used to affect the response action.  But note it may still be useful to record that the action was the more specific AE10 (as well as RE5), and another option would be to alter the specification for RE5 so it can activate AE10 type events at the same time, if it knows it is an authentication request.
Figure 37 (in Part V : Reference - Detection Points - Related types) below uses link arrows to show possible inter-relationships between detection points.  Depending upon how the detection points have been specified, the source of a link arrow might be a more generic version of the destination of the link arrow.  This does not mean the source necessarily caters for all possibilities, but can be useful in avoiding duplication. But check that removing a detection point does not mean that an aspect is left uncovered in another attack.
Update the specifications and charts with any changes required.
Now create test cases for requests that should activate the detection points.  Try to create separate tests for each detection point, and this may mean hundreds of test cases since they will include at least one for every parameter submitted in requests.
Lastly, review application design/functionality that changes the flow through code and especially any blocking actions (e.g. redirects, session termination, custom error page display).  Check whether any of these circumvent or prevent detection points from being activated.  For example the application might already lock an account for 20 minutes after three invalid passwords are provided in a 24hr period but AE2 (multiple failed passwords) might be specified requiring a different number.
Attack analysis
The last stage recommended for detection point selection is to undertake an attack analysis. Although this step can be bypassed, it is useful to work through what will happen in real attack situations.  Select attacks that have been identified from threat assessments, or if this is not available consider those from, for example:
· Common Attack Pattern Enumeration and Classification (CAPEC)54
· WASC Threat Classification v2.063
· Studies of attack methods55,[endnoteRef:65],[endnoteRef:66] ???other references i.e. mobile, HTTP, etc??? [65:  Gallagher B and Eliassi-Rad T, Classification of HTTP Attacks: A Study on the ECML/PKDD 2007 Discovery Challenge, Lawrence Livermore National Laboratory
http://eliassi.org/papers/gallagher-llnltr09.pdf]  [66:  Hansen R, Detecting Malice
http://www.detectmalice.com/] 

Use both likely attacks identified during risk assessments as well as feasible but much less likely attacks. Remember, we are concerned with identifying and stopping attacks against unknown vulnerabilities such as:
· SQL injection point introduced during a change to the application which was missed due to insufficient testing
· Zero day vulnerability in a code library used by the application.
For each attack, consider a range of valid and invalid application entry points, and check the model through using the real attacks.  Examine all the detection points which might be activated, ignoring for the moment what their response may be.  List all the detection points for each attack scenario and determine whether these are reasonable, and provide sufficient coverage.  Then consider if it is possible for human errors to generate the same situation.  If so, reassess the detection points proposed.
If necessary, re-iterate through detection point selection steps to finalize the selection of detection points. We should now have the following artefacts:
· Detection point specifications
· Schedule of detection point locations
· Test cases
The response actions and attack detection thresholds can now be defined.
[bookmark: _Ref220925884]

[bookmark: _Ref222127720][bookmark: _Ref230603877][bookmark: _Toc234388934]Chapter 17 : Advanced Thresholds and Responses
Approach
In AppSensor a response is an action taken as the result of attack recognition i.e. a change in application behavior; it is not any form of retaliation.  The response aims to defend the application, its users and everyone's data:
· Organization data (e.g. business data, intellectual property, source code)
· User data (sometimes including PII/personal data)
· Data belonging to other parties (e.g. suppliers, customers, clients, partners).
If you have defined a policy (see Chapter 13 : Design and Implementation), this should include a small number of high-level rules, and the type of acceptable response actions will already be largely defined.
Conventional defenses vs. AppSensor defenses
Traditional defensive mechanisms are often much more limited in the types of automated response actions possible. They might only include simple allow or deny:
· No change (e.g. continue logging/monitoring)
· Process terminated (e.g. reset connection)
The capabilities of AppSensor are potentially much wider – whatever the application does or could be coded to do. A full spectrum of responses might very feasibly include:
· No change (same as traditional defenses)
· Logging increased
· Administrator notification
· Other notification (e.g. other system)
· Proxy
· User status change
· User notification
· Timing change
· Process terminated (same as traditional defenses)
· Function amended
· Function disabled
· Account log out
· Account lock out
· Application disabled
· Collect data from user
Additionally, since an application has knowledge about the user’s roles and permissions, it is entirely possible to define response actions that target individual users, groups of users or all users. There could even be multiple tiers of response, dependent upon the user's actions over periods of time.
AppSensor can be used flexibly and does not need to do everything itself. Response actions could be undertaken by:
· Application itself
· Another system (e.g. application firewall, network firewall, another application).
While we are primarily interested in real-time responses, the (actual or planned) capabilities of the application and related system components should be considered first. It may be possible to leverage these existing capabilities, or extend them, to provide the selected response actions.
The recommended approach is to consider the general countermeasures required, rather than the specifics for each detection point. Threshold definition (later) can link multiple detection points with multiple response actions.
Built-in potential
Many applications already have discrete (unconnected) security control responses built in. This might include functionality such as:
· Terminating a request when blacklisted inputs are received
· Fraud detection
· Adding time delays to each successive failed authentication attempt
· Locking a user account after a number of failed authentication attempts
· Application honey pot functionality
· Logging a user out when they utilize the browser's “back” button
· Terminating a session if a user's geo-location changes
· Blocking access by certain IP addresses when malicious behaviour is detected
· Recording unexpected actions
But these are usually implemented as isolated processes and some may be undertaken reactively to events, or using post transaction processes, or performed largely in a manual way. AppSensor needs to focus and formalize these approaches.
The above functionality might be able to be used, or converted into modules which a centralized analysis engine could call to invoke response. Therefore, do try to identify the following capabilities in functional specifications and deployed code:
· Application logging (e.g. security events, audit trails)
· Changes to logging level
· Alerting (e.g. email, SMS)
· User messages
· User logout
· Account lockout
· Redirects (web)
Other things like disabling individual functions or disabling the whole application are much less likely to exist.
Inspirational response actions
Figure 55 in (Part V : Reference - Responses) lists the AppSensor response actions categorized by their effect on the user, i.e. from the user's viewpoint i.e. from responses which are transparent from the user's point of view, to passive and then more disruptive active responses, and ultimately intrusive. 
The subsequent Figure 56 categorizes these by their general purpose (logging, notifying, disrupting, blocking). It also shows the broad purposes, whether the target of the response affects a single user or all users and the duration of the action. The full definitions are maintained on the OWASP website[endnoteRef:67], and are reproduced in the Responses section of Part V : Reference.  [67:  AppSensor Response Actions, OWASP
https://www.owasp.org/index.php/AppSensor_ResponseActions] 

Many other actions can be mapped to one of the example response actions listed, but there may be other special types of action an application can perform.
Attack detection threshold definition
Initially we will exclude the consideration of detection points in the modifying class, since these are normally used to adjust default thresholds and actions. Thresholds need to be set for how many security events are allowed to be created before an attack event is confirmed and the predefined response is made. There are other considerations for thresholds, discussed below, and in practice a mix of threshold settings will usually be required.
For initial implementations, such as for a pilot, simply set an overall threshold for a count of all detection point events over a time period. It is also possible to set thresholds for individual responses for single or groups of detection points. 
Threshold period
Any threshold of more than “1” only has meaning over a certain time period. For example with a threshold of “3 events”, if a user performs three suspicious actions in their session, you might want to treat that as significant and undertake the response. But if these three actions occur over the course of several days, you might not be concerned.
Therefore for each threshold greater than “1”, define the period. For user-specific detection points (as opposed to application-wide “all user” ones), normally use “previous 24 hours” as the threshold period. Beware of using terms like “today” or “this week” in threshold definitions because events just before the period rollover (e.g. just before midnight) might not be counted against the threshold. The time period over which each threshold applies needs to be long enough to cater for slow attacks, but will need to be selected with consideration of any active responses that have time factors such as lockout period.
Note that it may make sense to use other time periods in your application. Also, if you tie the threshold period to session length, a log out response (if used) will reset the period.
Tiered responses
Some AppSensor implementations will want a number of different response actions to occur, even for a single detection point activation. For example, it might make sense to display a warning message to the user the first time this occurs (i.e. at “1 event”) and log them out the second time it occurs (i.e. at “2 events over the last 7 days”).
Overall user threshold (“One user”)
If a user activates many different detection points, it might be they do not trigger any individual detection point threshold (assuming they are all greater than “1”). Consider setting another threshold (>1) for all cumulative detection point activations for each user. For example “Any 12 events over the last 24 hours”.
Beware of complexity
The following discussion mentions many possibilities and considerations. Overly complex response rules and interactions are:
· Difficult to understand
· Cause unforeseen side-effects
· Can lead to bypass situations
Response threshold definition based on a per detection point, or detection point type, basis allows for more fine-grained tuning. 
Thresholds for aggregating detection points
Some detection points require multiple user interactions to occur before they can be activated, such as:
· Use of Multiple Usernames (AE1)
· Multiple Failed Passwords (AE2)
· Detect Large Number of File Uploads (FIO2)
· Speed of Application Use (UT2)
· High Number of Logouts Across the Site (STE1)
· etc.
These were referred to as “aggregating” detection points previously. These should all have a response threshold of “1”, but within the detection point itself some view needs to be taken of what “multiple”, “large number”, “speed”, “high number”, etc mean – and over what sampling periods.
Unless the application has only a few users, system trend detection points monitoring “all users” (e.g. STE1, STE2, STE3) are usually best defined with percentage changes over a particular time period (e.g. “200% increase over one hour”). Such trend monitoring will not be useful without an automated response, as the value of this monitoring is proactively identifying and stopping an attack. It will be necessary to collect usage data over a period of time before setting the thresholds, and the thresholds may need to change as use of the application varies due to interest, time of day, seasons and external events.
Thresholds for user event and user trend detection points
It is important to separate the application's own responses from those of AppSensor. An application may lock accounts due to multiple failed authentication attempts or it might block requests using a disallowed HTTP method. But AppSensor still needs to record and monitor these to undertake responses in addition to the application's normal behavior.
Two approaches need to be considered:
· Whether the responses are dependent upon user role (e.g. authenticated versus unauthenticated)
· Whether responses are set on a per detection point basis, or a per application basis.
The high-level rules should provide guidance on the first of these. If AppSensor is only implemented for the authenticated part of an application, or there is only one role, this question needs no further consideration. Applying different thresholds to different roles does create additional complexity, and some detection points and responses may not be valid for certain roles (e.g. authentication and session management exception types).
Further to the discussion in ???, consider using the rule that three suspicious events is equivalent to a single attack event. It may be undesirable to repeatedly count identical events over time. Some example could be:
· Multiple use of the same wrong password for a single account name
· Repeated reload of the same web page with exactly the same invalid data
Each detection point will have its own threshold of a small number of security events before a response action is taken. Then also consider the total number of security events generated by all detection points—the latter should normally all be set with the same period e.g. one day. Sample individual and overall thresholds are shown in Figure 8Figure 9Figures ??? and ??? below.
[bookmark: _Ref234409229]Example response action thresholds and responses for individual detection points
The threshold is the number of security events in the defined period per user
	Detection Point
	Role
	Threshold
	Period
	ActionsResponses
	Response Codes

	RE1
	Authenticated
	2
	1 hour
	Request terminated + Account lockout 30 minutes
	ASR-G, ASR-K

	
	Public
	5
	1 day
	
	

	RE6
	Authenticated
	10
	5 minutes
	Security violation message + Account logout
	ASR-E, ASR-J

	CIE1
	Authenticated
	3
	15 minutes
	Security violation message + Function disabled
	ASR-E, ASR-I

	HT3
	Authenticated
	1
	NA
	Admin alert + Proxy to alternative system
	ASR-B, ASR-N




Response threshold definition based on a per detection point basis allows more fine-grained tuning. However it is usual to have thresholds for each detection point and an overall limit on the total number of any detection points activated in a time period. The time period over which each threshold applies needs to be long enough to cater for slow attacks, but will need to be selected with consideration of any active responses that have time factors such as lockout for a period. Having the overall limit can help allow the individual thresholds to be much more tightly set.
[bookmark: _Ref234409232]Example response action thresholds and responses for the overall number of security events in a fixed time period
The threshold is the number of security events in the defined period per user
	Detection Points
	Threshold
	Period
	ActionsResponses
	Response Codes

	(All)
	5
	24 hours
	Security violation message
	ASR-E

	(All)
	30
	24 hours
	Security violation message + Account logout
	ASR-E, ASR-J

	(All)
	45
	24 hours
	Security violation message + Account lockout 5 minutes
	ASR-E, ASR-K

	(All)
	60
	24 hours
	Security violation message + Account lockout 30 minutes
	ASR-E, ASR-K

	(All)
	100
	24 hours
	Security violation message + Account lockout indefinite
	ASR-E, ASR-K



A threshold of "1" or a percentage comparison, such as shown for the HT3 detection point in Figure 8 aboveFigure ???, means the threshold is reached immediately, and no time period needs to be defined.  The longer the period, the more strict is the policy.
Consideration also needs to be given to situations where multiple detection points are activated with a single user action (“event landslides”).  This is not unlikely and two examples are:
· A SQL injection attack leads is detected as a Command Injection exception (CIE1), but also fails Input Exception whitelist checks (IE2) and Request Exception due to other missing parameters (RE6) 
· Separate Input Exception validation checks may identify problems with many different parameter values (e.g. IE2, IE2, IE2, IE3, IE4, IE4).
In these cases, one request could lead to an individual detection threshold being exceeded more rapidly than expected or even the overall threshold being reached very quickly.  It is important to record every event, but for some applications a mitigation against event landslides could be to limit the contribution to the overall threshold as only one security event per interaction (e.g. request/response cycle).  If possible, make this a configurable setting.
In a more advanced implementation may be able to track the exact event details, so that duplicate suspicious security events are not necessarily counted twice.  For example, if a user submits an authentication form with the same wrong password twice, that doesn't usually provide twice as much evidence of an attack i.e. if AE5 (Unexpected Quantity of Characters in Password) is activated twice with the same value, this may be less significant than two AE5 activations by the same user but with different values.
The weightings in ???? could also be altered for each detection point, rather than just on suspicious versus attack, but the recommendation is not to alter these weightings and instead alter thresholds (number and period) only.	Comment by Colin Watson: Check if this paragraph still relevant
Security event logs may include a confidence rating, defining how certain the event identification is.  In AppSensor, the detection points should have been selected and their sensitivity tuned so that the confidence is very near 100% all the time.  In other worse, weighting based on confidence should not be required.
It may therefore be appropriate instead to define multiple overall thresholds, each with different time periods. 


Example response action thresholds for the overall number of security events in a number of time periods
The threshold is the number of security events in the defined period per user
	Detection Point
	Threshold
	Period
	Actions
	Response Codes

	(All)
	5
	1 day
	Security violation message
	ASR-E

	(All)
	6
	2 days
	Security violation message
	ASR-E, ASR-J

	(All)
	8
	1 week
	Security violation message + Account lockout indefinite
	ASR-E, ASR-K




Different thresholds and response actions could be based on the application's risk classification.
These might also have permutations for different roles. Initially keep thresholds simple, but allow for multiple thresholds over different time periods for different user roles, even if they are not implemented initially.
Thresholds for system trend detection points
It is difficult to provide general guidance on system trend response actions. But having an automated response to a sudden shift in system activity is one of the benefits of using AppSensor.
The thresholds to initiate a response action need to be considered once the range of normal behavior has been examined over a period of time.  This also needs to consider special situations that could alter the normal patterns of usage such as vacations, time of day, newsworthy events and marketing activities, so that benign but variable site usage is not flagged as an attack. Therefore thresholds would usually include administrator notification levels before disabling a particular feature of the whole site. The existing AppSensor documentation provides a good example of this:
Example system trend response action thresholds
Detection point monitoring the usage rate of an application's "Add a Friend" feature
	System Trend Delta
	Actions
	Response Codes

	+1000% (5 minutes)
	Administrator notification
	ASR-B

	+200% (15 minutes)
	Administrator notification
	ASR-B

	+200% (60 minutes)
	Administrator notification
	ASR-B

	+500% (15 minutes)
	Administrator notification
	ASR-B

	+1000% (15 minutes)
	Temporarily disable Add a Friend feature
	ASR-I




System trend events should not be included in the overall (user) threshold mentioned above.  By their nature they are very specific and will rarely add anything to knowledge about an individual user. Similarly there is no need for an overall system trend threshold.
Thresholds for modifying detection points
The reputational detection points (RP1-4) can be used to dynamically alter thresholds in real time.  For example if an organization tracks the national terror threat level and such aspects are considered threats to the application, the thresholds could alter in response to this (RP4).  However, the degree of trust in the source, availability and accuracy of information needs to be considered with each detection point.  Some (like the national terror threat example) would require a threshold of "1" if the intention is to make a change in AppSensor's response as soon as the event occurs.
Any change which disables a user, feature or the whole application could be used to perform a denial-of-service attack, and therefore responses to activation of detection points in the modifying class should be chosen conservatively.
Overall summary
For all thresholds, define whether counts are ever reset, e.g. at the end of a session, when an application is restarted.
Figure 54 in Part V : Reference - Responses shows part of an example schedule documenting the application's threshold settings.  This shows that some of the session management exceptions only have meaning for a period that equals the session length, and that some aggregating detection points will have thresholds of "1" where they act like an off/on switch.
Threshold tuning
Once the thresholds and actions have been determined, final tuning of the model should be undertaken to ensure that the combined model behaves as required. Tuning is usually best accomplished by facilitating a discussion which includes members from various parties concerned with the application.
For each of the attacks defined in threat models, or the attacks reviewed when defining detection points, examine whether the responses are as desired.
1. Examine typical user activities and introduce all types of input which could be accidental to check how much tolerance there is for:
a. misunderstandings
b. typing errors
c. copying and pasting formatted text
d. navigation changes such as using bookmarks, partial links or the back and forward buttons.
2. Consider slow and fast use of the application, and how often each function might be requested.
3. Consider the response to static content (e.g. RSS feeds, style sheets, video, images, JavaScript files, HTML files) requests.
4. Consider requests for missing content.
5. Examine carefully activities that can lead to active responses that disable part or all the application.
6. How do the range of available responses affect the wider system and related systems (interdependencies and interoperability)?
7. Identify situations where multiple detection points might all occur with a single users interaction (e.g. a single web request, an individual button click) and ensure the response actions are appropriate
8. Consider the effect of the planned responses on other metrics such as uptime of the application and other systems, application response times, user satisfaction, throughput requirements and other business measures.
Some organizations may be able to use information from usability testing studies to assist with the second item.  For example, disabling the whole application could stop further recording of security events and even prevent an administrator from re-enabling the application if that function is usually undertaken using a web interface which is part of the application.
Modify the detection points, response thresholds and actions if necessary.


[bookmark: _Toc234388935][bookmark: _Ref234409446]Chapter 18 : AppSensor and Application Event Logging
Introduction
AppSensor is not directly concerned about the wider needs for application event logging. It is not necessary to have application logging to implement AppSensor. However, there is some synergy and well implemented application event logging could be used or extended to be an AppSensor event store.
Application Event Logs
Many application logs do not record sufficient security event information nor adequate detail. Whenever a detection point is activated it is necessary to capture and record that information. The minimum information that should be collected for each event is:
· Date and time
· Entry point (e.g. the event activated by a user such as clicking a button, URL for a web application)
· User identity (e.g. authenticated user ID, location, IP address, token)
· Any data submitted
· Malicious activity
· Whether it is suspicious or an attack (see ???- Suspicious or an attack? above)
In practice, a wider range of information can be beneficial both for attack determination, and for other operational activities such as error investigation and incident response. Some suggestions for comprehensive combined application security event logging and AppSensor detection point information capture is shown below. Further explanation and guidance is available[endnoteRef:68],[endnoteRef:69],[endnoteRef:70],[endnoteRef:71],[endnoteRef:72],[endnoteRef:73]. [68:  Chuvakin  A and Peterson G, How to Do Application Logging Right,
IEEE Security & Privacy Journal
http://arctecgroup.net/pdf/howtoapplogging.pdf]  [69:  OWASP ESAPI Logger (Java), OWASP
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Logger.html]  [70:  SP 800-92 Guide to Computer Security Log Management, NIST
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf]  [71:  OWASP Logging Project, OWASP
https://www.owasp.org/index.php/Category:OWASP_Logging_Project#tab=Main]  [72:  Watson C, Application Security Logging
http://www.clerkendweller.com/2010/8/17/Application-Security-Logging]  [73:  Watson C, World Summit - AppSensor Results, AppSensor Project Mailing List, OWASP
https://lists.owasp.org/pipermail/owasp-appsensor-project/2011-March/000215.html] 

Application security event logging and audit trails are not a requirement to adopt AppSensor, but they should already be present in securely-designed applications. For further information see the OWASP Application Logging Cheat Sheet[endnoteRef:74]. [74:  Logging Cheat Sheet, OWASP
https://www.owasp.org/index.php/Logging_Cheat_Sheet] 

However, it is useful to ensure events can be grouped by request (multiple events may occur for a single request/response) by recording a unique action/request ID in the logs, including details of which AppSensor detection points were activated if applicable (code location and instance) and including any AppSensor response actions taken and the final status. These might be added to the normal application security event logging, or be recorded in supplemental files/data stores.
For a web application, the fields might be as shown below.


Example Event Logging Properties for Web Application
	Logged information
	Property
	
	Logged information
	Property

	When
	Event date/time
	
	AppSensor detection
	Sensor ID

	
	Log date/time
	
	
	Sensor location

	Security event
	Type
	
	
	AppSensor Detection Point ID(s)

	
	Severity
	
	
	Description

	
	Confidence
	
	
	Message

	
	Custom classification(s)
	
	Optional supporting details
	Request headers

	
	Owner
	
	
	Request body

	Location
	Host
	
	
	Response headers

	
	Service/application name
	
	
	Response body

	
	Port
	
	
	Error stack trace

	
	Protocol
	
	
	Error message

	
	HTTP method
	
	
	Other system response

	
	Entry point
	
	Result (including AppSensor response)
	Status

	
	Request number
	
	
	Reason for status

	Request
	Purpose
	
	
	HTTP status code

	
	Target
	
	
	AppSensor Result Response ID(s)

	User
	Source
	
	
	Description

	
	Identity
	
	
	Message

	
	HTTP user agent
	
	Record integrity
	Identity

	
	Client fingerprint
	
	
	Hash



With such logged event data, and suitable detection points calling the logging mechanism, these could then be analyzed to determine attacks
Web server logs
On the topic of existing logs, the question of using web server logs is often raised. these are often enabled by default. Common Log File Format[endnoteRef:75] includes insufficient information, but Extended Log File Format[endnoteRef:76] is widely supported by web servers are will usually be configured to provide the following information for each request: [75:  Common Log File Format, July 1995, W3C
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format]  [76:  Extended Log File Format, March 1996, W3C
http://www.w3.org/TR/WD-logfile.html] 

· Event date/time
· URL path
· HTTP method
· Source IP address
· Source user agent
· Query string
· Bytes transferred
· Response status code
Given only this data, and without adding any further detection points, it may be possible to implement a subset of AppSensor detection point categories simply by mining the web server logs. The detection points that could be implemented in this manner, without any further knowledge of the application, are:
AppSensor Detection Points Possible by Extracting Event Data from Web Server Logs
Grouped by exception category
	Detection Point Category
	ID
	Title

	Request Exception
	RE1
	Unexpected HTTP Command

	
	RE2
	Attempt to Invoke Unsupported HTTP Method

	Authentication Exception
	AE3
	High Rate of Login Attempts

	File IO Exception
	FIO1
	Detect Large Individual File

	
	FIO2
	Detect Large Number of File Uploads

	System Trend Exception 
	STE1
	High Number of Logouts Across The Site

	
	STE2
	High Number of Logins Across The Site

	
	STE3
	High Number of Same Transaction Across The Site

	
	
	



The main difficulty is the lack of attribution to user identity apart from IP address and possibly a fingerprint that includes the user agent. By tuning the application to use specific status codes for different events it may be possible to extend the use of web server logs further, but if the application is to be modified, implementing application event logging would be a better approach.
This method also does not provide any particular attack analysis or response initiation, and is not discussed further in this guide.

Part III : Making It Happen
Chapter 18 : AppSensor and Application Event Logging

[bookmark: _Ref222120679][bookmark: _Toc234388936]Part IV : Demonstration Implementations
A large proportion of this guide has related to a description of the concept to provide analysts, architects, designers and developers with the knowledge to implement this approach in their own systems. This is because the approach is application-specific, and there is no single implementation method or out-the-box solution. Part IV provides some practical examples of how the concept can be deployed, including some standalone components that could be utilized within your own deployments, or to act as inspiration.


Part IV : Demonstration Implementations
Part IV : Demonstration ImplementationsChapter 18 : AppSensor and Application Event Logging

[bookmark: _Ref222033645][bookmark: _Ref231974857][bookmark: _Toc234388937]Chapter 19 : Web Services (AppSensor WS)
Introduction
This is a reference implementation and is a development branch included within the scope of the OWASP AppSensor Project called “AppSensor WS”. This more recent implementation introduces a service-based model using SOAP web services instead of both the detection/response and attack analysis code being combined as in the initial “AppSensor Core” demonstration implementation - see Chapter 20 : Fully Integrated (AppSensor Core) below. 
AppSensor WS was created as part of the Google Summer of Code (GSoC) 2012[endnoteRef:77],[endnoteRef:78] by Rauf Butt with mentoring by John Melton and Kevin W Wall, building upon the code for “AppSensor Core”. The OWASP GSoC[endnoteRef:79] initiative was promoted and administrated by Fabio Cerullo and Jason Li. [77:  Google Summer of Code 2012, Google
http://www.google-melange.com/gsoc/homepage/google/gsoc2012]  [78:  SOAP Web Services for AppSensor, Rauf Butt, Google
http://www.google-melange.com/gsoc/project/google/gsoc2012/edil/60002]  [79:  Google Summer of Code (GSoC), OWASP
https://www.owasp.org/index.php/GSoC] 

Description
The application being protected (the client) communicates event information to, and attack responses from AppSensor WS (the server) using web services engine. The detection points, event monitor and responses have to be built into the client application at appropriate points in the logic. Code from AppSensor WS is executed on demand when the web services are called.
Schematic Arrangement of Web Services (AppSensor WS)
Other variations, and cross-overs between example implementations, are all possible
[image: ]
The web services engine can be incorporated directly into Java projects, or used as a standalone system to support non-Java applications. The engine could also be ported to other languages.
AppSensor scope	
Like AppSensor Core below, the selection of detection points, where they are added, and how the software responds, are (client) application and organisation dependent. However, the following detection point and response categories are supported by the analysis engine web services (the server):
AppSensor Detection Points Implemented in AppSensor Core
Grouped by exception category
	Detection Point Category
	ID
	Title

	Request Exception
	RE1
	Unexpected HTTP Command

	
	RE2
	Attempt to Invoke Unsupported HTTP Method

	
	RE3
	GET When Expecting POST 

	
	RE4
	POST When Expecting GET 

	Access Control Exception
	ACE1
	Modifying URL Argument Within a GET for Direct Object Access Attempt

	
	ACE2
	Modifying Parameter Within A POST for Direct Object Access Attempt

	
	ACE3
	Force Browsing Attempt

	Input Exception
	IE1
	Cross Site Scripting Attempt

	System Trend Exception 
	STE1
	High Number of Logouts Across The Site



AppSensor Response Actions Implemented in AppSensor Core
Listed Grouped by effect on user, then alphabetically by ID
	Category
	Response action

	Type
	Description
	ID
	Description

	Silent
	User unaware of application's response
	ASR-A
	Logging Change

	
	
	ASR-B
	Administrator Notification (SMS and email)

	Active
	Application functionality reduced for user(s)
	ASR-I
	Function Disabled

	
	
	ASR-J
	Account Logout

	
	
	ASR-K
	Account Lockout



The individual interfaces can be extended in order to modify AppSensor for your environment, and to support additional detection points and response actions.

Source code
The source code and appsensor.jar file are available from:
· ????
· http://mvnrepository.com/artifact/org.owasp.appsensor/AppSensor/0.1.3.5
[bookmark: _Ref233961631]The version at the time of writing is 0.1.3.5 and is issued under the BSD 3-Clause License[endnoteRef:80]. [80:  BSD 3-Clause License, Open Source Initiative
http://opensource.org/licenses/BSD-3-Clause] 

Implementation
A developer guide has been provided at:
· https://www.owasp.org/index.php/AppSensor-WS_Developer_Guide [Check]
Considerations
This Java implementation has the following dependencies:
· OWASP ESAPI[endnoteRef:81] Java library [81:  OWASP Enterprise Security API (ESAPI), OWASP
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] 

· JavaMail libraries (activation and mail jar files)
· Servlet/JSP libraries
· Logging API library (log4j by default)
· Commons Fileupload
Related implementations
See also Chapter 20 : Fully Integrated (AppSensor Core)Chapter 19 : Fully Integrated (AppSensor Core) and Chapter 22 : Invocation of AppSensor Code Using Jni4NetChapter 21 : Invocation of AppSensor Code using Jni4Net.


[bookmark: _Ref222032714][bookmark: _Ref222036200][bookmark: _Ref222114126][bookmark: _Ref233961868][bookmark: _Ref233964078][bookmark: _Toc234388938]Chapter 20 : Fully Integrated (AppSensor Core)
Introduction
Prior to the development of the SOAP Web Services demonstration implementation, Michael Coates and John Melton [anyone else?] created a pure integrated Java version. Like “AppSensor WS” above, this is a reference implementation and is a development branch included within the scope of the OWASP AppSensor Project called “AppSensor Core”.
Description
AppSensor Core handles the collection of event data, and selection of appropriate responses based on a policy defined as a Java properties files. The detection points and responses have to be built into the application at appropriate points in the logic. Code from AppSensor Core is then executed during run time as events occur.	Comment by Colin Watson: Is this all true/accurate?
Schematic Arrangement of Fully Integrated (AppSensor Core)
Other variations, and cross-overs between example implementations, are all possible
[image: ]

AppSensor scope
The selection of detection points, where they are added, and how the software responds, are application and organisation dependent. However, the following detection point and response categories are supported:
AppSensor Detection Points Implemented in AppSensor Core
Grouped by exception category
	Detection Point Category
	ID
	Title

	Request Exception
	RE1
	Unexpected HTTP Command

	
	RE2
	Attempt to Invoke Unsupported HTTP Method

	
	RE3
	GET When Expecting POST 

	
	RE4
	POST When Expecting GET 

	Access Control Exception
	ACE1
	Modifying URL Argument Within a GET for Direct Object Access Attempt

	
	ACE2
	Modifying Parameter Within A POST for Direct Object Access Attempt

	
	ACE3
	Force Browsing Attempt

	Input Exception
	IE1
	Cross Site Scripting Attempt

	System Trend Exception 
	STE1
	High Number of Logouts Across The Site



AppSensor Response Actions Implemented in AppSensor Core
Grouped by effect on user, then alphabetically by ID
	Category
	Response action

	Type
	Description
	ID
	Description

	Silent
	User unaware of application's response
	ASR-A
	Logging Change

	
	
	ASR-B
	Administrator Notification (SMS and email)

	Active
	Application functionality reduced for user(s)
	ASR-I
	Function Disabled

	
	
	ASR-J
	Account Logout

	
	
	ASR-K
	Account Lockout



The individual interfaces can be extended in order to modify AppSensor for your environment, and to support additional detection points and response actions.
Source code
The source code and appsensor.jar file are available from:
· http://code.google.com/p/appsensor/
· http://repo2.maven.org/maven2/org/owasp/appsensor/AppSensor/0.1.3/AppSensor-0.1.3.jar
The version at the time of writing is 0.1.3 and is issued under the BSD 3-Clause License78.	Comment by Colin Watson: Should this be 0.1.3.5 or is that something different? If 0.1.3.5, what URLs should be quoted above?
Implementation
A developer guide has been provided at:
· https://www.owasp.org/index.php/AppSensor_Developer_Guide [Check]
Considerations
This Java implementation has the following dependencies:
· OWASP ESAPI Java library
· JavaMail libraries (activation and mail jar files)
· Servlet/JSP libraries
· Logging API library (log4j by default)
[bookmark: _Ref222114132]Related implementations
This implementation method was utilized in the comparative research and experiment undertaken independently by Pål Thomassen “AppSensor: Attack-Aware Applications Compared Against a Web Application Firewall and an Intrusion Detection System”25.
The AppSensor Core implementation has also been ported to .Net by Luke Briner and is available to download at:
· https://www.owasp.org/index.php/File:AppSensor_Core_-_dotNet.zip


[bookmark: _Ref222036212][bookmark: _Toc234388939]Chapter 21 : Retrofitting Existing Code
Introduction
In this demonstration implementation, an existing application has been instrumented with custom-written code to show how AppSensor functionality can be retrofitted to an existing project. The implementation does not make use of any AppSensor Project’s library code (as described in the previous two chapters above).
The application used in this example is the bulletin board application phpBB[endnoteRef:82], released under the GNU General Public License[endnoteRef:83]. The implementation was performed in a manner that effected as little of the original code as possible. [82:  phpBB Bulletin Board Software, phpBB Limited
https://www.phpbb.com/]  [83:  GNU General Public License, version 2 (GPL-2.0)
http://opensource.org/licenses/gpl-2.0.php] 

This demonstration implementation does not form part of the core development efforts within the OWASP AppSensor Project.
Description

Schematic Arrangement of an Example of Retrofitting Existing Code
Other variations, and cross-overs between example implementations, are all possible
[image: ]

AppSensor scope
The following detection point and response action categories are included:
AppSensor Detection Points Implemented in this Retrofitted Existing Code
Grouped by exception category
	Detection Point Category
	ID
	Title

	Authentication Exception
	AE1
	Use of Multiple Usernames

	
	AE2
	Multiple Failed Passwords 

	Access Control Exception
	ACE3
	Force Browsing Attempt

	Input Exception
	IE2
	Violation Of Implemented White Lists

	
	IE3
	Violation Of Implemented Black Lists

	File IO Exception
	FIO2
	Detect Large Number of File Uploads

	Honey Trap
	HT2
	Honey Trap Resource Requested

	
	HT3
	Honey Trap Data Used

	User Trend Exception 
	UT4
	Frequency of Feature Use



AppSensor Response Actions Implemented in this Retrofitted Existing Code
Grouped by effect on the user, then alphabetically by ID
	Category
	Response action

	Type
	Description
	ID
	Description

	Active
	Application functionality reduced for user(s)
	ASR-I
	Function Disabled

	
	
	ASL-L
	Application Disabled 



In this case, the response action function disabling utilizes phpBB’s inherent “block” functionality and application disabling is accomplished by blocking using the host network firewall level. In this implementation it was Windows Firewall, but iptables could be used on *nix systems and similarly for other operating systems; an external network device could also be used.
Source code
The phpBB bulletin board application can be downloaded at:
· https://www.phpbb.com/downloads/
The additional database SQL scripts and PHP files can be downloaded at:
· ???? [check]
This is proof of concept code and is neither optimized nor production-ready.
Implementation
Developer notes are included within the file containing the source code.
Considerations

Related implementations
None.

[bookmark: _Ref222036225][bookmark: _Ref233965406][bookmark: _Toc234388940]Chapter 22 : Invocation of AppSensor Code Using Jni4Net
Introduction
Dinis Cruz has used the OWASP O2 Platform[endnoteRef:84] C# REPL scripting environment to invoke Java AppSensor and ESAPI methods from an existing .NET application using Jni4Net[endnoteRef:85]. Like in the previous chapter, it is another example of retrofitting AppSensor to an existing project. However it does utilize the AppSensor Project’s library code. [84:  OWASP O2 Platform, OWASP
https://www.owasp.org/index.php/OWASP_O2_Platform]  [85:  Cruz D, Invoking an OWASP AppSensor Java method from .NET C# REPL (using Jni4Net)
http://blog.diniscruz.com/2013/03/invoking-owasp-appsensor-java-method.html] 

This demonstration implementation does not form part of the core development efforts within the OWASP AppSensor Project. The O2 Platform has its own mailing list[endnoteRef:86]. [86:  Owasp-o2-platform Mailing List, OWASP O2 Platform Project
https://lists.owasp.org/listinfo/owasp-o2-platform] 

Description
The core development efforts in Java are consumed within a .Net application which exposes all the same capabilities.
Schematic Arrangement of AppSensor Code Invocation Using Jni4Net
Other variations, and cross-overs between example implementations, are all possible
[image: ]

AppSensor scope
The detection points and response actions are identical to those described for AppSensor Core above.
Source code
The source code for the pilot demonstration can be found at:
· http://github.com:DinisCruz/TeamMentor_3_3_AppSensor
This is proof of concept code and is neither optimized nor production-ready.
Implementation
The method of implementation is described at:
· http://blog.diniscruz.com/2013/06/another-step-in-use-of-esapi-and.html
A video of Denis Cruz’s presentation of the concept is available at:
· http://www.youtube.com/watch?v=dzj3llZ9G6I
Considerations
This is purely demonstration code that illustrates an alternative method of implementation.
Related implementations
There is a .Net port of the Java AppSensor Core implementation - see  Chapter 20 : Fully Integrated (AppSensor Core).



[bookmark: _Ref222036243][bookmark: _Toc234388941]Chapter 23 : Using an External Log Management System
Introduction
An external log management system can be used to aggregate event data and generate some types of responses such as alerts or network changes. An organization with a large number of applications that already has some form of Security Information and Event Management (SIEM) may benefit from this type of approach.
This demonstration implementation does not form part of the core development efforts within the OWASP AppSensor Project.
Description
Detection points are added into each application’s source code like a standard AppSensor implementation. But information from the detection points are sent to an external log aggregation and event management system. The external system is responsible for determining the attack and initiating responses.
Schematic Arrangement of External Log Management System
Other variations, and cross-overs between example implementations, are all possible
[image: ]

AppSensor scope
Any detection points capable of being added to the application(s) and elsewhere could provide event data to the external system.
Although potentially any responses is possible, if we assume the signaling is one-way from the application(s) to the external system, the most likely responses supportable via the network are:
AppSensor Response Actions Implemented in ModSecurity Core Rule Set
Grouped by effect on the user, then alphabetically by ID
	Category
	Response action

	Type
	Description
	ID
	Description

	None
	No response
	ASR-P
	No Response

	Silent
	User unaware of application's response
	ASR-A
	Logging Change

	
	
	ASR-B
	Administrator Notification

	
	
	ASR-C
	Other Notification

	Active
	Application functionality reduced for user(s)
	ASR-L
	Application Disabled



Of these, administrator notification is the most common (and not necessarily the most effective use of AppSensor capabilities).
Source code
No source code is available.
Implementation
This method still requires the addition of detection points to application code, which is application dependent. All other conceptual elements are undertaken external to the application(s).
??? CEF over syslog and file download???
Considerations
This method may not be completely “real time” nor provide feedback information for the application(s) to adapt to the attack. See also Chapter 18 : AppSensor and Application Event Logging for a discussion about generic application event logging.
Related implementations
Similar logging ideas could be implemented using the open source OSSEC or many commercial log management systems.

Existing SIEM systems should always be considered as a recipient of AppSensor data, regardless of where the event analysis and event management is being undertaken. Signaling AppSensor event and attack data to a SIEM adds valuable information to an organization’s attack knowledge.

Dinis Cruz has suggested that Google Analytics could be utilized to perform this type of externalized data collection and analysis, but with limited ability for response. In some systems, GA may be one of the few destinations that internal applications have been allowed to communicate to.

[bookmark: _Ref222036306][bookmark: _Ref222039917][bookmark: _Toc234388942]Chapter 24 : Leveraging a Web Application Firewall
Introduction
OWASP ModSecurity Core Rule Set is a free set of generic application protection rules for the open source ModSecurity27 web application firewall (WAF). A number of rules implement AppSensor behavior, albeit separate from the application’s source code.
Where there is no permission or ability to modify an application, the use of a WAF can accommodate some AppSensor-like behavior. WAFs have other valuable uses too, and may already exist in the application’s environment.
This demonstration implementation does not form part of the core development efforts within the OWASP AppSensor Project. Instead, please refer to the actively maintained and supported OWASP ModSecurity Core Rule Set Project28,[endnoteRef:87] which has its own mailing list[endnoteRef:88]. [87:  Shezaf O, ModSecurity Core Rule Set": An Open Source Rule Set for Generic Detection of Attacks against Web Applications
https://www.owasp.org/images/0/07/OWASP6thAppSec_ModSecurityCoreRuleSet_OferShezaf.pdf]  [88:  Owasp-modsecurity-core-rule-set Mailing List, ModSecurity Core Rule Set Project
https://lists.owasp.org/mailman/listinfo/owasp-modsecurity-core-rule-set] 

Description
ModSecurity can be deployed embedded within the existing web server infrastructure or as a reverse proxy server on the network. The latter has been used in this example so that it can protect multiple back-end web servers. In this pure WAF implementation, all AppSensor-like functionality in undertaken within the WAF, and none in the application itself.
Schematic Arrangement of Leveraging a Web Application Firewall
Other variations, and cross-overs between example implementations, are all possible
[image: ]
AuditViewer[endnoteRef:89], written by Christian Bockermann, is used to browse the event data, which are stored as logs on the file system (indicated in the above diagram as accessible to both the event manager and the reporting client). [89:  AuditViewer, Christian Bockermann
https://secure.jwall.org/web/audit/viewer.jsp] 

In this implementation, only the AppSensor-relevant rules (see below) were enabled, with all other rules disabled or removed. This was so the effect of AppSensor-like functionality alone can be assessed without having to consider the effect of other WAF capabilities.
AppSensor scope
The following detection points have existing rules (some multiple especially for IE1) in the Core Rule Set (CRS) at the time of writing:
AppSensor Detection Points Implemented in ModSecurity Core Rule Set
Grouped by exception category
	Detection Point Category
	ID
	Title

	Request Exception
	RE1
	Unexpected HTTP Command

	
	RE2
	Attempt to Invoke Unsupported HTTP Method

	
	RE5
	Additional/Duplicated Data in Request

	
	RE7
	Unexpected Quantity of Characters in Parameter

	
	RE8
	Unexpected Type of Characters in Parameter

	Input Exception
	IE1
	Cross Site Scripting Attempt

	Encoding Exception
	EE2
	Unexpected Encoding Used

	Command Injection Exception
	CIE1
	Blacklist Inspection for Common SQL Injection Values

	
	CIE4
	Carriage Return or Line Feed Character in File Request

	Honey Trap
	HT1
	Alteration to Honey Trap Data

	Reputation
	RP3
	Suspicious Client-Side Behavior



The rules are spread across the “base” rules and also the “experimental” ones included in the CRS.
Application-specific custom ModSecurity rules can be written to extend these detection points much further, and this is strongly recommended. However, some other AppSensor detection points may be difficult to implement since the WAF will not have the same access to user information and context the application has. Many more ModSecurity ideas can be found in the recent book “Web Application Defender's Cookbook: Battling Hackers and Protecting Users”[endnoteRef:90] by Ryan Barnett. [90:  Barnett RC, Web Application Defender's Cookbook: Battling Hackers and Protecting Users, December 2012, John Wiley & Sons
ISBN: 978-1-118-36218-1] 

All AppSensor example response actions are potentially possible using ModSecurity:


AppSensor Response Actions Implemented in ModSecurity Core Rule Set
Grouped by effect on the user, then alphabetically by ID
	Category
	Response action

	Type
	Description
	ID
	Description

	None
	No response
	ASR-P
	No Response

	Silent
	User unaware of application's response
	ASR-A
	Logging Change

	
	
	ASR-B
	Administrator Notification

	
	
	ASR-C
	Other Notification

	
	
	ASR-N
	Proxy

	Passive
	Changes to user experience but nothing denied
	ASR-D
	User Status Change

	
	
	ASR-E
	User Notification

	
	
	ASR-F
	Timing Change

	Active
	Application functionality reduced for user(s)
	ASR-G
	Process Terminated

	
	
	ASR-H
	Function Amended

	
	
	ASR-I
	Function Disabled

	
	
	ASR-J
	Account Logout

	
	
	ASR-K
	Account Lockout

	
	
	ASR-L
	Application Disabled

	Intrusive
	User's environment altered
	ASR-M
	Collect Data from User



Source code
ModSecurity, the OWASP ModSecurity CRS and AuditViewer respectively can be downloaded at:
· http://www.modsecurity.org/download/
· https://github.com/SpiderLabs/owasp-modsecurity-crs
· http://www.jwall.org/projects/org.jwall.web.audit/source-repository.html
Implementation
Follow the instructions included within the downloads, but also review the information available at:
· http://www.modsecurity.org/documentation/
· http://blog.spiderlabs.com/modsecurity/
· https://secure.jwall.org/web/audit/viewer.jsp
Considerations
ModSecurity is available for Apache, IIS and Nginx - see the download page listed above.
As mentioned above, to assess this method of implementation, it is best to disable or remove other rules in the CRS, so the AppSensor-relevant aspects can be isolated. The included rules should be modified and extended to be more specific to the application(s) being protected.
Related implementations
Other WAFs may not be as configurable as the example here – AppSensor cannot be implemented satisfactorily with only a generic negative security model. A small number of more advanced load balancers that understand the HTTP protocol could support some similar functionality. But note the comments in Chapter 2 : Protection MeasuresChapter 2 : Protection Measures - Comparison with Comparison with infrastructure protection mechanisms.????
A web application firewall can also be used as a:
· Reputational detection point, for example to send possible attack information to an application (detection point type RP2) using HTTP request headers or other signalling
· Response action on behalf of the application, for example to perform increased logging (ASR-A), to proxy user requests to another system (ASR-N), to disable functions (ASR-I), to disable the application (ASR-L) and to collect data from a user (ASR-M).
Other application firewalls (e.g. database) could be used similarly for some detection points and response actions.

Part IV : Demonstration Implementations
Chapter 24 : Leveraging a Web Application Firewall

[bookmark: _Ref205893063][bookmark: _Ref205893238][bookmark: _Toc234388943]Part V : Reference
In this section, the primary reference information sources are included. Updates and new reference materials are maintained on the OWASP AppSensor Project website1.


Part V : Reference
Part V : Reference

[bookmark: _Ref222029213][bookmark: _Toc234388944]Glossary
A glossary of terminology has been produced for the project to define what particular terminology means in the context of application layer intrusion detection and prevention. In some cases existing intrusion detection terminology is not consistent with an application layer approach, is implementation specific, or has an alternative meaning in software development that could lead to confusion.
Resources from US Committee on National Security Systems (CNSS)[endnoteRef:91], MITRE Corporation[endnoteRef:92] and National Institute of Standards and Technology (NIST)20 were used to find and determine names. Adopters are encouraged to use terminology that is consistent with their own in-house standards and which are familiar to development teams. [91:  National Information Assurance Glossary, CNSS Instruction No. 4009, 26 April 2010, Committee on National Security Systems, National Security Agency
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf]  [92:  CWE Glossary, v0.5, 21 February 2013, The MITRE Corporation
http://cwe.mitre.org/documents/glossary/index.html] 

	Access Controller
	The access controller component performs the authorization function in the event analysis engine. Based on the authenticated user (client application/reporting client), the access controller determines what functions and data are available to said user and enforces access to those.

	Attack
	Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information system resources or the information itself. Specifically within the context of AppSensor, an attack is a collection of events that violates a specified policy, whether signature or anomaly-based.  	Comment by Colin Watson: I have tried to avoid the use of “signature” in this guidance - could we just remove this last phrase?

	Attack Store
	The attack store is the storage mechanism for attacks, which are produced by the analysis of events.

	Authenticator
	The authenticator is the component that performs user authentication. This functionality lives within the event analysis engine. Note: This component is used to authenticate client applications and reporting clients, NOT end users to the client applications or reporting clients.

	Client Application
	The client application is the business application that is being protected by AppSensor. This is the application that will be annotated with detection points, and will be protected by response actions.	Comment by Colin Watson: Should this be just “responses”?

	Correlation
	Correlation refers to the determination of relation between events based on some common set of data. For example, two seemingly unrelated events generated by two different application clients may be determined to be correlated together due to their being caused by end users sharing a common username.

	Credential(s)
	The credential represents the object associated with identity assertion for client applications and reporting clients when authenticating to the event analysis engine.

	Detection Point
	A detection point is a specific point during the execution of a program that is instrumented in a way that allows event generation.  In practice, the execution of the program could involve components that are architecturally separate from the running application. For instance, a web application (A1) could use a detection point in a WAF that is protecting A1. This would still be considered a detection point for A1.	Comment by Colin Watson: “client application”?

	Event
	An event is any observable occurrence in a system and/or network. Specifically within the context of AppSensor, an event is an observed occurrence that is monitored, especially within the application itself, with the intention that the occurrence be considered in the set of occurrences analyzed to determine attacks.

	Event Analysis Engine
	The event analysis engine is the component of the AppSensor architecture that represents the analysis and processing of incoming event data. The events are compiled (and stored) in the analysis engine, then processed to determine if and when response actions are appropriate. All of the service level APIs represented by AppSensor are exposed by this component.	Comment by Colin Watson: Is this too implementation dependent? See also Access Controller, Authenticator, Credentials and User

	Event Manager
	The event manager collects event notifications from the client application and polls the event analysis engine for any appropriate response actions to execute.	Comment by Colin Watson: from the detection points?

	Event Store
	The attack store is the storage mechanism for events.	Comment by Colin Watson: Should this be “event”?

	Intrusion	Comment by Colin Watson: ?
	An intrusion is a successful attack.

	Reporting Client
	The reporting client is the architectural component of AppSensor that represents the data visualization e.g. a dashboard. In general, this component views, but does not produce, the data stored in the event analysis engine. This is meant as a set of functionality to provide a useful representation of the AppSensor data.

	Response
	A response is the action taken as a result of attack recognition. The goal of executing a response could be to gain or store more information about the attack and/or prevent further attacks.

	Resource
	A resource is a defined component of the application. This could be at various levels of granularity, but generally represents an accessible subset of the application (specific component, specific url, etc.)

	Role
	A role is an attribute assigned to a user that ties membership to function. When an user has a given role, the user is granted the rights of that role. When the user loses that role, those rights are removed. The rights given to the role are consistent with the functionality that the user needs to perform the expected tasks.

	Threshold
	A threshold is a value that sets the limit between normal and abnormal behavior.

	Trend
	A trend is the determination of a pattern or tendency of a series of data points moving in a certain direction over time.

	User
	An entity that has access to the protected application. This could represent a human or a system, or possibly a collection of either.





[bookmark: _Ref205893235][bookmark: _Toc234388945]Detection Points
[bookmark: _Ref222125296]Listing of detection points
The example AppSensor detection points are listed in Figure 35 below with additional details and examples for each category in Figures 348 to 4552[check???]. As discussed in Part III : Making It Happen, AppSensor only needs to detect enough obviously malicious behaviour to make a decision about the intent of a user, it does not need to detect all malicious behavior. Thus only a small subset of detection points is usually ever implemented for each application.
[bookmark: _Ref234399641]AppSensor Detection Point Identifiers and Titles
Grouped by exception category
	Detection Point Category
	ID
	Title

	Request Exception
	RE1
	Unexpected HTTP Command

	
	RE2
	Attempt to Invoke Unsupported HTTP Method

	
	RE3
	GET When Expecting POST

	
	RE4
	POST When Expecting GET

	
	RE5
	Additional/Duplicated Data in Request

	
	RE6
	Data Missing from Request

	
	RE7
	Unexpected Quantity of Characters in Parameter

	
	RE8
	Unexpected Type of Characters in Parameter

	Authentication Exception
	AE1
	Use of Multiple Usernames

	
	AE2
	Multiple Failed Passwords

	
	AE3
	High Rate of Login Attempts

	
	AE4
	Unexpected Quantity of Characters in Username

	
	AE5
	Unexpected Quantity of Characters in Password

	
	AE6
	Unexpected Type of Character in Username

	
	AE7
	Unexpected Type of Character in Password

	
	AE8
	Providing Only the Username

	
	AE9
	Providing Only the Password

	
	AE10
	Additional POST Variable

	
	AE11
	Missing POST Variable

	
	AE12
	Utilization of Common Usernames

	Session Exception
	SE1
	Modifying Existing Cookie

	
	SE2
	Adding New Cookie

	
	SE3
	Deleting Existing Cookie

	
	SE4
	Substituting Another User's Valid Session ID or Cookie

	
	SE5
	Source Location Changes During Session

	
	SE6
	Change of User Agent Mid Session



continued…

	Detection Point Category
	ID
	Title

	Access Control Exception
	ACE1
	Modifying URL Argument Within a GET for Direct Object Access Attempt

	
	ACE2
	Modifying Parameter Within A POST for Direct Object Access Attempt

	
	ACE3
	Force Browsing Attempt

	
	ACE4
	Evading Presentation Access Control Through Custom POST

	Input Exception
	IE1
	Cross Site Scripting Attempt

	
	IE2
	Violation Of Implemented White Lists

	
	IE3
	Violation Of Implemented Black Lists

	
	IE4
	Violation of Input Data Integrity

	
	IE5
	Violation of Stored Business Data Integrity

	
	IE6
	Violation of Security Log Integrity

	Encoding Exception
	EE1
	Double Encoded Character

	
	EE2
	Unexpected Encoding Used

	Command Injection Exception
	CIE1
	Blacklist Inspection for Common SQL Injection Values

	
	CIE2
	Detect Abnormal Quantity of Returned Records

	
	CIE3
	Null Byte Character in File Request

	
	CIE4
	Carriage Return or Line Feed Character in File Request

	File IO Exception
	FIO1
	Detect Large Individual File

	
	FIO2
	Detect Large Number of File Uploads

	Honey Trap
	HT1
	Alteration to Honey Trap Data

	
	HT2
	Honey Trap Resource Requested

	
	HT3
	Honey Trap Data Used

	User Trend Exception
	UT1
	Irregular Use of Application

	
	UT2
	Speed of Application Use

	
	UT3
	Frequency of Site Use

	
	UT4
	Frequency of Feature Use

	System Trend Exception
	STE1
	High Number of Logouts Across The Site

	
	STE2
	High Number of Logins Across The Site

	
	STE3
	High Number of Same Transaction Across The Site

	Reputation
	RP1
	Suspicious or Disallowed User Source Location

	
	RP2
	Suspicious External User Behavior

	
	RP3
	Suspicious Client-Side Behavior

	
	RP4
	Change to Environment Threat Level




[bookmark: _Ref222901155]Categorization of detection points
It is also useful to categorize these example detection points in other ways than exception category.
Suspicious/Attack
They can be categorized based on malicious intent, as described at the beginning of this chapter:
· Suspicious events which could occur during normal user experience with site or browser or as the result of a non-malicious user error
· Attack event which are outside of the normal application flow, or  requires special tools or requires special knowledge.
The allocation to these categories are shown below in Figure 36. This also shows whether the detection point collects information from each user (“One user”) or all users in aggregate (“All users”). 
[bookmark: _Ref234396467]AppSensor Detection Points Categorized by Suspicious and Attack Events
Grouped by whether the detection points apply to one user's activity, or potentially all users
	Source
	Detection Points

	
	Category
	Suspicious
	Attack

	One user
	Request
	RE3
	RE5
	RE6
	
	RE1
	RE2
	RE4
	RE7
	RE8
	
	
	
	
	

	
	Authentication
	AE1
	AE7
	
	
	AE2
	AE3
	AE4
	AE5
	AE6
	AE8
	AE9
	AE10
	AE11
	AE12

	
	Session
	SE3
	SE5
	
	
	SE1 
	SE2
	SE4
	SE6
	
	
	
	
	
	

	
	Access Control
	ACE1
	ACE3
	
	
	ACE2
	ACE4
	
	
	
	
	
	
	
	

	
	Input Exception
	IE1
	IE2
	IE3
	
	IE4
	IE5
	IE6
	
	
	
	
	
	
	

	
	Encoding
	EE1
	
	
	
	EE2
	
	
	
	
	
	
	
	
	

	
	Command Injec.
	
	
	
	
	CIE1 
	CIE2
	CIE3
	CIE4
	
	
	
	
	
	

	
	File IO
	FIO1
	
	
	
	FIO2
	
	
	
	
	
	
	
	
	

	
	Honey Trap
	
	
	
	
	HT1
	HT2
	HT3
	
	
	
	
	
	
	

	
	User Trend
	UT1
	UT2
	UT3
	UT4
	
	
	
	
	
	
	
	
	
	

	
	Reputation
	RP1
	RP2
	RP3
	
	
	
	
	
	
	
	
	
	
	

	All users
	System Trend
	STE1
	STE2
	STE3
	
	
	
	
	
	
	
	
	
	
	

	
	Reputation
	RP4
	
	
	
	
	
	
	
	
	
	
	
	
	



Discrete/Aggregating/Modifying
Another categorization has been provided that divides the detection points into three classes:
· Discrete - Detection points that can be activated without any prior knowledge of the user's behavior and thus are related to the scope of the request
· Aggregating - Detection points that require a number of prior identical events to occur before they are activated and thus relate to activities over the duration of a single or multiple sessions (of one or more users)
· Modifying - Detection points that are typically only used to alter the detection thresholds or response actions
The detection points are categorized in this way in Figure 37 below.
[bookmark: _Ref234396446]AppSensor Detection Points Categorized by Whether They are Discrete, Aggregating or Modifying
Grouped by whether the detection points apply to one user's activity, or potentially all users
	Source
	Detection Points

	
	Category
	Discrete
	Aggregating
	Modifying

	One user
	Request
	RE1
	RE2
	RE3
	RE4
	RE5
	RE6
	RE7
	RE8
	
	
	
	
	
	
	
	

	
	Authentication
	AE4
	AE5
	AE6
	AE7
	AE8
	AE9
	AE10
	AE11
	AE12
	AE1
	AE2
	AE3
	
	
	
	

	
	Session
	SE1 
	SE2
	SE3
	SE4
	
	
	
	
	
	SE5
	SE6
	
	
	
	
	

	
	Access Control
	ACE1
	ACE2
	ACE3
	ACE4
	
	
	
	
	
	
	
	
	
	
	
	

	
	Input Exception
	IE1
	IE2
	IE3
	IE4
	IE5
	IE6
	
	
	
	
	
	
	
	
	
	

	
	Encoding
	EE1
	EE2
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Command Injec.
	CIE1 
	CIE2
	CIE3
	CIE4
	
	
	
	
	
	
	
	
	
	
	
	

	
	File IO
	FIO1
	
	
	
	
	
	
	
	
	FIO2
	
	
	
	
	
	

	
	Honey Trap
	HT1
	HT2
	HT3
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	User Trend
	
	
	
	
	
	
	
	
	
	UT1
	UT2
	UT3
	UT4
	
	
	

	
	Reputation
	
	
	
	
	
	
	
	
	
	
	
	
	
	RP1
	RP2
	RP3

	All users
	System Trend
	
	
	
	
	
	
	
	
	
	STE1
	STE2
	STE3
	
	
	
	

	
	Reputation
	
	
	
	
	
	
	
	
	
	
	
	
	
	RP4
	
	



Categorization overview
All these categorizations have been summarized in Figure 38 below. A large color version of this diagram is available from the OWASP website[endnoteRef:93]. [93:  Overview of AppSensor Detection Point Categorizations, OWASP
??? where???] 

[bookmark: _Ref234396423]Overview of AppSensor Detection Point Categorizations
???Big boxy image here

The diagram illustrates the following properties of the example detection points:
· Detection points within each exception category run across the diagram horizontally, beginning with the Request Exceptions (RE) and finishing with the Reputation ones (RP) at the bottom of the diagram
· Detection point names and exception category can be found by reading the identity codes
· Discrete, aggregating and modifying detection points are separated and indicated by the colored areas
· Suspicious events are bounded by the heavy dashed line
· The four "outcome" detection points are indicated using a hatched background.
This diagram also shows a classification Signature vs. Behavioral used in version 1.1 of the AppSensor book2. This classification has been deprecated because the term “signature” can be mistakenly understood to mean a fixed pattern due its use in terminology for anti-malware systems. The use of Discrete/Aggregating/Modifying describes the categorization more precisely.
At a glance, we can now see that all behavior-based detection points are of the suspicious type, and all are of the aggregating class. The majority of the detection points are in the discrete class, and of those, most detect attack events.
Additionally the detection points italicized and underlined are often used in generic pre-processing or filter modules, rather than deeper within business logic.
[bookmark: _Ref222911579]Related types
Some detection points can be considered as more specific instances of others. For example Unexpected Type of Characters in Parameter (RE8) could be a sub-type of Violation Of Implemented White Lists (IE2) and/or Violation Of Implemented Black Lists (IE3). These are illustrated in Figure 37. A large color version of this diagram is available from the OWASP website[endnoteRef:94] [94:  AppSensor Detection Points Inter-Relationships, OWASP
??? where???] 

[bookmark: _Ref234402052]Overview of AppSensor Detection Point Relationships
???Big arrowy image here


It should also be noted that a few detection points detect an outcome/result, rather than the input (e.g. user data submission in an HTTP request):
· Violation of Stored Business Data Integrity (IE5)
· Violation of Security Log Integrity (IE6)
· Detect Abnormal Quantity of Returned Records (CIE2)
In some circumstances RP3 Suspicious Client Side behavior might also be considered an outcome/result–perhaps some XSS occurs on the response page once rendered by the user's web browser. Some outputs are inputs to other processes, so the distinction is not always clear.
[bookmark: _Ref222901124]

Detailed description of detection points
Grouped by detection point category.


Request Exceptions (RE)
	Detection Point Code, Name, Description and Considerations
	Examples

	RE1 - Unexpected HTTP Command

	An HTTP request is received which contains unexpected/disallowed commands.
A list of accepted commands should be generated (i.e. GET and POST) and all other HTTP commands should generate an event. See HTTP/1.1: Method Definitions[endnoteRef:95]. Browsers and proxies using the HEAD method to check whether the content of a file has changed. [95:  HTTP/1.1 Method Definitions, W3C
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html] 

	· Instead of a GET or POST request, the user sends a TRACE request to the application. 

	RE2 - Attempt to Invoke Unsupported HTTP Method

	An HTTP request is received which contains a non-existent HTTP command (does not match anything in this list: HEAD, GET, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT).
	· Instead of a GET or POST request, the user sends a TEST request to the application (TEST is not a valid HTTP request method).

	RE3 - GET When Expecting POST

	A page which is expecting only POST requests, is requested by HTTP method GET. Some pages may be designed to receive both GET and POST requests. 
Some resources may allow both GET and POST methods e.g. an edit form may be hyperlinked using a parameter value defining the record to be edited, but the form is submitted by POST to itself. Users may bookmark a page that is the result of a POST and return to it at a later date.
	· The user sends a GET request to a page which has only been used for POSTs.


	RE4 - POST When Expecting GET

	A page which is expecting only GET requests, receives a POST.
See also RE3.
	· The user utilizes a proxy tool to build a custom POST request and sends it to a page which has been accessed by GET requests.



continued…



	Detection Point Code, Name, Description and Considerations
	Examples

	RE5 - Additional/Duplicated Data in Request

	Additional unexpected parameters or HTTP headers, or duplicates, are received with the request. Additional parameters may be an attempt to override values or to exploit unexposed functionality. Duplicated parameters may be an indication of attempted HTTP parameter pollution. Beware of firing this detector when additional cookies, not used by the application, are found (as opposed to duplicated cookies) since these may relate to third-party code (e.g. advertisements, analytics) or some other application. Note that extra HTTP headers may be added by intermediate proxies, and unless the network configuration is fixed (an internal network perhaps), additional headers cannot be controlled and thus cannot be used to infer existence of a potential attacker. 
Links from third party sites/services may included additional parameters (e.g. from search engines, from advertisements). Additional cookies headers may be added by other applications or by third parties such as advertisers, and there may be very little control over these. Additional HTTP headers may be added by intermediate network devices (e.g. for traffic management).
	· Additional form or URL parameters submitted with request (e.g. debug=1, servervariable=2000).
· A parameter is defined more than once in the URL Query String.
· An HTTP header is duplicated.
· An additional HTTP header is found.
· A URL path parameter with the same name as a form parameter is sent with the request.

	RE6 - Data Missing from Request

	Expected parameters or HTTP headers are missing from the request.  Bookmarking and use of a browser's "back button" can lead to requests without the expected parameters. 
A bookmarked page may be missing the required POST parameters (see also RE3). Users may choose to send a blank or different User Agent header value.
	· A page is requested without any of the required form parameters.
· The HTTP-Accept header is not present in a request.

	RE7 - Unexpected Quantity of Characters in Parameter

	The user provides a parameter value with a large number of characters. 
If the input field does not have client-side validation and/or MAXLENGTH attributes, a user might inadvertently copy in some text that is longer than expected.
	· The user submits a form field with more characters than the form's maxlength attribute and client-side validation would allow
· The user submits data in a form's hidden field which is longer than expected.

	RE8 - Unexpected Type of Characters in Parameter

	The user provides a parameter value containing characters outwith the expected range. 
Text fields may include text from copy and paste operations that contain illegal characters.
	· The user sends an HTTP header containing a line break character.
· The user sends a URL parameter value that contains ASCII characters below 20 or above 7E.





Authentication Exceptions (AE)
	Detection Point Code, Name, Description and Considerations
	Examples

	AE1 - Use of Multiple Usernames

	Multiple usernames are attempted when logging into the application.  The assignment of login attempts to a user can be based on a sessionID given to the user when they first visit the website. Correlating based on IP address is difficult since multiple users could be using the site from the same IP address (e.g. corporate NAT).
	· User first tries username 'bob', then username 'sue', then 'steve', etc.

	AE2 - Multiple Failed Passwords

	For a single username, multiple bad passwords, or other authentication credentials, are entered. See Popularity is Everything[endnoteRef:96] section 4 - Attack-Detection Scenarios for ideas about tracking use of unsuccessful passwords and looking whether these are used against multiple accounts.  [96:  ???, Popularity is Everything
http://www.eecs.harvard.edu/~michaelm/postscripts/hotsec2010.pdf] 

A users providing the same wrong password more than once may be different to different wrong passwords. See Account Lockout, Episode 76, OWASP Podcast[endnoteRef:97]. [97:  Account Lockout, Bill Cheswick, Episode 76, OWASP Podcast, September 22, 2010
http://www.owasp.org/index.php/OWASP_Podcast#tab=Latest_Shows] 

	· User tries username:password combination of 'user:pass1', 'user:pass2', 'user:pass3', etc.
· Multiple failed PINs are attempted for the same customer account.
· In an online banking application, several invalid mobile authentication codes, transaction verification codes or transaction authentication numbers are submitted.
· A user provides the correct password, but repeatedly fails to provide the required second password correctly.

	AE3 - High Rate of Login Attempts

	The rate of login attempts becomes too high (possibly indicating an automated login attack). The threshold should relate to a limit and period appropriate to the application (e.g. total number in a second or minute or hour).
	· User sends the following login attempts within 1 second - 'user1:pass1', 'user1:pass2', 'user2:pass3', 'user2:pass4'.

	AE4 - Unexpected Quantity of Characters in Username

	The user provides a username with a large number of characters 
(see also RE7).
	· The user sends a username that is 200 characters long when 6-8 are expected.

	AE5 - Unexpected Quantity of Characters in Password

	The user provides a password with a large number of characters. Higher limits may be required for sites which allow users to have pass phrases (see also RE7).
	· The user sends a password that is 200 characters long, when 5-20 are expected.
· The user sends a PIN of 30 characters.



continued…



	Detection Point Code, Name, Description and Considerations
	Examples

	AE6 - Unexpected Type of Character in Username

	The user provides a username which contains characters outwith the expected range. Any characters below hex value 20 or above 7E are often considered illegal (decimal values of below 32 or above 126).
Users may be confused between a username, customer identification code and their account number, or even between offline and online identifiers. Mis-typing might add a character like "]" or "#" if these are adjacent to the ENTER/CR key. Whitespace may be appended to values when copied from a spreadsheet cell (e.g. a line feed character when cell values are copied and pasted from Excel). A password may be put in the username field by accident.
	· The user sends a username that contains ASCII non-printable characters such as the NULL byte.

	AE7 - Unexpected Type of Character in Password

	The user provides a password containing characters outwith the expected range. Examples include null byte, and characters which need the ALT key to be used.(see also AE6).
	· The user sends a password that contains ASCII characters below 20 or above 7E.

	AE8 - Providing Only the Username

	The user submits a POST request which only contains the username variable. The password variable has been removed. This is different from only providing the username in the login form since in that case the password variable would be present and empty.
	· The user utilizes a proxy tool to remove the password variable from the submitted POST request.

	AE9 - Providing Only the Password

	The user submits a POST request which only contains the password variable. The username variable has been removed. This is different from only providing the password in the login form since in that case the username variable would be present and empty.
	· The user utilizes a proxy tool to remove the username variable from the submitted POST request.

	AE10 - Additional POST Variable

	Additional, unexpected POST variables are received during an authentication request (see also RE5).
	· The user utilizes a proxy tool to add the POST variable of 'admin=true' to the request.

	AE11 – Missing POST Variables

	Expected POST variables are not present within the submitted authentication request. (see also RE6).
	· The user utilizes a proxy tool to remove an additional POST variable, such as 'guest=true', from the POST request.

	AE12 - Utilization of Common Usernames

	Common dictionary usernames are used to attempt to log into the application. Common usernames might be allowed during self-registration or when editing account details.
	· Log in attempted with usernames "administrator", then "admin", then "test"





Session Exceptions (SE)
	Detection Point Code, Name, Description and Considerations
	Examples

	SE1 - Modifying Existing Cookie

	A request is received containing a cookie with a modified value. This could be determined if the cookie is modified to an illegal value. 
In a poorly designed application, the length of the cookie value, or the combined size of all the cookies, might possibly exceed that which is supported.
	· The user utilizes a proxy tool to change the encrypted cookie to an alternative value which does not properly decode within the application.
· The user modifies an unencrypted cookie and sets an illegal value for a particular variable.

	SE2 - Adding New Cookie

	A request is received which contains additional cookies that are not expected by the application. A session cookie existing when it should not (e.g. prior to authentication) is probably indicative of an attack. But cookies may also be set by third party sites which get send with the request - these may be harmless. Also consider what other applications exist on sub-domains (e.g. www.example.com, extranet.example.com and sales.example.com) which may also be setting cookies.
	· The user utilizes a proxy tool to add cookies to the request.

	SE3 - Deleting Existing Cookie

	A request is received which does not contain the expected cookies. The user may have bookmarked a page they had visited during a previous authenticated session. 
In a poorly designed application, the number of cookies might exceed the allowed number supported by the user's browser.
	· The user utilizes a proxy tool to remove cookies or portions of cookies from a request.

	SE4 - Substituting Another User's Valid Session ID or Cookie

	A request is received which contains cookie data that is clearly from another user or another session.
A mis-configured proxy might send the same session ID or cookie for all users.
	· The user utilizes a proxy tool to substitute valid data from another user or session into the cookie. An example would be changing some sort of identification number within the cookie.



continued…



	Detection Point Code, Name, Description and Considerations
	Examples

	SE5 - Source Location Changes During Session

	Valid requests, containing valid session credentials, are received from multiple source locations indicating a possible session hijacking attack. A full IP address may not be constant for some users during normal use. Enforcing single fixed IP addresses for each session in an intranet application may be valid. However, if the application is accessible over public networks, changing IP address cannot be excluded and it may be more useful to consider fixing just part of the IP address, or looking for more significant changes such as when the user's IP address geo-location region or country changes (see Autonomous System Number (ASN) and Detecting Malice with ModSecurity: GeoLocation Data). Note: source port number should not be used in checks since this usually changes very frequently.
If the full IP address is used for this, it may change slightly from request to request by the same user.
	· User A's session is compromised and User B begins using the account. The requests originating from User B will possibly contain a different source IP address the User A. The source IP addresses could be the same if both users where behind the same NAT.
· An application at a fixed server location, which calls web services, changes IP address unexpectedly.

	SE6 - Change of User Agent Mid Session

	The User-Agent value of the header changes during a session. This indicates a different browser is now being used. Although this value is under the control of the sender, a change in this may indicates that the session has been compromised and is being used another individual. This will likely not be the case that the user has simply copied and pasted the URL from one browser to another on the same system because this action would not copy over the appropriate session identifiers. Optionally also include other HTTP headers in this check. For example, the Accept-Encoding and Accept-Language headers do not normally change and could be concatenated with the User-Agent and hashed to created an identifier. The ideas[endnoteRef:98] described in Panopticlick[endnoteRef:99] and Javascript Browser Fingerprinting[endnoteRef:100] can also be used to fingerprint a particular client system but require the use of client-side code. Application owners should check the legality of collecting data, and whether it is considered "personal data" which may have additional constraints in some jurisdictions. [98:  ???, Panopticlick
http://panopticlick.eff.org/about.php]  [99:  Panopticlick ????
http://panopticlick.eff.org/]  [100:  JavaScript Browser Fingerprinting, ???
http://www.businessinfo.co.uk/labs/probe/probe.php] 

	· Mid session, the User Agent changes from Firefox to Internet Explorer





Access Control Exceptions (ACE)
	Detection Point Code, Name, Description and Considerations
	Examples

	ACE1 - Modifying URL Argument Within a GET for Direct Object Access Attempt

	The application is designed to use an identifier for a particular object, such as using categoryID=4 or user=guest within the URL. A user modifies this value in an attempt to access unauthorized information. This exception should be thrown anytime the identifier received from the user is not authorized due to the identifier being non-existent or the identifier not authorized for that user. 
Bookmarking , truncation, and mistyping issues could lead to some access control exceptions.
	· ? The user modifies the following URL from /viewpage?page=1&user=guest to /viewpage?page=22&user=admin

	ACE2 - Modifying Parameter Within A POST for Direct Object Access Attempt

	The value of a non-free text html form element (i.e. drop down box, radio button) is modified to an illegal value. The value either does not exist or is not authorized for the user. 
(see also ACE1 regarding bookmarking)
	· The user utilizes a proxy tool to intercept a POST request and changes the submitted value to a value that was not available through the normal display. For example, the user encounters a dropdown box containing the numbers 1 through 10. The user selects 5 and then intercepts the request to change the submitted value to 100.

	ACE3 - Force Browsing Attempt

	An authenticated or unauthenticated user sends a request for a non-existent resource (e.g. page, directory listing, image, file, etc), or a resource that is not authorized for that user. 
Requests for non-existent resources may occur for many reasons such as Benign Unexpected URLs - Part 1 - Missing (404 Not Found Error) Files[endnoteRef:101] [101:  Benign Unexpected URLs - Part 1 - Missing (404 Not Found Error) Files, ???
http://www.clerkendweller.com/2010/10/26/Benign-Unexpected-URLs-Part-1-Missing-Files] 

	· The user is authenticated and requests site.com/PageThatDoesNotExist.
· The user is authenticated and requests a video they are not authorized to download/view.
· An unauthenticated user (perhaps with a session ID) requests a listing of a directory detailed in the site's robots.txt file.

	ACE4 - Evading Presentation Access Control Through Custom POST

	A POST request is received which is not authorized for the current user and the user could not have performed this action without crafting a custom POST request. This situation is most likely to occur when presentation layer access controls are in place and have removed the user's ability to initiate the action through the presentation of the application. An attacker may be aware of the functionality and attempt to bypass this presentation layer access control by crafting their own custom message and sending this in an attempt to execute the functionality.
	· The application contains the ability for an administrator to delete a user. This method is normally invoked by entering the username and submitting to https://oursite/deleteuser Presentation layer access controls ensure the delete user form is not displayed to non-administrator users. A malicious user has access to a non-administrator account and is aware of the delete user functionality. The malicious user sends a custom crafted POST message to https://oursite/deleteuser in an attempt to execute the delete user method.





Input Exceptions (IE)
	Detection Point Code, Name, Description and Considerations
	Examples

	IE1 - Cross Site Scripting Attempt

	The HTTP request contains common XSS attacks which are often used by attackers probing for XSS vulnerabilities. Detection should be configured to test all GET and POST values as well as all header names and values for the following values. 
There are many patterns which could be XSS but may also be normal user input to a free text field e.g. "Press the 'drop' button" if a pattern were looking for a single quotation mark followed by SQL commands like DROP, INSERT, UPDATE and DELETE. Applications that are used to discuss or share information about programming, software development and security may want to allow such free text input, provided it is encoded/escaped correctly.
	· The user utilizes a proxy tool to add an XSS attack to the header value and the 'displayname' POST variable. The header value could be displayed to an admin viewing log files and the 'displayname' POST variable may be stored in the application and displayed to other users. Note, the following XSS attacks would only be used by an attacker to probe for vulnerability. An actual XSS attack would be customized by the attacker.
· A user sends payloads like <script>alert(document.cookie);</script> <script>alert();</script> alert(String.fromCharCode(88,83,83)) <IMG SRC="javascript:alert('XSS');"> <IMG SRC=javascript:alert('XSS')> <IMG SRC=javascript:alert(&quot;XSS&quot;)> <BODY ONLOAD=alert('XSS')>

	IE2 - Violation Of Implemented White Lists

	The application receives user-supplied data that violates an established white list validation. See AC3 (Force Browsing Attempts) about requests for non-existent/unauthorised (i.e. not white listed) URLs. (see also IE1).
	· The user submits data that is not correct for the particular field. This may not be attack data necessarily, but repeated violations could be an attempt by the attacker to determine how an application works or to discover a flaw.

	IE3 - Violation Of Implemented Black Lists

	The application receives user-supplied data that violates an established black list validation. This may not be attack data necessarily, but repeated violations could be an attempt by the attacker to determine how an application works or to discover a flaw or to exploit a flaw. This black list approach suffers from the potential for greater false positives than IE2 above, and cannot be used to identify all potential malicious data (see also IE1).
	· URL in comment field identified as suspected phishing and malware pages using Google Safe Browsing API[endnoteRef:102]. [102:  Google Safe Browsing API, ???
http://code.google.com/apis/safebrowsing/] 

· Parameter value matches a known SQL injection pattern.
· Parameter value matches a known XSS pattern.



continued…



	Detection Point Code, Name, Description and Considerations
	Examples

	IE4 - Violation of Input Data Integrity

	The application receives HTTP header or body parameter values which have been tampered with when no change should have occurred. 
This detection point should only be used with parameters that cannot be altered by accident. Input types text and textarea would not normally be suitable, even if the elements are disabled in the browser. Be wary of assuming JavaScript will prevent modification of form elements in all conditions.


	· Hidden form field modified by client.
· Select list value submitted in response, not sent by server as an available option value.
· Cookie set by server has been manipulated by the client.
· Cookie created by client instead of by the server.

	IE5 - Violation of Stored Business Data Integrity

	User's input leads to violation of data integrity.
	· A user's action leads to a system integrity error when writing to, or updating, a database.
· Business rule checks detect that a user's action is not compatible.
· Data accuracy checking detects duplicate records for a user.
· User input leads to an unexpected file change (e.g. .htaccess file overwritten, page template changed).
· User's request leads to a new, unexpected, outbound network connection being made (e.g. mail sent to an SMTP server, files downloaded from a FTP server).

	IE6 - Violation of Security Log Integrity

	Security or audit log tampering detected. AppSensor may rely on the accuracy of "log" data to make decisions when thresholds are reached. This detector aims to detect the insertion of forged entries, corruption of logs, unauthorised deletion of and changes to records. 

See also: 
· NIST SP 800-92 Guide to Security Log Management[endnoteRef:103] [103:  NIST SP 800-92 Guide to Security Log Management, ???
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf] 

· Tamper Detection in Audit Logs[endnoteRef:104] [104:  Tamper Detection in Audit Logs, ???
http://www.cs.toronto.edu/vldb04/protected/eProceedings/contents/pdf/RS13P1.PDF] 

· Forensic Tamper Detection in SQL Server[endnoteRef:105] [105:  Forensic Tamper Detection in SQL Server, ???
http://www.sqlsecurity.com/images/tamper/tamperdetection.htm] 

	· Special characters embedded in logged data about a user's activity cause the data to overwrite a previous log entry.
· Log file integrity is broken by modification to an existing log entry.






Encoding Exceptions (EE)
	Detection Point Code, Name, Description and Considerations
	Examples

	EE1 - Double Encoded Characters

	An HTTP request is received which contains one or more double encoded values. 
Data supplied by other party systems may have encoding issues.
	· The user sends encodes the % symbol to %25 and appends 3C. The user is sending %253C which may be interpreted by the application as %3C which is actually <.

	EE2 - Unexpected Encoding Used

	An HTTP request is received which contains values that have encoded in an unexpected format (see also EE1).
	· The user encodes an attack such as alert(document.cookie) into the UTF-7 format and sends this data the application. This could bypass validation filters and be rendered to a user in certain situations.





Command Injection Exceptions (CIE)
	Detection Point Code, Name, Description and Considerations
	Examples

	CIE1 - Blacklist Inspection for Common SQL Injection Values

	A request is received which contains common SQL injection attack attempts. The point of this detection is not to detect all variations of a SQL injection attack, but to detect the common probes which an attacker or tool might use to determine if a SQL injection vulnerability is present. Unless the site contains some sort of message board for discussing SQL injection, there is little reason that the SQL injection examples should ever be received from a user request (see also IE1).
	· The user sends a request and modifies a URL parameter from category = 5 to category = 5' OR '1' = '1 in an attempt to perform an SQL injection attack. The user could perform similar attacks by modifying POST variables or even the request headers to contain SQL injection attacks. ' OR '1'='1 ' OR 'a'='a ' OR 1=1-- xp_cmdshell UNION JOIN

	CIE2 - Detect Abnormal Quantity of Returned Records

	A database query is executed which returns more records than expected.
	· A query of a non-SQL dataset should only return 1 record but 100 records are returned.
· The application is designed to allow a user to maintain 5 profiles. A user makes a request to view all of their profiles. The database SQL query, which is expected to always return 5 or less results, returns 10,000 records. Something in the application, or user's actions, has caused unauthorized data to be returned.
· Extraction of data from an XML file should only return one matching node, but more than one is returned.

	CIE3 - Null Byte Character in File Request

	A request is received to download a file from the server. The filename requested contains the null byte the file name. This is an attempted OS injection attack.
	· The user modifies the filename of the requested file to download to contain the null byte. The null byte can be added by inserting the hex value %00.

	CIE4 - Carriage Return or Line Feed Character in File Request

	A request is received which contains the carriage return or line feed characters within the POST data or the URL parameters. This is an attempted HTTP split response attack.
	· The user includes the hex value %0D or %0A in the HTTP request POST data or URL parameters.





File Input/Output Exceptions (FIO)
	Detection Point Code, Name, Description and Considerations
	Examples

	FIO1 - Detect Large Individual File

	A file upload feature detects that a large file has been submitted for upload which exceeds the maximum upload size.
	· The user attempts to upload a large file to occupy resources or fill up disk space.

	FIO2 - Detect Large Number of File Uploads

	A user uploads an excessively large number of files. 
The limit and period used to determine the threshold rate is application dependent, and may also depend on the user's role.
	· A single user attempts to upload multiple small files to occupy resources or fill up disk space.







Honey Traps (HT)
	Detection Point Code, Name, Description and Considerations
	Examples

	HT1 - Alteration to Honey Trap Data

	Fake (not otherwise needed by the application) data sent to the user and returned (e.g. as form, URL, cookie values or in the path or HTTP header) is modified. This is usually combined with making the name or value a tempting item for an attacker to try modifying. Similar techniques can also be used for the creation of accessible CAPTCHA. 
See also ideas at http://blogs.sans.org/appsecstreetfighter/2009/06/04/my-top-6-honeytokens/[endnoteRef:106] [106:  My Top 6 Honey Tokens, ???
http://blogs.sans.org/appsecstreetfighter/2009/06/04/my-top-6-honeytokens/] 

	· Otherwise useless hidden fields, which look like potential vulnerabilities, added to some forms are sent back to the server modified (e.g. <input type="hidden" name="admin" value="false" />)
· An additional URL parameter, which is not used by the application, is modified by the user (e.g. /account.jsp?debug=0).
· An additional fake cookie is added and is modified by the user.
· URL rewriting is used and a fake directory name is added; this is modified by the user (e.g. /orders/normaluser/display.php).

	HT2 - Honey Trap Resource Requested

	A purposely leaked resource that has no use in normal application use is requested by a user. Ensure the resource is not linked from normal application content such that a spider or robot might find the resource in any case.
	· Page, directory or other resource listed in the application's robots.txt robots exclusion file is requested by the user.
· URL identified only in HTML comments is requested by the user.
· Unexposed server function call included in Flash file source code is requested by the user.

	HT3 - Honey Trap Data Used

	Special data sent or accessed by a user. For honey trap data that is detected on egress only, use of outbound content monitoring (e.g. a web application firewall or similar technique) may be helpful.
	· Fake user name and password only visible in source HTML code used to attempt to log in to the application (e.g. in HTML comments, in server-side code 'accidentally' delivered to the user).
· A special code number or account name is left in a discussion forum site; this is then used in the application
· An attempt is made to authenticate with the user name listed in the first row (e.g. ID=1) of the application's database table of Users.
· Data from a fake account record is sent by the server and detected; this record should not normally be accessible by anyone using the application.






User Trend Exceptions (UTE)
	Detection Point Code, Name, Description and Considerations
	Examples

	UT1 - Irregular Use of Application

	The application receives an unusual pattern of requests for the same page or feature from a user. The user may be sending different data combinations or trying to detect errors in the page. 
Use of bookmarked URLs and the "back" button might generate out-of-sequence requests. See also related frequency of feature use in UT4.
	· The user requests a particular page, such as the address update page, numerous times.
· The user requests a page out-of-sequence, such as an intermediate step in a multi-stage form.
· The user only requests dynamic content, and not the associated static files (e.g. images, stylesheets).
· The user sends a slow request/read in an attempt at application denial of service.

	UT2 - Speed of Application Use

	The speed of requests from a user indicates that an automated tool is being used to access the site. The use of a tool undertaking a high number of requests quickly may indicate reconnaissance for an attack or attempts to identify vulnerabilities in the site. Slow usage (e.g. between account creation and use) might indicate automated account creation that are then used subsequently for attacks. If enforced inappropriately or too rigorously, this detection point could lead to false positives. 
Time periods need to be set broadly enough to cater for the normal spread in user behavior. Some users may use automated tools that store passwords securely to populate and submit authentication forms.
	· The user utilizes an automated tool to request hundreds of pages per minute.
· The user does not log in to the site until a long time after their account is created.
· New (uncached) static content such as images and style sheets associated with each page are not requested in a similar time period as the page.
· A CAPTCHA challenge is responded to more quickly than a human could possibly do.
· The user's clickstream data velocity is too high.

	UT3 - Frequency of Site Use

	Change in how often the site is used by a user 
Some users may correctly change their behavior in the frequency of accessing the application.
	· The user normally accesses the site once per week, but this changes to many times per day.

	UT4 - Frequency of Feature Use

	The rate of a user utilizing a particular application feature changes dramatically. 
It may be valid for some functionality may be requested repeatedly. For example a real customer placing many orders, a press officer publishing a backlog of press releases, or an administrator populating a staff directory.
	· The user submits many forum messages in a short period of time.
· The user adds many new friends rapidly.






System Trend Exceptions (STE)
	Detection Point Code, Name, Description and Considerations
	Examples

	STE1 - High Number of Logouts Across The Site

	A sudden spike in logouts across the application could indicate a XSS and CSRF attack placed within the application which is automatically logging off users.
	· The hourly usage of the log-off feature of the application suddenly spikes by 500%.

	STE2 - High Number of Logins Across The Site

	A sudden spike in logins across the application could indicate users being redirected to the site from a phishing email looking to exploit a XSS vulnerability in the site.
	· The hourly usage of the logon feature of the application suddenly spikes by 1,000%.

	STE3 - Significant Change in Usage of Same Transaction Across The Site

	A sudden spike in similar activity across numerous users of the application may indicate a phishing attack or CSRF attack against the users; a rapid reduction in activity may indicate users are being redirected elsewhere; a significant change in average transaction value or other quantitative measure may indicate suspicious activity. External events (e.g. a news item) may lead to additional unexpected traffic which is not an attack. 
A special requirement, situation or event may dramatically change the rate of use of certain transactions. (See also UT4)
	· The hourly usage of the update email address feature of the application suddenly spikes by 2,000%.
· A website is compromised and users are redirected to a malicious site part-way through a process; the number of successful fully completed transactions drops to nil.
· A number of slow requests/reads are received in an attempt at application denial of service.







Reputation (RP)
	Detection Point Code, Name, Description and Considerations
	Examples

	RP1 - Suspicious or Disallowed User Source Location

	The user is identified as using an IP address associated with a blacklist 
Considerations	
Suspicious or invalid geo-location, IP addresses or IP address ranges may be identified using a whitelist,internal blacklist, list of Tor nodes (e.g. https://torstat.xenobite.eu/), HTTP blacklist (e.g. http://www.projecthoneypot.org/httpbl.php and Dshield http://www.dshield.org) list of spammers (e.g. Spamhaus http://www.spamhaus.org/) or known botnets (e.g. http://www.shadowserver.org/wiki/). 
"Suspicious" may also depend upon the type of user e.g. users in the "CMS manager" role should be using an internal network IP address, public users could be from anywhere, customers should only be accessing the application from a particular geographical region, search engine robots should be from a limited range of IP addresses. Take care that "suspicious" does not contribute to greater false positives. 
The currency and accuracy of needs to be considered when the information is used in AppSensor. The method of challenge and removal of inaccuracies, and the speed of this process, should also be considered.
	· A user with an external IP address is accessing an internal application, which should not be occurring.
· An authenticated user is accessing the application using a known Tor node, and attack detection thresholds are made more strict.
· An authenticated user is accessing the application from a known trustworthy IP address, and thresholds for certain activity (e.g. input data validation errors) are relaxed slightly.
· The IP address of the payment authentication server, used by the application for credit card authorisation, changes.

	RP2 - Suspicious External User Behavior

	External (to the application) devices and systems (e.g. host and network IDS, file integrity monitoring, disk usage monitoring, anti-malware service, IPS, network firewall, web application firewall, web server logging, XML gateway, database firewall, SIEM) detect anomalous behavior by the user (e.g. session and/or IP address). This information can be used by the application to contribute to its knowledge about a potential attacker. In some cases, the information could be detected by the application itself (e.g. XSS pattern black listing), but may be more effectively identified by the external device, or is not known to the application normally (e.g. requests for missing resources that the web server sees, but does not pass onto the application). The greater the knowledge a device or system has about the application, the greater confidence can be given to evidence of suspicious behaviour. Therefore, for example, attempted SQL injection detected by a web application firewall (WAF) might be given greater weight than information from a network firewall about the IP address. The power of AppSensor is its accuracy and low false positive rate, and the usage of external data should be carefully assessed to ensure it does not contribute to a higher false positive rate. 
The level of trust in information from the external device/system/organization needs to be considered.
	· A network IDS has detected suspicious activity by a particular IP address, and this is used to temporarily tighten the attack detection thresholds for requests from all users in the same IP address range.
· An application is using the ModSecurity web application firewall with the Core Rule Set, and utilises the anomaly score data passed forward in the X-WAF-Events and X-WAF-Score HTTP headers (optional rules in modsecurity_crs_49_header_tagging.conf) to adjust the level of application logging for each user.
· Information from an instance of PHPIDS suggests request data may be malicious.



continued…



	Detection Point Code, Name, Description and Considerations
	Examples

	RP3 - Suspicious Client-Side Behavior

	The application receives a report of client-side security policy exceptions. Take care this information does not contribute to greater false positives.
	· An internal corporate intranet application detects use of a non-standard workstation configuration (e.g. using JavaScript font or plugin detection see SE6). An alert is raised for further investigation.
· An online banking application receives details of suspicious client-side behaviour that would not be expected in normal application use, via a Content Security Policy[endnoteRef:107] violation report. The application increases logging for the user, and decreases the monetary limit at which the user's payments require manual authorisation by bank staff. [107:  Content Security Policy 1.0, W3C
http://www.w3.org/TR/CSP/] 

· The HTTP user agent header value does not agree with other indicators (e.g. using JavaScript detection as in the first example above)[endnoteRef:108]. [108:  Browser Detection Autopwn, etc…
http://ha.ckers.org/blog/20100904/browser-detection-autopwn-etc/] 

· A honeyclient system monitoring the web application reports unexpected behavior in the generated web pages output.
· A third-party monitoring system detects page content that is unauthorised and/or contrary to policy (e.g. structure, included links, HTML validation, inclusion of certain data such as payment card data).

	RP4 - Change to Environment Threat Level

	The general threat level (e.g. general risk of attack from the Internet, or specific targeted attacks against an organisation) is elevated. This could also be used to change response sensitivity due to short-term effects such as application upgrades/patching. This input could be used to alter thresholds for AppSensor responses. 
The detection point could receive specially crafted input from an attacker, and therefore the information should be considered as untrusted.
	· A machine-readable threat index is read from a third-party and is used to control security logging levels.
· Business circumstances (e.g. increased attention by activists) raises the suspicion the application may be at increased risk of mis-use, and response thresholds for attack detection are tightened for non-authenticated users.
· The Defense Condition Level (DEFCON)[endnoteRef:109] is raised and response thresholds are changed. [109:  Defence Condition Level (DEFCON)
http://www.fas.org/nuke/guide/usa/c3i/defcon.htm] 

· Sensor signal missing.
· External power source disconnected.
· Firmware or software patch signing check failure.




These reputation detection points could be treated either as:	Comment by Colin Watson: Move all this into Part III

· like any other detection point contributing to the count of suspicious events, or 
· used to alter security logging, or the threshold levels, or associated response actions 

The former could lead to a much higher false positive rate.


[bookmark: _Ref222909294]Detection point specification sheets
[bookmark: _Ref234409060]Example detection point definition overview for an instance of IE2
	DETECTION POINT DEFINITION - OVERVIEW
	TYPE
	
	

	· 
	· 
	II - Discrete / business layer
	

	
	
	
	
	

	CODE/TITLE
	IE2
	
	Violation of Implemented White Lists
	

	
	
	
	
	

	SERIES/PURPOSE
	3000
	
	Detailed parameter validation against white list
	

	
	
	
	
	

	DESCRIPTION
	Whitelists are defined in XML data associated with the application for each allowed form and URL parameter.  This detection point compares the parameter value with two whitelists:
1) valid values: that can be used safely  as inputs to subsequent processing
2) invalid values: that should be rejected, but might only be user error (soft rejection)
Values that do not match either whitelist are invalid and impermissible (hard rejection).


	

	
	
	
	
	

	PRE-REQUISITES
	All generic pre-processing detection points
	

	
	
	
	
	

	RELATED DPS
	None
	

	
	
	
	
	

	COMMENTS
	The parameters have been previously screened for missing/duplication/extra parameters and values.
Some parameters can be defined but have NULL value.
Some parameter values may be lists (e.g. comma delimited) of other values.


	

	
	
	
	
	

	CHANGE LOG
	DATE
19 Feb 2013



	BY
CW

	ACTION
Created

	

	
	
	
	
	



[bookmark: _Ref234409064]Example detection point definition overview for an instance of ACE3
	DETECTION POINT DEFINITION - OVERVIEW
	TYPE
	
	

	
	
	I - Discrete / generic pre-processing 
	

	
	
	
	
	

	CODE/TITLE
	ACE3
	
	Force Browsing Attempts
	

	
	
	
	
	

	SERIES/PURPOSE
	1200
	
	Validation of request URL against whitelist of allowable application surface
	

	
	
	
	
	

	DESCRIPTION
	All permissible application entry points are defined in the database, together with whether SSL/TLS is mandatory, optional or disallowed.  The database also includes URLs of dynamic (e.g. scripts) and static (e.g. style sheets, images, etc) content entry points.
This detection point is called for every HTTP request to the application.
This detection point checks the path and whether SSL/TLS is being used.


	

	
	
	
	
	

	PRE-REQUISITES
	RE1, RE2
	

	
	
	
	
	

	RELATED DPS
	RE3, RE4
	

	
	
	
	
	

	COMMENTS
	This detection point does not validate user/role permissions for the URL or the presence/absence of parameters.

	

	
	
	
	
	

	CHANGE LOG
	DATE
19 Feb 2013
21 Feb 2013
21 Feb 2013

	BY
CW
AK
MM
	ACTION
Created
Note on exclusions added to comments
Detection point locations added
	

	
	
	
	
	







[bookmark: _Ref234409123]Example partial detection pint schedule for IE2
Partial view of a longer schedule 
	DETECTION POINT DEFINITION - OVERVIEW
	TYPE
	
	

	
	
	II - Discrete / business layer
	

	
	
	
	
	

	CODE/TITLE
	IE2
	
	Violation of Implemented White Lists
	

	
	
	
	
	

	SERIES/PURPOSE
	3000
	
	Detailed parameter validation against white list
	

	
	
	
	
	

	LOCATIONS
	ID
IE2-3010
IE2-3011
IE2-3013
IE2-3020
	OBJECT
username
password
resource
press_release
	MODULE 
site.dao.auth
site.dao.auth
site.dao.auth
site.dao.media
	




[bookmark: _Ref234409128]Example detection pint schedule for AE3 
	DETECTION POINT DEFINITION - OVERVIEW
	TYPE
	
	

	
	
	I - Discrete / generic pre-processing
	

	
	
	
	
	

	CODE/TITLE
	ACE3
	
	Force Browsing Attempts
	

	
	
	
	
	

	SERIES/PURPOSE
	1200
	
	Validation of request URL against whitelist of allowable application surface 
	

	
	
	
	
	

	LOCATIONS
	ID
ACE-1210
	OBJECT
URL
	MODULE 
site.dao.request
	

	
	
	
	
	





[bookmark: _Ref205893055][bookmark: _Toc234388946]Responses
Listing of responses

[bookmark: _Ref234401321]AppSensor Response Actions
Listed effect on the user categorization, then alphabetically by ID
	Category
	Response action

	Type
	Description
	ID
	Description

	None
	No response
	ASR-P
	No Response

	Silent
	User unaware of application's response
	ASR-A
	Logging Change

	
	
	ASR-B
	Administrator Notification

	
	
	ASR-C
	Other Notification

	
	
	ASR-N
	Proxy

	Passive
	Changes to user experience but nothing denied
	ASR-D
	User Status Change

	
	
	ASR-E
	User Notification

	
	
	ASR-F
	Timing Change

	Active
	Application functionality reduced for user(s)
	ASR-G
	Process Terminated

	
	
	ASR-H
	Function Amended

	
	
	ASR-I
	Function Disabled

	
	
	ASR-J
	Account Logout

	
	
	ASR-K
	Account Lockout

	
	
	ASR-L
	Application Disabled

	Intrusive
	User's environment altered
	ASR-M
	Collect Data from User



ASR-P for “no response” is usually only output in logs to indicate an event did not initiate a response.



Categorization of responses

[bookmark: _Ref234401350]AppSensor Response Action Categorization
Listed alphabetically by ID
	Response Action
	Classifications

	
	Purpose
	Target User
	Response Duration

	ID
	Description
	Logging
	Notifying
	Disrupting
	Blocking
	One
	All
	Instantaneous
	Period
	Permanent

	ASR-A
	Logging Change
	
	
	
	
	
	
	
	
	

	ASR-B
	Administ’r Notification
	
	
	
	
	
	
	
	
	

	ASR-C
	Other Notification
	
	
	
	
	
	
	
	
	

	ASR-D
	User Status Change
	
	
	
	
	
	
	
	
	

	ASR-E
	User Notification
	
	
	
	
	
	
	
	
	

	ASR-F
	Timing Change
	
	
	
	
	
	
	
	
	

	ASR-G
	Process Terminated
	
	
	
	
	
	
	
	
	

	ASR-H
	Function Amended
	
	
	
	
	
	
	
	
	

	ASR-I
	Function Disabled
	
	
	
	
	
	
	
	
	

	ASR-J
	Account Logout
	
	
	
	
	
	
	
	
	

	ASR-K
	Account Lockout
	
	
	
	
	
	
	
	
	

	ASR-L
	Application Disabled
	
	
	
	
	
	
	
	
	

	ASR-M
	Collect Data from User
	
	
	
	
	
	
	
	
	

	ASR-N
	Proxy
	
	
	
	
	
	
	
	
	

	ASP-P
	No response
	
	
	
	
	
	
	
	
	




Thresholds and responses definition sheets
Example schedule of typical thresholds
Most AppSensor implementations have a single overall thresholds that counts all detection point events
	RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

	
	OVERALL NUMBER OF SECURITY EVENTS
	

	
	CODE
(All)
	SERIES
-
	THRESHOLD
3 
	PERIOD
1 day
	RESPONSES
ASR-K
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	


Example schedule of typical thresholds
Some implementation, such as one for identifying a restraining an application worm may only have system trend thresholds
	RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

	
	OVERALL NUMBER OF SECURITY EVENTS
	

	
	CODE
(none)
	SERIES
-
	THRESHOLD
-
	PERIOD
-
	RESPONSES
-
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	SYSTEM TRENDS (INDIVIDUAL DETECTION POINTS)
	

	
	CODE
STE3
STE3
	SERIES
-
-
	THRESHOLD
+200% 
+1,000%
 
	PERIOD
1 hour
1 hour 
	RESPONSES
ASR-B
ASR-I 
	

	
	
	
	
	
	
	

	
	
	



[bookmark: _Ref234404927]Example schedule of complex thresholds
Partial view of a longer schedule that has many more user event definitions
	RESPONSE ACTIONS - SCHEDULE OF THRESHOLDS

	
	OVERALL NUMBER OF SECURITY EVENTS
	

	
	CODE
(All)
(All)
	SERIES
-
-
	THRESHOLD
5 
45
	PERIOD
1 day
1 day
	RESPONSES
ASR-E
ASR-E, ASR-J, ASR-K
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	SYSTEM TRENDS (INDIVIDUAL DETECTION POINTS)
	

	
	CODE
STE1
STE2
	SERIES
1000
1000
	THRESHOLD
+500% 
+1000% 
	PERIOD
15 minutes
1 hour
	RESPONSES
ASR-B
ASR-B
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	USER TRENDS (INDIVIDUAL DETECTION POINTS)
	

	
	CODE
UT1
UT1
UT1
UT3
UT3
	SERIES
1000
2010
2020
1000
2000
	THRESHOLD
10 
5 
40 
1
1  
	PERIOD
1 hour
15 minutes
1 day
-
-
	RESPONSES
ASR-B
ASR-B, ASR-E
ASR-B, ASR-E, ASR-I
ASR-D
ASR-B, ASR-I
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	USER EVENTS (INDIVIDUAL DETECTION POINTS)
	

	
	CODE
RE1
RE2
RE3
RE4

AE2
AE3

SE1
SE2
SE5
SE5 

ACE1
ACE2
ACE3

IE1
IE2
IE2
	SERIES
1000
1000
1000
1000

1000
1000

1000
1000
1010
1020

1000
1000
1000

1000
1000
1010
	THRESHOLD
2 
2 
5 
5 
 
 1 
1 

1 
1 
1 
1 

2 
2 
5 

2 
1 
25 
	PERIOD
1 hour
1 day
1 day
1 day

NA
NA

(session)
1 day
(session)
(session)

30 days
30 days
15 minutes

1 day
1 day
2 hours
	RESPONSES
ASR-G
ASR-G
ASR-B, ASR-J
ASR-B, ASR-J

ASR-K
ASR-K

ASR-J, ASR-B, ASR-E
ASR-A
ASR-A
ASR-B, ASR-K

ASR-B, ASR-K
ASR-B, ASR-K
ASR-A, ASR-F

ASR-A, ASR-E, ASR-G
ASR-G, ASR-B
ASR-B, ASR-J
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	



[Detailed definition???]
	Comment by Colin Watson: Just link to wiki?
[bookmark: _Ref222029155][bookmark: _Toc234388947]Awareness and Training Resources
Overview briefing
The four-page article “Creating Attack-Aware Software Applications with Real-Time Defenses”6 in the journal CrossTalk provides a high-level summary of the AppSensor concept, benefits and applicability. It is very suitable for circulation to senior management and other stakeholders.
Detailed documentation
This book can be downloaded free of charge from the  OWASP AppSensor Project website1OWASP website[endnote link] [in English and Spanish], and is also available at cost in print from Lulu.com[endnoteRef:110][endnote link]. Other electronic formats may be available in due course. The project OWASP AppSensor Projecwebsite1 provides the most up-to-date sources of information. [110:  OWASP Store, Lulu
http://www.lulu.com/spotlight/owasp] 

Video briefings and demonstrations
Overviews:
· Attack aware applications with real time defenses via OWASP AppSensor
http://www.youtube.com/watch?v=6gxg_t2ybcE
· OWASP AppSec USA 2010: Real Time Application Defenses: The Reality of AppSensor and ESAPI 1/3
http://www.youtube.com/watch?v=ibQkfkATbVA
· Real Time Application Defenses - The Reality of AppSensor & ESAPI
http://vimeo.com/15726323
· [more]
Attack detection using demonstration application:
· OWASP AppSensor: Detecting XSS Probes
http://www.youtube.com/watch?v=CekUMk_VRV8
· OWASP AppSensor: Responding to an attack
http://www.youtube.com/watch?v=8ItfuwvLxRk
· OWASP AppSensor: Detecting Verb Tampering
http://www.youtube.com/watch?v=1D6nTlmYjhY
· [more]
Demonstration information dashboards:
· OWASP AppSensor Dashboard Demo No 2 - Ecommerce Application Advanced Configuration
http://www.youtube.com/watch?v=YZ5zGQ-XLkk
· OWASP AppSensor Dashboard Demo No 1 - Ecommerce Application Base Configuration
http://www.youtube.com/watch?v=zCaYREAyiRg
Tutorials




Feedback and testimonials
The volunteers supporting the OWASP AppSensor Project would like to hear about your application-specific real time attack detection and response:
· Questions
· Suggestions
· Corrections
· Experiences
Real-world examples and testimonials, anonymous or otherwise, are especially welcome to help the team learn and share knowledge to the wider application development community.
The AppSensor project supports OWASP’s core values[endnoteRef:111] which are: [111:  About the Open Web Application Security Project, OWASP
https://www.owasp.org/index.php/About_OWASP] 

· OPEN - Everything at OWASP is radically transparent from our finances to our code. 
· INNOVATION - OWASP encourages and supports innovation/experiments for solutions to software security challenges. 
· GLOBAL - Anyone around the world is encouraged to participate in the OWASP community. 
· INTEGRITY - OWASP is an honest and truthful, vendor neutral, global community.
For open contribution and discussion, please use the PROJECT mailing list:
· https://lists.owasp.org/listinfo/owasp-appsensor-project
To discuss or ask about the reference implementations (AppSensor WS and AppSensor Core), please use the DEV mailing list:
· https://lists.owasp.org/mailman/listinfo/owasp-appsensor-dev
Thank you.


[bookmark: _Ref222027892][bookmark: _Toc234388948]Bibliography
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