
November 2010

Version 2.0 1

OWASP Secure Coding Practices

Quick Reference Guide

Copyright and License

Copyright © 2010 The OWASP Foundation.

This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse or

distribution, you must make clear to others the license terms of this work.

http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/3.0/

November 2010

Version 2.0 2

Table of Contents

Introduction .. 3

Software Security and Risk Principles Overview ... 4

Secure Coding Practices Checklist .. 5

Input Validation: .. 5

Output Encoding: ... 5

Authentication and Password Management: ... 6

Session Management:.. 7

Access Control: .. 8

Cryptographic Practices: .. 9

Error Handling and Logging: ... 9

Data Protection:...10

Communication Security: ...10

System Configuration:..11

Database Security: ...11

File Management: ..12

Memory Management: ...12

General Coding Practices:...13

Appendix A: ...14

External References: ..14

Appendix B: Glossary ...15

November 2010

Version 2.0 3

Introduction

This technology agnostic document defines a set of general software security coding practices, in a checklist
format, that can be integrated into the software development lifecycle. Implementation of these practices will

mitigate most common software vulnerabilities.

Generally, it is much less expensive to build secure software than to correct security issues after the
software package has been completed, not to mention the costs that may be associated with a security

breach.

Securing critical software resources is more important than ever as the focus of attackers has steadily moved

toward the application layer. A 2009 SANS study1 found that attacks against web applications constitute

more than 60% of the total attack attempts observed on the Internet.

When utilizing this guide, development teams should start by assessing the maturity of their secure software

development lifecycle and the knowledge level of their development staff. Since this guide does not cover

the details of how to implement each coding practice, developers will either need to have the prior

knowledge or have sufficient resources available that provide the necessary guidance. This guide provides

coding practices that can be translated into coding requirements without the need for the developer to have an
in depth understanding of security vulnerabilities and exploits. However, other members of the development

team should have the responsibility, adequate training, tools and resources to validate that the design and

implementation of the entire system is secure.

A glossary of important terms in this document, including section headings and words shown in italics, is
provided in appendix B.

Guidance on implementing a secure software development framework is beyond the scope of this paper,

however the following additional general practices and resources are recommended:

 Clearly define roles and responsibilities

 Provide development teams with adequate software security training

 Implement a secure software development lifecycle

o OWASP CLASP Project

 Establish secure coding standards

o OWASP Development Guide Project

 Build a re-usable object library

o OWASP Enterprise Security API (ESAPI) Project

 Verify the effectiveness of security controls

o OWASP Application Security Verification Standard (ASVS) Project)

 Establish secure outsourced development practices including defining security requirements and

verification methodologies in both the request for proposal (RFP) and contract.

o OWASP Legal Project

http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
http://www.owasp.org/index.php/Category:OWASP_Legal_Project

November 2010

Version 2.0 4

Software Security and Risk Principles Overview

Building secure software requires a basic understanding of security principles. While a comprehensive

review of security principles is beyond the scope of this guide, a quick overview is provided.

The goal of software security is to maintain the confidentiality, integrity, and availability of information

resources in order to enable successful business operations. This goal is accomplished through the

implementation of security controls. This guide focuses on the technical controls specific to mitigating the

occurrence of common software vulnerabilities. While the primary focus is web applications and their

supporting infrastructure, most of the guidance can be applied to any software deployment platform.

It is helpful to understand what is meant by risk, in order to protect the business from unacceptable risks

associated with its reliance on software. Risk is a combination of factors that threaten the success of the

business. This can be described conceptually as follows: a threat agent interacts with a system, which may

have a vulnerability that can be exploited in order to cause an impact. While this may seem like an abstract

concept, think of it this way: a car burglar (threat agent) goes through a parking lot checking cars (the
system) for unlocked doors (the vulnerability) and when they find one, they open the door (the exploit) and

take whatever is inside (the impact). All of these factors play a role in secure software development.

There is a fundamental difference between the approach taken by a development team and that taken by

someone attacking an application. A development team typically approaches an application based on what it
is intended to do. In other words, they are designing an application to perform specific tasks based on

documented functional requirements and use cases. An attacker, on the other hand, is more interested in what

an application can be made to do and operates on the principle that "any action not specifically denied, is

allowed". To address this, some additional elements need to be integrated into the early stages of the

software lifecycle. These new elements are security requirements and abuse cases. This guide is designed to
help with identifying high level security requirements and addressing many common abuse scenarios.

It is important for web development teams to understand that c lient side controls like client based input

validation, hidden fields and interface controls (e.g., pull downs and radio buttons), provide little if any

security benefit. An attacker can use tools like client side web proxies (e.g. OWASP WebScarab, Burp) or

network packet capture tools (e.g., WireShark) to analyze application traffic and submit custom built
requests, bypassing the interface all together. Additionally, Flash, Java Applets and other client side objects

can be decompiled and analyzed for flaws.

Software security flaws can be introduced at any stage of the software development lifecycle, including:

 Not identifying security requirements up front

 Creating conceptual designs that have logic errors

 Using poor coding practices that introduce technical vulnerabilities

 Deploying the software improperly

 Introducing flaws during maintenance or updating

Furthermore, it is important to understand that software vulnerabilities can have a scope beyond the software

itself. Depending on the nature of the software, the vulnerability and the supporting infrastructure, the
impacts of a successful exploitation can include compromises to any or all of the following:

 The software and its associated information

 The operating systems of the associated servers

 The backend database

 Other applications in a shared environment

 The user's system

 Other software that the user interacts with

November 2010

Version 2.0 5

Secure Coding Practices Checklist

Input Validation:

 Conduct all data validation on a trusted system (e.g., The server)

 Identify all data sources and classify them into trusted and untrusted. Validate all data from untrusted
sources (e.g., Databases, file streams, etc.)

 There should be a centralized input validation routine for the application

 Specify proper character sets, such as UTF-8, for all sources of input

 Encode data to a common character set before validating (Canonicalize)

 All validation failures should result in input rejection

 Determine if the system supports UTF-8 extended character sets and if so, validate after UTF-8

decoding is completed

 Validate all client provided data before processing, including all parameters, URLs and HTTP header

content (e.g. Cookie names and values). Be sure to include automated post backs from JavaScript,

Flash or other embedded code

 Verify that header values in both requests and responses contain only ASCII characters

 Validate data from redirects (An attacker may submit malicious content directly to the target of the
redirect, thus circumventing application logic and any validation performed before the redirect)

 Validate for expected data types

 Validate data range

 Validate data length

 Validate all input against a "white" list of allowed characters, whenever possible

 If any potentially hazardous characters must be allowed as input, be sure that you implement
additional controls like output encoding, secure task specific APIs and accounting for the utilization

of that data throughout the application . Examples of common hazardous characters include:

< > " ' % () & + \ \' \"

 If your standard validation routine cannot address the following inputs, then they should be checked

discretely

o Check for null bytes (%00)

o Check for new line characters (%0d, %0a, \r, \n)

o Check for “dot-dot-slash" (../ or ..\) path alterations characters. In cases where UTF-8 extended
character set encoding is supported, address alternate representation like: %c0%ae%c0%ae/

(Utilize canonicalization to address double encoding or other forms of obfuscation attacks)

Output Encoding:

 Conduct all encoding on a trusted system (e.g., The server)

 Utilize a standard, tested routine for each type of outbound encoding

 Contextually output encode all data returned to the client that originated outside the application's trust
boundary. HTML entity encoding is one example, but does not work in all cases

 Encode all characters unless they are known to be safe for the intended interpreter

 Contextually sanitize all output of un-trusted data to queries for SQL, XML, and LDAP

 Sanitize all output of un-trusted data to operating system commands

November 2010

Version 2.0 6

Authentication and Password Management:

 Require authentication for all pages and resources, except those specifically intended to be public

 All authentication controls must be enforced on a trusted system (e.g., The server)

 Establish and utilize standard, tested, authentication services whenever possible

 Use a centralized implementation for all authentication controls, including libraries that call external

authentication services

 Segregate authentication logic from the resource being requested and use redirection to and from the

centralized authentication control

 All authentication controls should fail securely

 All administrative and account management functions must be at least as secure as the primary

authentication mechanism

 If your application manages a credential store, it should ensure that only cryptographically strong one-

way salted hashes of passwords are stored and that the table/file that stores the passwords and keys is

write-able only by the application. (Do not use the MD5 algorithm if it can be avoided)

 Password hashing must be implemented on a trusted system (e.g., The server).

 Validate the authentication data only on completion of all data input, especially for sequential

authentication implementations

 Authentication failure responses should not indicate which part of the authentication data was

incorrect. For example, instead of "Invalid username" or "Invalid password", just use "Invalid

username and/or password" for both. Error responses must be truly identical in both display and

source code

 Utilize authentication for connections to external systems that involve sensitive information or

functions

 Authentication credentials for accessing services external to the application should be encrypted and

stored in a protected location on a trusted system (e.g., The server). The source code is NOT a secure

location

 Use only HTTP POST requests to transmit authentication credentials

 Only send non-temporary passwords over an encrypted connection or as encrypted data, such as in an

encrypted email. Temporary passwords associated with email resets may be an exception

 Enforce password complexity requirements established by policy or regulation. Authentication

credentials should be sufficient to withstand attacks that are typical of the threats in the deployed
environment. (e.g., requiring the use of alphabetic as well as numeric and/or special characters)

 Enforce password length requirements established by policy or regulation. Eight characters is

commonly used, but 16 is better or consider the use of multi-word pass phrases

 Password entry should be obscured on the user's screen. (e.g., on web forms use the input type

"password")

 Enforce account disabling after an established number of invalid login attempts (e.g., five attempts is

common). The account must be disabled for a period of time sufficient to discourage brute force
guessing of credentials, but not so long as to allow for a denial-of-service attack to be performed

 Password reset and changing operations require the same level of controls as account creation and

authentication.

 Password reset questions should support sufficiently random answers. (e.g., "favorite book" is a bad

question because “The Bible” is a very common answer)

 If using email based resets, only send email to a pre-registered address with a temporary

link/password

 Temporary passwords and links should have a short expiration time

 Enforce the changing of temporary passwords on the next use

November 2010

Version 2.0 7

 Notify users when a password reset occurs

 Prevent password re-use

 Passwords should be at least one day old before they can be changed, to prevent attacks on password

re-use

 Enforce password changes based on requirements established in policy or regulation. Critical systems

may require more frequent changes. The time between resets must be administratively controlled

 Disable "remember me" functionality for password fields

 The last use (successful or unsuccessful) of a user account should be reported to the user at their next

successful login

 Implement monitoring to identify attacks against multiple user accounts, utilizing the same password.

This attack pattern is used to bypass standard lockouts, when user IDs can be harvested or guessed

 Change all vendor-supplied default passwords and user IDs or disable the associated accounts

 Re-authenticate users prior to performing critical operations

 Use Multi-Factor Authentication for highly sensitive or high value transactional accounts

 If using third party code for authentication, inspect the code carefully to ensure it is not affected by

any malicious code

Session Management:

 Use the server or framework’s session management controls. The application should only recognize

these session identifiers as valid

 Session identifier creation must always be done on a trusted system (e.g., The server)

 Session management controls should use well vetted algorithms that ensure sufficiently random

session identifiers

 Set the domain and path for cookies containing authenticated session identifiers to an appropriately

restricted value for the site

 Logout functionality should fully terminate the associated session or connection

 Logout functionality should be available from all pages protected by authorization

 Establish a session inactivity timeout that is as short as possible, based on balancing risk and business

functional requirements. In most cases it should be no more than several hours

 Disallow persistent logins and enforce periodic session terminations, even when the session is active.

Especially for applications supporting rich network connections or connecting to critical systems.

Termination times should support business requirements and the user should receive sufficient

notification to mitigate negative impacts

 If a session was established before login, close that session and establish a new session after a

successful login

 Generate a new session identifier on any re-authentication

 Do not allow concurrent logins with the same user ID

 Do not expose session identifiers in URLs, error messages or logs. Session identifiers should only be

located in the HTTP cookie header. For example, do not pass session identifiers as GET parameters

 Protect server side session data from unauthorized access, by other users of the server, by

implementing appropriate access controls on the server

 Generate a new session identifier and deactivate the old one periodically. (This can mitigate certain

session hijacking scenarios where the original identif ier was compromised)

 Generate a new session identifier if the connection security changes from HTTP to HTTPS, as can

occur during authentication. Within an application, it is recommended to consistently utilize HHTPS

rather than switching between HTTP to HTTPS.

November 2010

Version 2.0 8

 Supplement standard session management for sensitive server-side operations, like account

management, by utilizing per-session strong random tokens or parameters. This method can be used
to prevent Cross Site Request Forgery attacks

 Supplement standard session management for highly sensitive or critical operations by utilizing per-

request, as opposed to per-session, strong random tokens or parameters

 Set the "secure" attribute for cookies transmitted over an TLS connection

 Set cookies with the HttpOnly attribute, unless you specifically require client-side scripts within your

application to read or set a cookie's value

Access Control:

 Use only trusted system objects, e.g. server side session objects, for making access authorization

decisions

 Use a single site-wide component to check access authorization. This includes libraries that call

external authorization services

 Access controls should fail securely

 Deny all access if the application cannot access its security configuration information

 Enforce authorization controls on every request, including those made by server side scripts,

"includes" and requests from rich client-side technologies like AJAX and Flash

 Segregate privileged logic from other application code

 Restrict access to files or other resources, including those outside the application's direct control, to

only authorized users

 Restrict access to protected URLs to only authorized users

 Restrict access to protected functions to only authorized users

 Restrict direct object references to only authorized users

 Restrict access to services to only authorized users

 Restrict access to application data to only authorized users

 Restrict access to user and data attributes and policy information used by access controls

 Restrict access security-relevant configuration information to only authorized users

 Server side implementation and presentation layer representations of access control rules must match

 If state data must be stored on the client, use encryption and integrity checking on the server side to

catch state tampering.

 Enforce application logic flows to comply with business rules

 Limit the number of transactions a single user or device can perform in a given period of time. The

transactions/time should be above the actual business requirement, but low enough to deter automated
attacks

 Use the "referer" header as a supplemental check only, it should never be the sole authorization check,

as it is can be spoofed

 If long authenticated sessions are allowed, periodically re-validate a user’s authorization to ensure that

their privileges have not changed and if they have, log the user out and force them to re-authenticate

 Implement account auditing and enforce the disabling of unused accounts (e.g., After no more than 30

days from the expiration of an account’s password.)

 The application must support disabling of accounts and terminating sessions when authorization

ceases (e.g., Changes to role, employment status, business process, etc.)

 Service accounts or accounts supporting connections to or from external systems should have the least

privilege possible

November 2010

Version 2.0 9

 Create an Access Control Policy to document an application's business rules, data types and access

authorization criteria and/or processes so that access can be properly provisioned and controlled. This
includes identifying access requirements for both the data and system resources

Cryptographic Practices:

 All cryptographic functions used to protect secrets from the application user must be implemented on

a trusted system (e.g., The server)

 Protect master secrets from unauthorized access

 Cryptographic modules should fail securely

 All random numbers, random file names, random GUIDs, and random strings should be generated

using the cryptographic module’s approved random number generator when these random values are

intended to be un-guessable

 Cryptographic modules used by the application should be compliant to FIPS 140-2 or an equivalent

standard. (See http://csrc.nist.gov/groups/STM/cmvp/validation.html)

 Establish and utilize a policy and process for how cryptographic keys will be managed

Error Handling and Logging:

 Do not disclose sensitive information in error responses, including system details, session identifiers

or account information

 Use error handlers that do not display debugging or stack trace information

 Implement generic error messages and use custom error pages

 The application should handle application errors and not rely on the server configuration

 Properly free allocated memory when error conditions occur

 Error handling logic associated with security controls should deny access by default

 All logging controls should be implemented on a trusted system (e.g., The server)

 Logging controls should support both success and failure of specified security events

 Ensure logs contain important log event data

 Ensure log entries that include un-trusted data will not execute as code in the intended log viewing

interface or software

 Restrict access to logs to only authorized individuals

 Utilize a master routine for all logging operations

 Do not store sensitive information in logs, including unnecessary system details, session identifiers or

passwords

 Ensure that a mechanism exists to conduct log analysis

 Log all input validation failures

 Log all authentication attempts, especially failures

 Log all access control failures

 Log all apparent tampering events, including unexpected changes to state data

 Log attempts to connect with invalid or expired session tokens

 Log all system exceptions

 Log all administrative functions, including changes to the security configuration settings

 Log all backend TLS connection failures

 Log cryptographic module failures

 Use a cryptographic hash function to validate log entry integrity

http://csrc.nist.gov/groups/STM/cmvp/validation.html

November 2010

Version 2.0 10

Data Protection:

 Implement least privilege, restrict users to only the functionality, data and system information that is
required to perform their tasks

 Protect all cached or temporary copies of sensitive data stored on the server from unauthorized access

and purge those temporary working files a soon as they are no longer required.

 Encrypt highly sensitive stored information, like authentication verification data, even on the server

side. Always use well vetted algorithms, see "Cryptographic Practices" for additional guidance

 Protect server-side source-code from being downloaded by a user

 Do not store passwords, connection strings or other sensitive information in clear text or in any non-

cryptographically secure manner on the client side. This includes embedding in insecure formats like:
MS viewstate, Adobe flash or compiled code

 Remove comments in user accessible production code that may reveal backend system or other

sensitive information

 Remove unnecessary application and system documentation as this can reveal useful information to

attackers

 Do not include sensitive information in HTTP GET request parameters

 Disable auto complete features on forms expected to contain sensitive information, including

authentication

 Disable client side caching on pages containing sensitive information. Cache-Control: no-store, may

be used in conjunction with the HTTP header control "Pragma: no-cache", which is less effective, but

is HTTP/1.0 backward compatible

 The application should support the removal of sensitive data when that data is no longer required.

(e.g. personal information or certain financial data)

 Implement appropriate access controls for sensitive data stored on the server. This includes cached

data, temporary files and data that should be accessible only by specific system users

Communication Security:

 Implement encryption for the transmission of all sensitive information. This should include TLS for

protecting the connection and may be supplemented by discrete encryption of sensitive files or non-

HTTP based connections

 TLS certificates should be valid and have the correct domain name, not be expired, and be installed

with intermediate certificates when required

 Failed TLS connections should not fall back to an insecure connection

 Utilize TLS connections for all content requiring authenticated access and for all other sensitive

information

 Utilize TLS for connections to external systems that involve sensitive information or functions

 Utilize a single standard TLS implementation that is configured appropriately

 Specify character encodings for all connections

 Filter parameters containing sensitive information from the HTTP referer, when linking to external

sites

November 2010

Version 2.0 11

System Configuration:

 Ensure servers, frameworks and system components are running the latest approved version

 Ensure servers, frameworks and system components have all patches issued for the version in use

 Turn off directory listings

 Restrict the web server, process and service accounts to the least privileges possible

 When exceptions occur, fail securely

 Remove all unnecessary functionality and files

 Remove test code or any functionality not intended for production, prior to deployment

 Prevent disclosure of your directory structure in the robots.txt file by placing directories not intended

for public indexing into an isolated parent directory. Then "Disallow" that entire parent directory in

the robots.txt file rather than Disallowing each individual directory

 Define which HTTP methods, Get or Post, the application will support and whether it will be handled
differently in different pages in the application

 Disable unnecessary HTTP methods, such as WebDAV extensions. If an extended HTTP method that

supports file handling is required, utilize a well-vetted authentication mechanism

 If the web server handles both HTTP 1.0 and 1.1, ensure that both are configured in a similar manor

or insure that you understand any difference that may exist (e.g. handling of extended HTTP methods)

 Remove unnecessary information from HTTP response headers related to the OS, web-server version

and application frameworks

 The security configuration store for the application should be able to be output in human readable
form to support auditing

 Implement an asset management system and register system components and software in it

 Isolate development environments from the production network and provide access only to authorized

development and test groups. Development environments are often configured less securely than

production environments and attackers may use this difference to discover shared weaknesses or as an

avenue for exploitation

 Implement a software change control system to manage and record changes to the code both
in development and production

Database Security:

 Use strongly typed parameterized queries

 Utilize input validation and output encoding and be sure to address meta characters. If these fail, do

not run the database command

 Ensure that variables are strongly typed

 The application should use the lowest possible level of privilege when accessing the database

 Use secure credentials for database access

 Connection strings should not be hard coded within the application. Connection strings should be

stored in a separate configuration file on a trusted system and they should be encrypted.

 Use stored procedures to abstract data access and allow for the removal of permissions to the base
tables in the database

 Close the connection as soon as possible

 Remove or change all default database administrative passwords. Utilize strong passwords/phrases or
implement multi-factor authentication

 Turn off all unnecessary database functionality (e.g., unnecessary stored procedures or services, utility

packages, install only the minimum set of features and options required (surface area reduction))

November 2010

Version 2.0 12

 Remove unnecessary default vendor content (e.g., sample schemas)

 Disable any default accounts that are not required to support business requirements

 The application should connect to the database with different credentials for every trust distinction

(e.g., user, read-only user, guest, administrators)

File Management:

 Do not pass user supplied data directly to any dynamic include function

 Require authentication before allowing a file to be uploaded

 Limit the type of files that can be uploaded to only those types that are needed for business purposes

 Validate uploaded files are the expected type by checking file headers. Checking for file type by

extension alone is not sufficient

 Do not save files in the same web context as the application. Files should either go to the content

server or in the database.

 Prevent or restrict the uploading of any file that may be interpreted by the web server.

 Turn off execution privileges on file upload directories

 Implement safe uploading in UNIX by mounting the targeted file directory as a logical drive using the

associated path or the chrooted environment

 When referencing existing files, use a white list of allowed file names and types. Validate the value of

the parameter being passed and if it does not match one of the expected values, either reject it or use a
hard coded default file value for the content instead

 Do not pass user supplied data into a dynamic redirect. If this must be allowed, then the redirect

should accept only validated, relative path URLs

 Do not pass directory or file paths, use index values mapped to pre-defined list of paths

 Never send the absolute file path to the client

 Ensure application files and resources are read-only

 Scan user uploaded files for viruses and malware

Memory Management:

 Utilize input and output control for un-trusted data

 Double check that the buffer is as large as specified

 When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the

destination buffer size is equal to the source buffer size, it may not NULL-terminate the string

 Check buffer boundaries if calling the function in a loop and make sure there is no danger of writing

past the allocated space

 Truncate all input strings to a reasonable length before passing them to the copy and concatenation

functions

 Specifically close resources, don’t rely on garbage collection. (e.g., connection objects, file handles,

etc.)

 Use non-executable stacks when available

 Avoid the use of known vulnerable functions (e.g., printf, strcat, strcpy etc.)

 Properly free allocated memory upon the completion of functions and at all exit points

November 2010

Version 2.0 13

General Coding Practices:

 Use tested and approved managed code rather than creating new unmanaged code for common tasks

 Utilize task specific built-in APIs to conduct operating system tasks. Do not allow the application to

issue commands directly to the Operating System, especially through the use of application initiated

command shells

 Use checksums or hashes to verify the integrity of interpreted code, libraries, executables, and

configuration files

 Utilize locking to prevent multiple simultaneous requests or use a synchronization mechanism to

prevent race conditions

 Protect shared variables and resources from inappropriate concurrent access

 Explicitly initialize all your variables and other data stores, either during declaration or just before the

first usage

 In cases where the application must run with elevated privileges, raise privileges as late as possible,

and drop them as soon as possible

 Avoid calculation errors by understanding your programming language's underlying representation

and how it interacts with numeric calculation. Pay close attention to byte size discrepancies, precision,

signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how your language handles numbers that are too large or too small for its underlying

representation

 Do not pass user supplied data to any dynamic execution function

 Restrict users from generating new code or altering existing code

 Review all secondary applications, third party code and libraries to determine business necessity and

validate safe functionality, as these can introduce new vulnerabilities

 Implement safe updating. If the application will utilize automatic updates, then use cryptographic

signatures for your code and ensure your download clients verify those signatures. Use encrypted
channels to transfer the code from the host server

November 2010

Version 2.0 14

Appendix A:

External References:

1. Cited Reference

Sans and TippingPoint "The Top Cyber Security Risks"

http://www.sans.org/top-cyber-security-risks/

 Web Application Security Consortium
http://www.webappsec.org/

 Common Weakness Enumeration (CWE)

http://cwe.mitre.org/

 Department of Homeland Security

Build Security In Portal

https://buildsecurityin.us-cert.gov/daisy/bsi/home.html

 CERT Secure Coding
http://www.cert.org/secure-coding/

 MSDN Security Developer Center

http://msdn.microsoft.com/en-us/security/default.aspx

 SQL Injection Cheat Sheet

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

 Cross Site Scripting (XSS) Cheat Sheet

http://ha.ckers.org/xss.html

Security Advisory Sites:
Useful resources to check for known vulnerabilities against supporting infrastructure and

frameworks

Secunia Citrix Vulnerability List:

 http://secunia.com/advisories/search/?search=citrix

Security Focus Vulnerability Search:

 http://www.securityfocus.com/vulnerabilities

Open Source Vulnerability Database (OSVDB):

 http://osvdb.org/search/web_vuln_search

Common Vulnerability Enumeration:

 http://www.cve.mitre.org/

http://www.sans.org/top-cyber-security-risks/
http://www.webappsec.org/
http://cwe.mitre.org/
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://www.cert.org/secure-coding/
http://msdn.microsoft.com/en-us/security/default.aspx
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://ha.ckers.org/xss.html
http://secunia.com/advisories/search/?search=citrix
http://www.securityfocus.com/vulnerabilities
http://osvdb.org/search/web_vuln_search
http://www.cve.mitre.org/

November 2010

Version 2.0 15

Appendix B: Glossary

Abuse Case: Describes the intentional and unintentional misuses of the software. Abuse cases should

challenge the assumptions of the system design.

Access Control: A set of controls that grant or deny a user, or other entity, access to a system resource. This

is usually based on hierarchical roles and individual privileges within a role, but also includes system to

system interactions.

Authentication: A set of controls that are used to verify the identity of a user, or other entity, interacting
with the software.

Availability: A measure of a system's accessibility and usability.

Canonicalize: To reduce various encodings and representations of data to a single simple form.

Communication Security: A set of controls that help ensure the software handles the sending and receiving

of information in a secure manner.

Confidentiality: To ensure that information is disclosed only to authorized parties.

Contextual Output Encoding: Encoding output data based on how it will be utilized by the application. The

specific methods vary depending on the way the output data is used. If the data is to be included in the

response to the client, account for inclusion scenarios like: the body of an HTML document, an HTML

attribute, within JavaScript, within a CSS or in a URL. You must also account for other use cases like SQL

queries, XML and LDAP.

Cross Site Request Forgery: An external website or application forces a client to make an unintended

request to another application that the client has an active session with. Applications are vulnerable when

they use known, or predictable, URLs and parameters; and when the browser automatically transmits all

required session information with each request to the vulnerable application. (This is one of the only attacks
specifically discussed in this document and is only included because the associated vulnerability is very

common and poorly understood.)

Cryptographic Practices: A set of controls that ensure cryptographic operations within the application are

handled securely.

Data Protection: A set of controls that help ensure the software handles the storing of information in a

secure manner.

Database Security: A set of controls that ensure that software interacts with a database in a secure manner

and that the database is configured securely.

Error Handling and Logging: A set of practices that ensure the application handles errors safely and

conducts proper event logging.

Exploit: To take advantage of a vulnerability. Typically this is an intentional action designed to compromise
the software's security controls by leveraging a vulnerability.

File Management: A set of controls that cover the interaction between the code and other system files.

November 2010

Version 2.0 16

General Coding Practices: A set of controls that cover coding practices that do not fit easily into other

categories.

Hazardous Character: Any character or encoded representation of a character that can effect the intended

operation of the application or associated system by being interpreted to have a special meaning, outside the

intended use of the character. These characters may be used to:

• Altering the structure of existing code or statements
• Inserting new unintended code

• Altering paths

• Causing unexpected outcomes from program functions or routines

• Causing error conditions

• Having any of the above effects on down stream applications or systems

HTML Entity Encode: The process of replacing certain ASCII characters with their HTML entity

equivalents. For example, encoding would replace the less than character "<" with the HTML equivalent

"<". HTML entities are 'inert' in most interpreters, especially browsers, which can mitigate certain client

side attacks.

Impact: A measure of the negative effect to the business that results from the occurrence of an undesired

event; what would be the result of a vulnerability being exploited.

Input Validation: A set of controls that verify the properties of all input data matches what is expected by

the application including types, lengths, ranges, acceptable character sets and does not include known
hazardous characters.

Integrity: The assurance that information is accurate, complete and valid, and has not been altered by an

unauthorized action.

Log Event Data: This should include the following:

1. Time stamp from a trusted system component

2. Severity rating for each event

3. Tagging of security relevant events, if they are mixed with other log entries

4. Identity of the account/user that caused the event

5. Source IP address associated with the request
6. Event outcome (success or failure)

7. Description of the event

Memory Management: A set of controls that address memory and buffer usage.

Mitigate: Steps taken to reduce the severity of a vulnerability. These can include removing a vulnerability,

making a vulnerability more difficult to exploit, or reducing the negative impact of a successful exploitation.

Multi-Factor Authentication: An authentication process that requires the user to produce multiple distinct

types of credentials. Typically this is based on something they have (e.g., smartcard), something they know
(e.g., a pin), or something they are (e.g., data from a biometric reader).

Output Encoding: A set of controls addressing the use of encoding to ensure data output by the application

is safe.

Parameterized Queries (prepared statements): Keeps the query and data separate through the use of

placeholders. The query structure is defined with place holders, the SQL statement is sent to the database and

prepared, and then the prepared statement is combined with the parameter values. The prevents the query

November 2010

Version 2.0 17

from being altered, because the parameter values are combined with the compiled statement, not a SQL

string.

Sanitize Data: The process of making potentially harmful data safe through the use of data removal,

replacement, encoding or escaping of the characters.

Security Controls: An action that mitigates a potential vulnerability and helps ensure that the software
behaves only in the expected manner.

Security Requirements: A set of design and functional requirements that help ensure the software is built

and deployed in a secure manner.

Sequential Authentication: When authentication data is requested on successive pages rather than being

requested all at once on a single page.

Session Management: A set of controls that help ensure web applications handle HTTP sessions in a secure

manner.

State Data: When data or parameters are used, by the application or server, to emulate a persistent

connection or track a client's status across a multi-request process or transaction.

System: A generic term covering the operating systems, web server, application frameworks and related

infrastructure.

System Configuration: A set of controls that help ensure the infrastructure components supporting the

software are deployed securely.

Threat Agent: Any entity which may have a negative impact on the system. This may be a malicious user
who wants to compromise the system's security controls; however, it could also be an accidental misuse of

the system or a more physical threat like fire or flood.

Trust Boundaries: Typically a trust boundary constitutes the components of the system under your direct

control. All connections and data from systems outside of your direct control, including all clients and

systems managed by other parties, should be consider untrusted and be validated at the boundary, before
allowing further system interaction.

Vulnerability: A weakness that makes the system susceptible to attack or damage.

